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Abstract

Many wireless data communications systems, such as LTE, Wi-Fi and Wimax, have become or

are rapidly becoming interference limited due to radio frequency interference (RFI) generated by

both human-made and natural sources. Human-made sources of RFI include uncoordinated devices

operating in the same frequency band, devices communicating in adjacent frequency bands, and

computational platform subsystems radiating clock frequencies and their harmonics. Additive RFI

for these wireless systems has predominantly non-Gaussian statistics, and is well modeled by the

Middleton Class A distribution for centralized networks, and the symmetric alpha stable distribution

for decentralized networks. Our primary contribution is the derivation of joint spatial statistical

models of RFI generated from uncoordinated interfering sources randomly distributed around a

multi-antenna receiver. The derivation is based on statistical-physical interference generation and

propagation mechanisms. Prior results on joint statistics of multi-antenna interference model either

spatially independent or spatially isotropic interference, and do not provide a statistical-physical

derivation for certain network environments. Our proposed joint spatial statistical model captures a

continuum between spatially independent and spatially isotropic statistics, and hence includes many

previous results as special cases. Practical applications include co-channel interference modeling for

various wireless network environments, including wireless ad hoc, cellular, local area, and femtocell

networks.
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I. INTRODUCTION

Wireless transceivers suffer degradation in communication performance due to radio frequency

interference (RFI) generated by both human-made and natural sources. Human-made sources of

RFI include uncoordinated wireless devices operating in the same frequency band (co-channel

interference), devices communicating in adjacent frequency bands (adjacent channel interference),

and computational platform subsystems radiating clock frequencies and their harmonics [1]. Dense

spatial reuse of the available radio spectrum, required to meet increasing demand in user data

rates also causes severe co-channel interference and may limit communication system performance.

Network planning, resource allocation [2] and user scheduling [3] are strategies typically used to

avoid RFI; however, these strategies are restricted to coordinated users operating over the same

or co-existing communication standards [4]. Other RFI mitigation techniques include interference

cancellation [5], interference alignment [6], and receiver back-off [7]; however, these too require some

level of user or base station cooperation [8]. Furthermore, some level of uncoordinated residual inter-

ference is generally present in wireless receivers regardless of the interference cancellation strategy.

Residual interference includes interference from uncoordinated users (out-of-cell interference in

cellular networks and co-channel interference in ad hoc networks) or users in co-existing networks

(interference from hotspots in femtocell networks).

Recent communication standards and research have focused on the use of multiple transmit and

multiple receive antennas to increase data rate and communication reliability in wireless networks.

Multi-antenna wireless receivers are increasingly being used in RFI-rich network environments.

Accurate statistical models of RFI observed by multi-antenna receivers are needed in order to analyze

communication performance of receivers [9], develop algorithms to mitigate the impact of RFI on

communication performance [10], and improve network performance [11]. In this paper, we derive

the joint statistics of RFI generated from a field of Poisson distributed interferers that are placed (i)

over the entire plane, or (ii) outside of a interferer-free guard zone around the receiver.

Organization — Section II presents a concise survey of multi-dimensional statistical models of

RFI. Section III discusses the system model of interference generation and propagation. The joint

interference statistics are derived in Section IV. Section V discusses the impact of removing certain

system model assumptions on RFI statistics. Section VI presents numerical simulations to corroborate

our claims and the key takeaways are summarized in Section VII.

Notation — In this paper, scalar random variables are represented using upper-case notation or
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Greek alphabet, random vectors are denoted using the boldface lower-case notation, and random

matrices are denoted using the boldface upper-case notation. Deterministic parameters are repre-

sented using Greek alphabet, with the exception of N denoting the number of receive antennas.

EX

�

f (X)
	

denotes the expectation of the function f (X) with respect to the random variable X, P(·)

denotes the probability of a random event, and || · || denotes the vector 2−norm.

II. PRIOR WORK

In typical communication receiver design, interference is usually modeled as a random variable

with Gaussian density distribution [12]. While the Gaussian distribution is a good model for thermal

noise at the receiver [13], RFI has predominantly non-Gaussian statistics [14] and is well modeled

using impulsive distributions such as symmetric alpha stable [15] and Middleton Class A distributions

[16]. The impulsive nature of RFI may cause significant degradation in communication performance

of wireless receivers designed under the assumption of additive Gaussian noise [10].

The statistical techniques used in modeling interference can be divided into two categories: (1)

statistical inference methods and (2) statistical-physical derivation methods. Statistical inference

approaches fit a mathematical model to interference signal measurements, without regard to the

physical generation mechanisms behind the interference. Statistical-physical models, on the other

hand, model interference based on the physical principles that govern the generation and propaga-

tion of interference-causing emissions. Statistical-physical models can therefore be more useful than

empirical models in designing robust receivers in the presence of RFI [14]. The following sub-sections

discuss key prior results in statistical modeling of RFI in single- and multi-antenna receivers.

A. Prior work in single-antenna RFI models

In [17], it was shown that interference from a homogeneous Poisson field of interferers distributed

over the entire plane can be modeled using the symmetric alpha stable distribution [15]. This result

was later extended to include channel randomness in [18]. In [14], it was shown that the Middleton

Class A distribution well models the statistics of sum interference from a Poisson field of interferers

distributed within a circular annular region around the receiver. Their results were generalized in

[19], by using the Gaussian mixture distributions to model RFI statistics in network environments

with clustered interferers. The Middleton Class A and the Gaussian mixture distributions can also

incorporate thermal noise present at the receiver without changing the nature of the distribution,

unlike the symmetric alpha stable distribution. The Middleton Class A models are also canonical,
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TABLE I: Key statistical models of RFI observed by single-antenna receiver systems

Model Name Statistical Model Wireless Network

Symmetric alpha stable

Characteristic Function

Decentralized (e.g. ad hoc

and femtocells)

ΦY(ω) = e−σ|ω|
α

α : Characteristic exponent. Range: (0, 2]

σ : Dispersion parameter. Range: (0,∞)

Middleton Class A

Amplitude Distribution

Centralized (e.g. LTE,

Wimax, and WiFi)

f Y(y ) =

∞
∑

k=0

e−A Ak

k !
Æ

2π k/A+Γ

1+Γ
σ2

e
−

y 2

2
k/A+Γ

1+Γ
σ2

A : Overlap index. Range: (0,∞)

Γ : Ratio of Gaussian to non-Gaussian variance. Range: (0,∞)

σ2 : Noise power. Range: (0,∞)

i.e, no knowledge of the physical environment is needed to estimate the model parameters [20]. The

symmetric alpha stable and Middleton Class A distribution functions are listed in Table I.

B. Prior work in multi-antenna RFI models

Prior work on statistical modeling of RFI in multi-antenna wireless systems has typically focused

on using multi-variate extensions of single-antenna RFI statistical models, such as the Middleton

Class A and symmetric alpha stable distributions. The two common approaches of generating multi-

variate extensions of uni-variate distributions assume that either (a) RFI is independent across the

receive antennas, or (b) the multi-variate RFI model is isotropic.

In [18], the authors demonstrate the applicability of the spherically isotropic symmetric alpha

stable model [21] to RFI generated from a Poisson distributed field of interferers. The authors assume

that each receiver is surrounded by the same set of active interferers, and receiver separation is

ignored. The spherically isotropic alpha stable model is derived under both homogeneous and non-

homogeneous distribution of interferers, with the signal propagation model incorporating pathloss,

lognormal shadowing and Rayleigh fading. The study is limited to baseband signaling and neglects

any correlation in the interferer to receive antenna channel model or correlation in the interference

signal generation model.

In [22], the author proposes three possible extensions to the univariate Class A model. The three

multi-dimensional extensions, whose distribution functions are listed in Table II, are as follows:

1) MCA.I - Each receive antenna experiences additive uni-variate Class A noise with the identical
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parameters. RFI is spatially and temporally independent and identically distributed. MCA.I

cannot capture spatial dependence or sample correlation of RFI across receive antennas.

2) MCA.II - RFI is assumed to be spatially dependent and correlated across receive antennas.

MCA.II can represent correlated or uncorrelated random variables; however, it cannot represent

independent Class-A random variables.

3) MCA.III - This model incorporates spatial dependence in multi-antenna RFI, but does not

support spatial correlation across antenna samples. MCA.III can represent uncorrelated and

spatially dependent Class A random variables but it cannot represent independent or correlated

random variables.

These models are multi-variate extensions of the Class A distribution and are not derived from

physical mechanisms that govern RFI generation. While these models have been very useful in

analyzing MIMO receiver performance [23] and designing receiver algorithms [24], a statistical-

physical basis for these models would further enhance their appeal [25] in linking wireless network

performance with environmental factors such as interferer density, fading parameters, etc.

In [25], the authors attempt to derive RFI statistics for a two antenna receiver based on the

statistical-physical mechanisms that produce the RFI. The authors use a physical generation model

for the received RFI at each of the two antennas that is the sum of RFI from stochastically placed

interferers which include interferers observed by both antennas as well as interferers observed

exclusively by a single antenna. Their resulting model is canonical in form, incorporates an additive

Gaussian background noise component and has found application in receiver design in the presence

of interference [24], [26]. However, it is incomplete as it is strictly limited to two antenna receivers [25],

and it enforces statistical dependence among receive antennas similar to MCA.III. This is contrary

to their statistical-physical generation mechanism which assumes that each receive antenna has a

subset of surrounding interferers that are observed exclusively by that antenna alone. Our article

extends their work by using a similar interference generation and propagation framework to develop

statistical-physical interference distributions for any number of receive antenna. Table II lists the

different joint statistical models of RFI that have been proposed in prior work.

III. SYSTEM MODEL

Consider a wireless communication receiver with N antennas, located in the presence of nearby

interfering sources within a two-dimensional plane as shown in Figure 1. The geometry of the

individual antenna elements and the inter-antenna spacing is ignored, i.e., the entire receiver is
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TABLE II: Key statistical models of RFI observed by multi-antenna receiver systems

Model Name Statistical Model

Isotropic symmetric alpha stable

Characteristic Function:

ΦY(w) = e−σ||w||
α

α : Characteristic exponent

σ : Dispersion parameter

Multidimensional Class A – (MCA.I)

Amplitude Distribution:

f Y

�

y
�

=

N
∏

n=1

∞
∑

k=0

e−An An
k

k !
Æ

2π k/An+Γn

1+Γn
σ2

n

e
−

y 2
n

2
k/An+Γn

1+Γn
σ2

n

For each antenna n ,

An : Overlap index

Γn : Ratio of Gaussian to non-Gaussian noise power

σ2
n

: Noise power

Multidimensional Class A – (MCA.II)

Amplitude Distribution:

f Y

�

y
�

=

∞
∑

k=0

e−A Ak

k !

1
Æ

2π k/A+Γ

1+Γ
|Σ|

e
−

yT Σ−1 y

2
k/A+Γ

1+Γ

A : Overlap index

Γ : Ratio of Gaussian to non-Gaussian variance

Σ : Noise covariance matrix

Multidimensional Class A – (MCA.III)

Amplitude Distribution:

f Y

�

y
�

=

∞
∑

k=0

e−A Ak

k !

1
p

2π|Σk |
e−

yT Σ−1
k

y

2

Σk = (I+Γ)
−1
�

k

A
I+Γ

�

A : Overlap index

Γ : Diagonal matrix of Gaussian to non-Gaussian variance ratios

Bivariate Class A

Amplitude Distribution:

f n(n 1, n 2) =
e−A

2π|K0 |
1
2

e
−nT K−1

0
n

2 +
(1−e−A )

2π|K1 |
1
2

e
−nT K−1

1
n

2

Km =









c 2
m

κcm ĉm

κcm ĉm ĉ 2
m









, c 2
m
=

m
A +Γ1

1+Γ1
, ĉ 2

m
=

m
A +Γ2

1+Γ2

A : Overlap index

Γn : Ratio of Gaussian to non-Gaussian variance at antenna n

κ : Correlation coefficient
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Fig. 1: Illustration of interferer placement around a 3-antenna receiver at a sampling time instant.

assumed to be located at a single point in space. For ease of notation, the origin is shifted to

coincide with the receiver location. The interferers are co-planar to the receiver and are transmitting

in the same frequency band as the receiver; hence, we can apply the term co-channel interference

to describe the resulting RFI. We also assume a fast fading wireless channel and power-law pathloss

between the interferers and the receiver.

At each time snapshot, the active interfering sources are classified into N + 1 independent sets

S0,S1, · · · ,SN . S0 denotes the set of interferers that are observed by all antennas, or in other words,

cause interference to every receive antenna. Sn ∀ n = 1, · · · ,N denotes the set of interferers that

are observed by antenna n alone. At each sampling time instant, we assume that the locations of

the active interferers in Sn ∀ n = 0, · · · ,N are distributed according to a homogeneous spatial point

process with the intensity of set intensity of Sn denoted by λn ∀ n = 0, . . . ,N . Based on the intensity

of individual interferer fields, our system model yields the following three RFI generation scenarios:

• Case I - Interferer set S0 is empty, i.e., λn>0 and λ0=0. In this scenario, each receiver is under

the influence of an independent set of interferers. It is trivial to see that the resulting RFI

would also exhibit independence across the receive antennas, i.e., Case I results in RFI that has

characteristics of model MCA.I in Table II.

• Case II - Interferer sets Sn ∀ n = 1, · · · ,N are empty sets, i.e., λn=0 and λ0>0. Both receivers

observe the same set of interferers, thereby causing the resulting RFI to have spatial dependence

across receive antennas. MCA.II and MCA.III from [22], shown in Table II, have the same

characteristic in spatial statistics but there is no statistical physical derivation linking these
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models to any interference generation mechanism, such as one described in our system model.

• Case III - All interferer sets are non-empty, i.e., λn>0 and λ0>0. This models partial correlation

in the interferer field observed by each of the receive antennas. The common set of interferers

in S0 models correlation between the interferer fields of two antennas. The level of correlation

can be tuned by changing the intensity of the Poisson point process representing each set in

the interferer field. This model is quite commonly used in multi-dimensional temporal [27]

and spatial interference modeling [25]. The resulting RFI is spatially dependent across receive

antennas and neither of MCA.I, MCA.II, or MCA.III appropriately capture the joint spatial

statistics of RFI generated in such an environment.

A scenario in which an environment with interferers observed by a subset of receive antennae

may arise, is during deployment of receivers employing sectorized antennas with full frequency

reuse. Sectorized antennas are geographically co-located wireless directional antennas with

radiation patterns shaped as partially overlapping sectors that combine to cover the entire

space around the multi-antenna system [28]. Sectorized antennas can provide the advantages of

spatial diversity while mitigating the impairments caused by multipath delay [29]. Interference

signals common to some antennas may arise in the overlapping sections, i.e., where the antenna

gain for all antennas is similar, and individual antennas may still see independent interference

in sectors where one antenna exhibits high gain while others exhibit a null.

The Poisson point process is typically used in modeling interferer locations in large wireless networks

and provides analytical tractability in mathematical derivations [30]. We wish to highlight the fact

that a spatial Poisson point process distribution of interferers allows each interferer set Sn to have

potentially infinite number of interferers. The distance of each interferer from origin (where the

receiver is located) provides an ordering function, enabling us to count the interferers in each set.

For the i th interfering source in Sn , Rn ,i denotes the two-dimensional coordinates of the interferer’s

location. Thus, ||Rn ,1||< ||Rn ,2||< · · · is implicitly assumed in order to define the i th interferer at Rn ,i .

We also assume that the interferers are distributed within a two-dimensional annulus with inner

and outer radii δ↓ and δ↑, respectively. Based on values of δ↓, our system model supports the

following scenarios of interferer placement:

1) Interferer placement with guard-zones: By allowing δ↓ > 0, we constrain the active interferers

to be located outside of a finite disk around the multi-antenna wireless receiver, effectively

modeling a wireless network with an interferer-free guard zone around the receiver. Such a
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TABLE III: Prior results on statistical-physical interference distribution models in multi-antenna receivers. Spatially

independent interference is trivially derived from prior work on single-dimensional statistical models of interference.

(SAS: Symmetric alpha stable)

Parameter values describing Spatial dependence

region containing interferers Independent (Case I) Isotropic (Case II) Continuum (Case III)

δ↓ = 0,δ↑→∞ Yes [15] (SAS) Yes [18] (SAS) No

δ↓ = 0,δ↑ <∞ No No No

δ↓ > 0,δ↑→∞ Yes [19] (Class A) No No

δ↓ > 0,δ↑ <∞ Yes [19] (Class A) No No

model can be applied to cellular and ad hoc networks with contention-based or scheduling-

based MAC protocols [3]. The joint spatial statistics of the resultant RFI from this model are

derived in Section IV-A.

2) Interferer placement without guard-zones: By setting δ↓ = 0, we allow interferers to be located

arbitrarily close to the wireless receiver. Such a scenario can model interference in an ad hoc

network without any contention-based medium access control protocol [3], as well as platform

noise [10] in small form-factor devices such as laptops and mobile phones. The joint spatial

statistics of the resultant RFI from this model are derived in Section IV-B.

The possible parameter values δ↓ = 0, δ↓ > 0, δ↑ < ∞ and δ↑ → ∞, combined with the three

cases of correlation within interferer distribution, yields a total of twelve possible scenarios of

interferer distribution. Table III lists the scenarios where prior statistical models of interference

exist in literature. Interference statistics for Case III require knowledge of interference statistics for

Cases I and II. The majority of Section IV is dedicated to deriving interference statistics for isotropic

interference (Case II) in network scenarios not studied in prior work. The spatially independent

interference statistics (Case I) are a trivial extension to the single antenna interference statistics.

IV. JOINT CHARACTERISTIC FUNCTION OF MULTI-ANTENNA RFI

At each receive antenna n , the baseband sum interference signal at any sampling time instant

can be expressed as the sum total of the interference signal observed from common interferers and

the interference signal from interferers visible only to antenna n . We can express the interference

signal at the n th antenna as

Yn =Z 0
n
+Zn (1)
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where Zn , Z 0
n

represent the sum interference signal from interfering sources in Sn (visible only to

antenna n), and interfering sources in S0 (visible to all antennas), respectively. The sum interference

signal Zn from interferers in Sn can be written as [16]

Zn =
∑

i∈Sn

B n
i

e jχn
i (Dn ,i )

−
γ

2 H n
i

e jΘn
i . (2)

Zn is the sum of interfering signals B n
i e jχn

i (Dn ,i )
−
γ

2 H n
i e jΘn

i emitted by each interferer i ∈Sn located at

Rn ,i . B n
i e jχn

i denotes complex baseband emissions from interfering source i where B n
i is the emission

signal envelope and χn
i is the phase of the emission. Dn ,i = ||Rn ,i || denotes the distance between

the receiver n (located at origin) and the interferer, and γ is the power pathloss coefficient (γ > 2),

consequently, (Dn ,i )
−
γ

2 indicates the reduction in interfering signal amplitude during propagation

through the wireless medium. H n
i e jΘn

i denotes the complex fast-fading channel between the interferer

and receiver n . For the fast fading channel model, we assume that the channel amplitude H n
i follows

the Rayleigh distribution, and that the channel phase Θn
i is uniformly distributed on [0,2π]. H n

i , Θn
i ,

B n
i , and χn

i are assumed to be i.i.d. across all interfering sources i ∈Sn . In Sections V-A to V-D, we

study the impact of removing many of these assumptions on the statistics of RFI.

The signal from the common set of interferers S0 is expressed as

Z 0
n
=
∑

i 0∈S0

B 0
i

e jχ0
i (D0,i )

−
γ

2 H 0
n ,i

e jΘ0
n ,i . (3)

Note that the difference between (2) and (3) is that the interferer emission signal B 0
i e jχ0

i and the

distance D0,i between interferer i and the receive antenna n (placed at origin), is independent of

the antenna under observation (n). This is because we ignore inter-antenna spacing and assume all

antennas are located at the origin. The channel between the interferer and n th receiver, denoted by

H 0
n ,i e jθ 0

n ,i , is also assumed i.i.d. across n and i . In Section V-C, we will discuss the impact of spatial

correlation of the channel model on interference statistics. Combining (1), (2), and (3) we can write

the resultant interference signal at the n th receive antenna as

Yn =
∑

i 0∈S0

B 0
i 0

D
−
γ

2

0,i 0
H 0

n ,i 0
e

j (χ0
i0
+Θ0

n ,i0
)
+
∑

i∈Sn

B n
i

D
−
γ

2

n ,i H n
i

e j (χn
i +Θ

n
i ). (4)

The complex baseband interference at each receive antenna can then be decomposed into its in-

phase and quadrature components Yn = Yn ,I + j Yn ,Q , where

Yn ,I =
∑

i 0∈S0

B 0
i 0

D
−
γ

2

0,i 0
H 0

n ,i 0
cos (χ0

i 0
+Θ0

n ,i 0
)+
∑

i∈Sn

B n
i

D
−
γ

2

n ,i H n
i

cos (χn
i
+Θn

i
), (5)
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and

Yn ,Q =
∑

i 0∈S0

B 0
i 0

D
−
γ

2

0,i 0
H 0

n ,i 0
sin (χ0

i 0
+Θ0

n ,i 0
)+
∑

i∈Sn

B n
i

D
−
γ

2

n ,i H n
i

sin (χn
i
+Θn

i
). (6)

In order to study the spatial statistics of interference across multiple receive antennas, we will derive

the joint characteristic function of the in-phase and quadrature-phase components of interference.

Using (1), (5) and (6), the joint characteristic function ΦY can be written as

ΦY(w) =E
n

e
∑N

n=1 jωn ,I Yn ,I+jωn ,Q Yn ,Q

o

(7)

where w =
�

ω1,I ω1,Q ω2,I ω2,Q · · · ωN ,I ωN ,Q

�

. Note that the expectation is evaluated over

the random variables |S0|, |Sn |, D0,i , Dn ,i , H 0
n ,i , H n

i , B 0
i , B n

i ,χ0
i , χn

i , Θ0
n ,i and Θn

i ∀ n = 1, . . . ,N . For the

sake of brevity and readability, we refrain from listing all of these random variables in the subscript

of the expectation operator. We can separate the independent terms in the expectation by noting

that the interferers in the different sets Sn are distributed in space as independent homogeneous

processes, and their emissions and channel realizations are also independent as well. Substituting

(4) in (7) and separating independent terms in the expectation, we get

ΦY(w) =

N
∏

n=1

E

�

e j
∑|Sn |

i=1 D
−
γ
2

n ,i H n
i B n

i (ωn ,I cos(χn
i +Θ

n
i )+ωn ,Q sin(χn

i +Θ
n
i ))
�

×E

¨

e
j
∑N

n=1

∑|S0 |
i0=1 D

−
γ
2

0,i0
H 0

n ,i0
B 0

i0

�

ωn ,I cos(χ0
i0
+Θ0

n ,i0
)+ωn ,Q sin(χ0

i0
+Θ0

n ,i0
)
�

«

. (8)

To simplify notation, (8) is decomposed into the product form

ΦY(w) = ΦY,S0
(w)

N
∏

n=1

ΦY,Sn
(w) (9)

where,

ΦY,S0
(w) =E

¨

e
j
∑N

n=1

∑|S0 |
i0=1 D

−
γ
2

0,i0
H 0

n ,i0
B 0

i0

�

ωn ,I cos(χ0
i0
+Θ0

n ,i0
)+ωn ,Q sin(χ0

i0
+Θ0

n ,i0
)
�

«

(10)

ΦY,Sn
(w) =E

�

e j
∑|Sn |

i=1 D
−
γ
2

n ,i H n
i B n

i (ωn ,I cos(χn
i +Θ

n
i )+ωn ,Q sin(χn

i +Θ
n
i ))
�

. (11)

Each component term in (9) is the characteristic function of the interference contribution by one

of each interferer sets {S0,S1, . . . ,Sn }. We can rewrite (10) and (11) in their polar forms as

ΦY,S0
(w) =E

�

e j
∑N

n=1
|ωn |

∑|S0 |
i=1 D

−
γ
2

0,i H 0
n ,i B 0

i cos(χ0
i +Θ

0
n ,i+ξω,n )

�

(12)

ΦY,Sn
(w) =E

�

e j |ωn |
∑|Sn |

i=1
D
−
γ
2

n ,i H n
i B n

i cos(χn
i +Θ

n
i +ξω,n )

�

(13)

where |ωn |=
Æ

ω2
n ,I +ω

2
n ,Q and ξω,n = tan−1

�

ωn ,I

ωn ,Q

�

. We will now evaluate each component term in

(9) for interferer environments with and without guard zones, as described in Section III.
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A. Joint spatial statistics of RFI in presence of guard zones

1) Evaluation of ΦY,S0
(w) (RFI contribution from S0): In this section, we evaluate the contribution

of the interferers in set S0 to the joint spatial statistics of RFI, denoted by the term ΦY,S0
(w) in

(7). In the constrained interferer placement system model, the interferers within S0 are distributed

according to a homogeneous spatial Poisson point process inside an annulus with finite inner and

outer radii δ↓ and δ↑, respectively. Consequently, the number of interferers |S0| is a Poisson random

variable with parameter λπ(δ2
↑
−δ2
↓
). Conditioned on |S0|, (12) can be expressed as

ΦY,S0
(w) =E

�

e j
∑N

n=1
|ωn |

∑|S0|
i=1 D

−
γ
2

0,i H 0
n ,i B 0

i cos(χ0
i +Θ

0
n ,i+ξω,n )

�

(14)

=

∞
∑

k=0

E

(

e j
∑N

n=1
|ωn |

∑k

i=1
D
−
γ
2

0,i H 0
n ,i B 0

i cos(χ0
i +Θ

0
n ,i+ξω,n )

�

�

�

�

�

|S0|= k

)

P (|S0|= k ) (15)

=

∞
∑

k=0

E

�

e j
∑N

n=1 |ωn |D
−
γ
2

0 H 0
n B 0 cos(χ0+Θ0

n+ξω,n )

�k

P (|S0|= k ) (16)

Once conditioned on a fixed number of total points, the points in a Poisson point process are

distributed independently and uniformly across the region in consideration. This allows us to remove

the interferer index i and treat the contribution to RFI from each interferer as an independent random

variable. H 0
n ,i , B 0

n ,i , χ0
n ,i and Θ0

n ,i are all i.i.d. and can be replaced in (16) by H 0
n

, B 0
n

, χ0
n

and Θ0
n

,

respectively. D0,i is assumed to be increasing with the index i , since we assumed that the interferers

are ordered according to how close they are located to the origin. However, by virtue of a property of

Poisson point processes, the points are uniformly distributed within the region of the point process

when conditioned on the total number of points k . Thus, in (16) we replaced D0,i by the random

variable D0, that follows the distribution

f D0|k (D0|k ) =







2D0

δ2
↑
−δ2
↓

if δ↓ ≤D0 ≤δ↑,

0 otherwise.

This distribution arises when we consider the annular disc with inner and outer radius of δ↓ and δ↑,

and k points distributed uniformly in this region. The number of interferers (k ) within the annular

region is a Poisson random variable with mean λ0π(δ
2
↑
−δ2
↓
). Combining this notion with (16) we get

ΦY,S0
(w) =

∞
∑

k=0

E

�

e j
∑N

n=1
|ωn |D

−
γ
2

0 H 0
n

B 0 cos(χ0+Θ0
n
+ξω,n )

�k

e−λ0π(δ
2
↑
−δ2
↓
)

�

λ0π(δ
2
↑
−δ2
↓
)
�k

k !
(17)

=e−λ0π(δ
2
↑
−δ2
↓
)

∞
∑

k=0

�

�

λ0π(δ
2
↑
−δ2
↓

�

E

�

e j
∑N

n=1|ωn |D
−
γ
2

0 H 0
n B 0 cos(χ0+Θ0

n+ξω,n )

��k

k !
(18)
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=e−λ0π(δ
2
↑
−δ2
↓
)e
E

(

e j
∑N

n=1 |ωn |D
−
γ
2

0
H0

n B0 cos(χ0+Θ0
n+ξω,n )

)

λ0π(δ
2
↑
−δ2
↓
)

(19)

=e



E

(

e
j
∑N

n=1 |ωn |D
−
γ
2

0
H0

n B0 cos(χ0+Θ0
n+ξω,n )

)

−1



λ0π(δ
2
↑
−δ2
↓
)

(20)

By taking the logarithm of ΦY,S0
(w) in (20), the log-characteristic function is

ΨY,S0
(w)¬ logΦY,S0

(w) (21)

=λ0π(δ
2
↑
−δ2
↓
)

�

E

�

e j
∑N

n=1|ωn |D
−
γ
2

0 H 0
n B 0 cos(χ0+Θ0

n+ξω,n )

�

−1

�

(22)

=K

 

E

(

N
∏

n=1

e j |ωn |D
−
γ
2

0 H 0
n

B 0 cos(χ0+Θ0
n
+ξω,n )

)

−1

!

(23)

where K =λ0π(δ
2
↑
−δ2
↓
). Next we use the identity

e j a cos(b ) =

∞
∑

m=0

j mεm Jm (a )cos(mb ) (24)

where ε0 = 1, εm = 2 for m ≥ 1, and Jm (·) denotes the Bessel function of order m . Combining (24)

and (23), the log-characteristic function ΨY,S0
(w) can be expressed as

ΨY,S0
(w) = K

 

E

(

N
∏

n=1

∞
∑

mn=0

j mnεmn
Jmn

�

|ωn |D
−
γ

2

0 H 0
n

B 0 cos
�

mn

�

χ0+Θ0
n
+ξω,n

��

�

)

−1

!

. (25)

Since χ0 and Θ0
n

are uniform random variables within [0,2π], for any value of ξω,n and mn ,

mn

�

χ0+Θ0
n
+ξω,n

�

modulo 2π is also uniformly distributed over [0,2π]. Thus, all terms in (25) with

mn > 0 ∀ n = 1→N reduce to zero after taking expectation with respect to Θ0
n

, and (25) reduces to

ΨY,S0
(w) = K

 

E

(

N
∏

n=1

J0

�

|ωn |D
−
γ

2

0 H 0
n

B 0
�

)

−1

!

. (26)

Note that the expectation is now with respect to the remaining random variables in (26). To evaluate

the expectation in (26), we rewrite it as

ΨY,S0
(w) = K

 

E

(

N
∏

n=1

EH 0
n

§

J0

�

|ωn |D
−
γ

2

0 H 0
n

B 0

�ª

)

−1

!

. (27)

Note that we used the assumption that the fast-fading channel between interferer and receive

antennas are spatially independent across the antenna index n . Using the series expansion of the

zero-th order Bessel function,

J0(x ) =

∞
∑

m=0

(−1)m x 2m

22m m !Γ(m +1)
(28)

we can rewrite (27) as

ΨY,S0
(w) = K











E







N
∏

n=1

EH 0
n







∞
∑

m=0

(−1)m
�

|ωn |D
−
γ

2

0 H 0
n

B 0

�2m

22m m !Γ(m +1)













−1











(29)
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= K











E







N
∏

n=1

∞
∑

m=0

(−1)m
�

|ωn |D
−
γ

2

0 B 0

�2m

EH 0
n

¦

(H 0
n
)2m
©

22m m !Γ(m +1)







−1











(30)

Under the assumption that the fading channel is Rayleigh distributed, the 2m th moment of H 0
n

is
�

E

¦

H 02
©�m

Γ(1+m ). Applying to (30), we get

ΨY,S0
(w) =K











E







N
∏

n=1

∞
∑

m=0

(−1)m
�

|ωn |D
−
γ

2

0 B 0

�2m
�

E

¦

H 02
©�m

Γ(1+m )

22m m !Γ(m +1)







−1











(31)

=K











E







N
∏

n=1

∞
∑

m=0

(−1)m
�

|ωn |D
−
γ

2

0 B 0
Æ
�

E

¦

H 02
©�

�2m

22m m !







−1











(32)

=K











E







N
∏

n=1

e−



|ωn |D
−
γ
2

0
B0
Ç
�

E

§

H0 2
ª�





2

4







−1











(33)

=K











E







e−



D
−
γ
2

0
B0





2

E

§

H0 2
ª

||w||2

4







−1











. (34)

Expanding the expectation in (34) with respect to the random variable D0, we have

ΨY,S0
(w) = lim

δ↑→∞
K











E







δ↑
∫

δ↓

e
−||w||2

�

D
−
γ
2

0 B 0

�2

E

¦

H 02
©

2D0

δ2
↑
−δ2
↓

d D0







−1











(35)

Using Taylor series expansion of e x , (35) can be written as

ΨY,S0
(w) = lim

δ↑→∞
K











E







δ↑
∫

δ↓

∞
∑

m=1

(−1)m D
−

mγ

2

0 E
�

(B 0)2m
	

(E
¦

H 02
©

)m ||w||2m

4m m !

2D0

δ2
↑
−δ2
↓

d D0







−1











(36)

=λ0π







∞
∑

m=1

(−1)m D
−

mγ

2

0

�

(B 0)2m
	

(E
¦

H 02
©

)m ||w||2m (δ
−γm−2

↓
−δ
−γm−2

↑
)

4m m !

2

mγ−2






(37)

valid for γ> 2. Assuming that the interferer emission amplitude B 0 has constant value B , we get

ΨY,S0
(w) =λπ

∞
∑

m=1

(−1)m (||w||2σB )mδ
−γm+2

↓

4m m !

2

γm −2
(1−

δ↑

δ↓

−γm−2

) (38)

In Section V-A, we discuss the impact of applying any general interferer emission amplitude distri-

bution on the interference statistics. The multiplicative term 2

mγ−2

�

1−
δ↑
δ↓

−γm−2
�

prevents us from
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simplifying (38) into an exponential. Note that in reasonable to assume that for many wireless

network scenarios δ↑ ≫ δ↓, in which case

�

1−
δ↑
δ↓

−γm−2
�

→ 1 and we are left with the term 2
mγ−2

.

Similar to an approach used in [19], we approximate 2

mγ−2
as an power series ηβm for m ≥ 1 and

choose parameters ηγ and βγ to minimize the mean squared error (MSE)

{ηγ,βγ}= arg min
η∈R,β∈R

∞
∑

m=1

�

2

mγ−2
−ηβm

�2

. (39)

Using the non-linear unconstrained optimization functionality provided by MATLAB, we are able to

determine the appropriate values for {ηγ,βγ} for any γ > 2 with MSE less than 10−4. In the case

where

�

1−
δ↑
δ↓

−γm−2
�

cannot be ignored, we can again use the power series approximation to find

parameters {ηγ,βγ} such that {ηγ,βγ}= arg minη∈R,β∈R

∑∞

m=1

�

2

mγ−2

�

1−
δ↑
δ↓

−γm−2
�

−ηβm

�2

.

Using the aforementioned approximation, the log-characteristic exponent in (38) can be expressed

as

ΨY,S0
(w) =λπ

∞
∑

m=1

(−1)m (||w||2σB )mδ
−γm+2

↓

4m m !
ηγβ

m
γ (40)

=λπδ2
↓
ηγ

�

e−
||w||2δ

−γ
↓
βγE

§

H0 2
ª

B
2

4 −1

�

(41)

= A0

�

e−
||w||2Ω0

2 −1

�

. (42)

(40) is the log-characteristic function of a Middleton Class A where A0 =λπδ
2
↓
ηγ is the overlap index

indicating the impulsiveness of the interference, and Ω0 =
Aδ
−γ

↓
βγE

¦

H 02
©

B
2

2
is the mean intensity of the

interference [14]. Thus, we can write (10) as

ΦY,S0
(w) = e

A0

�

e−
||w||2Ω0

2 −1

�

(43)

which is the characteristic function of the isotropic multi-variate Middleton Class A distribution

shown in Table II as MCA.II or more generally, MCA.III with a Γ containing equal values in the

diagonal. The next section incorporates receiver thermal noise which gives rise to the Γ parameter

seen in MCA.II and MCA.III.

2) Evaluation of ΦY,Sn
(w) (RFI contribution from Sn ): In this section, we derive contribution of

interferer sets Si∀i = 1,2...N to the spatial joint statistics of RFI. At each antenna n , the interference

from the exclusive set of interferers is identical to RFI seen by a single antenna receiver surrounded

by interferers distributed according to a Poisson point process. The statistics of such RFI have been

derived in [19] and shown to be well modeled by the univariate Middleton Class A distribution. Thus
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we can write (11) as

ΦY,Sn
(w) = e

An

�

e−
|ωn |

2Ωn
2 −1

�

(44)

where An = λnπδ
2
↓
ηγ and Ωn =

Anδ
−γ

↓
E{H n 2}B

2
βγ

2
are the parameters of the Class A distribution. Com-

bining (9), (43) and (44), we get the joint characteristic function of RFI as

ΦY(w) = e
A0

�

e−
||w||2Ωn

2 −1

�

×

N
∏

n=1

e
An

�

e−
|ωn |

2Ωn
2 −1

�

. (45)

The corresponding probability density function can be written as

f (Y) =

(

N
∏

n=1

(

∞
∑

mn=1

e−An (An )
mn

p

2πmnΩn mn !
e
−|Yn |2

2mn Ωn + e−Anδ(Yn )

))

×

∞
∑

m0=1

e−A0(A0)
m0

p

2πm0Ω0m0!
e
−||Y||2

2m0Ω0 + e−A0δ(Y) (46)

where δ(·) is the Dirac-delta function. It indicates the probability that there are no interferers in the

annular region around the receiver, resulting in zero RFI. In practical receivers, however, thermal

background noise is always present and is well modeled by the Gaussian distribution. Assuming that

antenna n observes independent thermal noise with variance ρn , we can incorporate it into our

model resulting in the following distribution

f (Y) =

(

N
∏

n=1

(

∞
∑

mn=0

e−An (An )
mn

p

2πΩn (mn +Γn )mn !
e

−|Yn |2

2Ωn (mn+Γn )

))

∞
∑

m0=1

e−A0(A0)
m0

p

2πm0Ω0m0!
e
−||Y||2

2m0Ω0

+ e−A0

N
∏

n=1

∞
∑

mn=0

e−An (An )
mn

p

2πmnΩn mn !
e

−|Yn |2

2Ωn (mn+Γn ) (47)

where Γn =
ρn

Ωn
.

It is interesting to note that the parameter An (n = 1, · · · ,N ) is linearly dependent on the cor-

responding interferer density λn . If λn is very high, or in other words, the number of interferers

becomes very large, An grows large as well and it is well known that for large values of An , the

Middleton Class A distribution is less impulsive in nature and resembles the Gaussian distribution.

Thus, asymptotically increasing the number of interferers changes the nature of the distribution as

well. Since An is also proportional to δ2
↓
, we can see that the interference statistics become less

impulsive as the radius of the guard zone increases.

B. Joint spatial statistics of RFI in absence of guard-zones

In this section, we derive joint spatial statistics of sum interference with the parameter δ↓ = 0.

In the absence of guard zones, an active interferer may arise quite close to the receiver causing a

sudden large burst of interference. Such events cause a high degree of impulsiveness in interference

subsequently leading to heavy-tails in first-order interference statistics.
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1) Evaluation of ΦY,S0
(w) (RFI contribution from S0): The contribution to the joint spatial statistics

of RFI from the interferers in S0 is expressed as the term ΦY,S0
(w) in the joint characteristic function

of RFI given by (9). In order to derive closed form expressions for (10), we set δ↓ = 0 in (35) to get

ΨY,S0
(w) =λ0πδ

2
↑











E







δ↑
∫

0



e
−||w||2

�

D
−
γ
2

0 B 0

�2

E

¦

H 02
©

−1





2D0

δ2
↑

d D0

















(48)

Combining ‖w‖2 and D
−γ
0 into a temporary variable E0 =D0‖w‖

−2
γ , we get

ΨY,S0
(w) =λ0π













E











||w||
4
γ

δ↑ ||w||
−2
γ

∫

0



e
−

�

E
−
γ
2

0 B 0

�2

E

¦

H 02
©

−1



2E0d E0























(49)

When δ↑→∞, the integral is reduced to

ΨY,S0
(w) =λ0π||w||

4
γE







∞
∫

0



e
−

�

E
−
γ
2

0 B 0

�2

E

¦

H 02
©

−1



2E0d E0







(50)

consequently, the characteristic function ΦY,S0
(w) is of the form

ΦY,S0
(w) = e−σ0||w||α (51)

where α = 4
γ

, and σ0 = λ0πE







∞
∫

0

1− e
−

�

E
−
γ
2

0 B 0

�2

E

¦

H 02
©

2E0d E0







. This is the characteristic function of

an isotropic symmetric alpha stable random vector. The characteristic function expression in (49)

offers little insight when δ↑ is finite, however, it has been shown in [18] that a series summation of

the form (4) with finite terms converges very rapidly to the alpha stable distribution.

2) Evaluation of ΦY,Sn
(w) (RFI contribution from Sn ): ΦY,Sn

(w) can be considered as the contri-

bution to the joint characteristic function of RFI, made by interfering sources visible only to one

receive antenna. The evaluation of ΦY,Sn
(w) for interferers in Sn is identical for all n = 1,2, · · ·N .

Starting with (13) and Using a derivation similar to the steps from (16) to (25), we get that

logΦY,Sn
(w) =λnπδ

2
↑
E

§

J0

�

|ωn |D
−
γ

2
n Hn B 0

�

−1

ª

(52)

Taking expectation over Dn with our knowledge of the distribution of Dn , we get

logΦY,Sn
(w) =λnπδ

2
↑

δ↑
∫

0

E

§

J0

�

|ωn |D
−
γ

2
n Hn B 0

�

−1

ª

2Dn

δ2
↑

d Dn (53)
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=λnπ|ωn |
2
γ

δ↑ |ωn |
4
γ

∫

0

E

§

J0

�

D
−
γ

2

1,n Hn B 0

�

−1

ª

2D1,n d D1,n (54)

Thus we have evaluated (13) as

ΦY,Sn
(w) = e

λnπ|ωn |
4
γ

δ↑|ωn |
4
γ

∫

0

E

�

J0

�

D
−
γ
2

1,n Hn B 0

�

−1

�

2D1,n d D1,n

. (55)

When δ↑→∞, (55) can be written as

ΦY,Sn
(w) = e

λnπ|ωn |
4
γ

∞
∫

0

E

�

J0

�

D
−
γ
2

1,n Hn B 0

�

−1

�

2D1,n d D1,n

(56)

= e−σn |ωn |
α

(57)

where α= 4

γ
, and σn = λπ

∞
∫

0

E

§

1− J0

�

D
−
γ

2

1,n Hn B 0

�ª

2D1,n d D1,n . (57) is the characteristic function of

a symmetric alpha stable random variable. If δ↑ is finite, the characteristic function expression is

not very useful, but converges rapidly as δ↑ increases. Combining (9),(57), and (51), we arrive at the

characteristic function of the Y as

ΦY(w) = e−σ0||w||α
N
∏

n=1

e−σn |ωn |
α

. (58)

(58) is the characteristic function of random variable that is a mixture of independent and spherically

isotropic symmetric alpha stable vectors. The dispersion parameters σ0 and σn n = 1,2, · · · ,N depend

linearly on the intensities λ0 and λn n = 1,2, · · · ,N , respectively. By setting λ0 to 0, our model

degenerates into spatially independent RFI, while setting λn to 0 for all n = 1,2, · · · ,N causes isotropic

RFI at the receiver.

In this scenario, the parameter σn (n = 1, · · · ,N ) is linearly dependent on the corresponding

interferer density λn . If λn is very high, or in other words, the number of interferers becomes

very large, the resulting interference is still distributed as a symmetric alpha stable random variable,

albeit with a very high intensity. This is an interesting property in contrast to interference with guard

zones, where interference statistics under a large value of λn are less impulsive in nature and start

resembling the Gaussian distribution.

V. IMPACT OF SYSTEM MODEL ASSUMPTIONS ON INTERFERENCE STATISTICS

A. Interference statistics in general fading channel models

In developing our system model in Section III, we assumed a Rayleigh distributed fast fading

channel between interfering sources and the multi-antenna receiver. While the Rayleigh distribution
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is a reasonably accurate and frequently used model of fading channel amplitude, other distributions

have also been widely used to characterize wireless channel amplitudes [31].

For unconstrained interferer location distribution, we do not require any assumptions on the

channel amplitude distribution to derive RFI statistics. With constrained interferer locations, the

Rayleigh distribution of the fading channel between interferers and the receiver was used to simplify

the integral of a Bessel function in (30). Removing the Rayleigh distribution assumption would prevent

this step in the proof. Since we are interested in the RFI amplitude tail statistics, and from Fourier

analysis, the behavior of the characteristic function Φ in the neighborhood of ||w|| → 0 governs the

tail probability of the random envelope [14]. We use the approximation [16]

Ex {J0(x )}= e−Ex {x} (1+Λ(x )) (59)

where Λ(x ) is a correction factor expressed as

Λ(x ) =

∞
∑

m=2

�

E{x 2}
�k

22k k !
E1F1(−k ;1;

x

E{x}
) (60)

where 1F1(·; ·; ·) is the confluent hypergeometric function of the first kind. It has been shown [14],

[19] that as x → 0, the slowest decaying term in Λ(x ) is of the order O (x 4), and we can write (59) as

Ex {J0(x )}= e−Ex {x}. (61)

Using (61), we can simplify (26) as

ΨY,S0
(w) = K
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N
∏
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(65)

Since we are interested in evaluating (26) primarily in the neighborhood of ||w|| → 0, we used (61)

when stepping from (63) to (64). In stepping from (64) to (65), we used the assumption that the

fading channel is i.i.d. across the receive antennas, therefore E{(H 0
n
)2} is independent of n . Since

(65) has the same form as (34), the rest of the joint RFI statistics derivation continues from (34) as

shown in Section IV-A, yielding joint statistics of the form given in (46).
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B. Interference statistics in random interferer emissions

In deriving interferer statistics in the presence of guard zones, we assumed that the emission

amplitude was constant in (38) in order to simplify the interference statistics into the form of a

Middleton Class A distribution. Without making this assumption, (40) would be replaced by

ΨY,S0
(w) =λπδ2

↓
ηγEB 0

¨

e−
||w||2δ

−γ
↓
βγE

§

H02
ª

(B0)2

4 −1

«

(66)

As discussed in Section V-A, in order to accurately model tail probabilities, we are concerned with

the region around ‖w‖→ 0. In this region, we can use the approximation e x ≈ 1+x , to arrive at

EB 0

¨

e−
||w||2δ

−γ
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βγE

§
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ª
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≈E
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H 02
©

E
�

(B 0)2
	

4
(68)

Again, by using the approximation 1+x ≈ e x , we can combine (66) and (68) to get

ΨY,S0
(w)≈λπδ2

↓
ηγ

�

e
−||w||2δ

−γ
↓
βγE

§

H0 2
ª

E{(B0)2}
4 −1

�

(69)

which has the same form as (40). Thus, even if the interferer emission envelopes are randomly

distributed, the interference statistics can be approximated using the Middleton Class A form,

especially in the tail probability region. Note that when we derive RFI statistics in the absence

of guard zones we make no assumptions regarding the interferer emission amplitude.

C. Interference statistics in spatially correlated wireless channel models

To derive the joint statistics of RFI in Sections IV-B and IV-A, we assume that the wireless

fading channel between the interfering source and receiver is spatially independent and identically

distributed across the multiple antennas in the receiver. This assumption may not be true if two

antennas are close to each other. Spatial correlations in the wireless channel are routinely modeled

when studying the performance of multi-antenna receivers [32], [33]. In this paper, we only study

the impact of channel correlation on the joint interference statistics in the presence of guard zones.

We start from (25), which shows that the joint log-characteristic function of RFI can be expressed as

ΨY,S0
(w) = K
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. (70)

In Section IV-B we used the assumption that the fast-fading channel phase is uncorrelated across

receive antennas, to show that all terms with mn > 0 are equal to zero, resulting in the simplified

product of terms expression in (26). If there is phase correlation between receive antennas u and
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v , then the terms containing E
¦

cos
�

ku (χ0+Θ0
u
+ξω,u )+kv (χ0+Θ0

v
+ξω,v )

�©

are not equal to zero

for ku ,kv > 0. However, assuming that the interferer emissions are uniformly distributed in phase

χ0, only the terms with kv = −ku and ku = kv = 0 are non-zero, and considering only these terms

(70) reduces to
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By applying the following identity,

J0
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a 2+b 2−2ab cos(x )
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(71) can be expressed as
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We again use the approximation result provided in (59) to get
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Note that in addition to the |ωn |
2 terms, ΨY,S0

(w) contains non-zero terms with variables 2ωu ,Rωv,R ,

2ωu ,Rωv,I , 2ωu ,Iωv,I , and 2ωu ,Iωv,R . These terms indicates sample level correlation in the sum RFI,

for example the coefficient of the 2ωu ,Rωv,R term is indicative of correlation between Yu ,R and Yv,R .



22

Analogous to the cross terms in multi-dimensional Gaussian distributions, this coefficient of the

2ωu ,Rωv,R term is equal to E
�

Yu ,R Yv,R

	

. Thus we can now update our model to include correlation
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The probability distribution corresponding to the characteristic function in (45) can be written as
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where the matrix K is a 2N ×2N matrix. For all integers u ,v ∈ [1,N ], the elements of K are given as
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D. Interference statistics in randomly distributed pathloss exponents

In our system model, we assumed that the pathloss exponent is fixed across emissions from all

possible interferers. However, many indoor wireless channel models account for variable pathloss

exponents [34]. If we consider the pathloss exponent to be a random variable G with support G and

a discrete probability density P(G = γt ) = p t ∀ t = 1, · · · , |G |, we can write (4) as

Yn =

|G |
∑

t=0

p t

∑

i 0∈S0
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where each term in the outer summation is the sum interference from a Poisson field of interferers

with pathloss exponent of γt . Assuming that the pathloss exponent is independent of the interferers,

the Poisson field of interferers gets randomly thinned by probability p t , resulting in another Poisson

field with intensity λp t . Thus, the total interference is the sum of interference from |G | independent

fields of interferers. In the scenario where there are no guard zones around the receiver, the char-

acteristic function of interference would represent the sum of many alpha stable random variables,

which can be written as

ΦY(w) =

P
∏

t=1

e−p tσ0,γt ||w||
4
γt

N
∏

n=1

e−p tσn ,γt |ωn |
4
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(85)
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In (85), σ0,γt
is the same as σ0 derived in (58) with indexing γt indicating its dependence on γt .

In the case where a guard zone exists around the receiver, the resulting interference is the sum of

independent multi-dimensional Middleton Class A random variables, which exhibits the Gaussian

mixture distribution. The characteristic function of interference from set S0 can be expressed by

modifying (43) to write it as

ΨY,S0
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e
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It may require some extra mathematical rigor to prove the same results when the pathloss exponent

is a continuous random variable.

E. Discussions on remaining system model assumptions

The key assumptions that remain in our system model are:

Poisson point process distribution of interferer locations — The Poisson point process distribution

of interferer locations has been shown to well model cellular networks, ad-hoc networks and uncoor-

dinated radiative sources. Other point processes can also be used to model a variety of applications;

for example, the clustered Poisson point process is a good interferer location distribution model for

heterogeneous and two-tier networks [19].

Interferers visible to a subset of receive antennae — In this paper, we assumed interferers that were

either observed by all receive antennas or by only a single receive antenna. This assumption can be

extended to include interferers that are visible by only a subset of receiver antennas, giving rise to

a possible 2N −1 different sets of interferers for a N antenna receiver. Our statistical derivations are

also amenable to incorporating such scenarios, as each set of interferers would result in RFI statistics

that are statistically isotropic across the subset of receiver antennas observing the interferer set.

Neglecting inter-antenna spacing at the receiver — Using this assumption, we can employ a single

random variable to denote the distance from a interferer in the set S0 to each receive antennas.

In the case when δ↓ = 0, and there is no inter-antenna spacing, we have shown that interference

statistics exhibit spatial isotropy. If the inter-antenna spacing is asymptotically large, each antenna

would observe interference from different interferers causing interference to be independent across
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TABLE IV: Parameter values used in simulations

Parameter Description Value

λt ot Per-antenna total intensity of interferers 0.01

γ Power path-loss exponent 4

B Mean amplitude of interferer emissions 1.0

δ↓ Radius of guard zone around receiver 1.5

E
�

H 2
	

Fast fading channel power 1.0

antennas. It intuitively follows that increasing inter-antenna spacing reduces the spatial dependence

in the resulting interference statistics, which move from spatially isotropic to spatially independent. It

may therefore be possible to apply our proposed continuum between isotropy and independence to

approximate the statistics of interference in receivers with significantly separate antennas. Modeling

joint statistics of RFI between separate antennas is beyond the scope of this paper and an avenue

of future work.

In the presence of guard zones, antenna spacing may be ignored if the radius of the guard zone

is much larger than the inter-antenna distances at the receiver. This is simply because the distance

between any interferer and an antenna is larger than the guard zone radius, consequently antenna

geometry will have minimal impact on the pathloss attenuation term in (1). In single antenna

receivers, it has been shown that if an antenna is placed a small distance away from the center of

the guard zone, the statistics of resulting interference are unchanged [19].

VI. SIMULATION RESULTS

To study the accuracy of our joint amplitude distribution model, we numerically simulate the

random variable Y as given in (5) and (6). Y describes the observed RFI across a simulated multi-

antenna receiver in a Poisson field of interferers. Our receiver uses N = 3 antennas and the interferers

exclusive to each antenna are distributed with equal densities, i.e. λ1 = λ2 = λ3 = λe . We choose λ0

such that λ0+λe = 0.01, i.e. the density of total interferers observed by each antenna is the same, in

order to normalize our data as the variance of interference observed at each antenna (proportional

to λ0+λe ) remains the same regardless of the value taken by λ0 or λe . Table IV lists the values for

the rest of the simulation parameters.

Figure 2 shows a scatter plot of the amplitude of simulated random RFI observed at two antennas

over a span of 40 time samples using different values of λ0 and λe . The horizontal axis denotes the
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Fig. 2: Scatter plot of RFI amplitude observed at 2 receive antennas.

RFI amplitude at antenna 1 and the vertical axis denotes the RFI amplitude at antenna 2. As λ0

increases, the RFI samples move towards the top left of the scatter plot area, indicating that impulsive

events (samples with a large amplitude) occur in a spatially dependent manner, i.e., impulsive events

at the two receive antennas occur with different strengths but at the same location in time.

To validate our amplitude distribution model, we use two metrics: (1) the Kullback-Liebler (KL)

divergence between numerically simulated interference amplitude distribution and our proposed

amplitude distribution; and (2) the tail probabilities of the numerically simulated and our proposed

amplitude distribution. Although KL divergence is not strictly a distance metric, it is often used

to compare probability density distributions and can be computed efficiently. Low KL divergence

between two density distributions implies high similarity between the density functions. Figure 3

shows the KL divergence between the numerically simulated distribution of interference in the

presence of guard zones and our proposed multi-variate Class A model. We also show the KL

divergence between the numerically simulated distribution and the isotropic and independent-only

multi-variate distributions given in Table II as MCA.III and MCA.I, respectively. The KL divergence

between the numerically simulated RFI amplitude distribution and our proposed models is lowest

across all values of λ0, indicating that our proposed distribution is able to well capture partial spatial

dependence in interference. The KL divergence between simulated RFI and multi-variate Gaussian

distribution of equal variance is also shown in Figure 3, and it is very large owing to the fact that

the Gaussian distribution cannot accurately model impulsiveness in simulated RFI.

Next, we compare the tail probabilities of the numerically simulated distribution and our proposed

distribution models. The tail probability is the complementary cumulative distribution function of

a random variable and in performance analysis of communication systems, the tail probability of

interference is related to the outage performance of receivers. Given a threshold τ, we define tail
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Fig. 3: Estimated KL divergence between simulated RFI distribution and proposed model vs. λ0 (λe = 0.01−λ0 ), where a

lower KL divergence means a better fit. D(P ||Q) denotes the KL divergence between distributions P and Q. KL divergence

is also calculated between the simulated RFI distribution and models MCA.I (Independent Class A) and MCA.III (Isotropic

Class A) from Table II.

probability as P (|Y1|>τ, · · · , |YN |>τ). Figures 4 and 5 shows a comparison of the tail probabilities of

the numerically simulated distribution, our proposed distribution, and the Gaussian distribution for

interference with and without guard zones, respectively. The tail probability of the multi-dimensional

Middleton Class A distribution can be evaluated as a mixture of Gaussian tail probabilities, and

the approximate tail probability of the symmetric alpha stable distribution is given in [15]. The

tail probabilities of our proposed distributions match closely to simulated interference, while the

Gaussian distribution is clearly unable to capture the large tail probabilities of impulsive interference.

We also employ KL divergence to study the impact of different channel models on the resulting

spatial distribution of RFI. We use three common stochastic fading channel models [31]. When the

dominant propagation path is line-of-sight, a Rician model is commonly used. Otherwise, a Rayleigh

or Nakagami model is commonly used. Table V defines the three distributions, and the parameters

values used in simulation. The system parameter values are chosen from Table IV. Figure 6 shows that

the KL divergence with Rayleigh fading channel model is the lowest, which is to be expected. The KL

divergence increases slightly upon changing the channel model, indicating that the approximation

used in (59) is close to its true value.

Finally, we simulate correlated fading channels to test whether our model correctly accounts

for spatial correlation. We simulate correlation between the in-phase components of the channel

between an interferer and the two receive antennas. The Pearson product moment correlation

coefficient (PMCC) [35] between these two random variables is chosen as 0.3. Using (78), the PMCC
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Fig. 4: Tail probability vs. threshold τ for interference in the presence of guard zones. The tail probability is compared

between the numerically simulated interference (“Sim”) and the tail of our proposed multi-variate Middleton Class A

distribution (“Expr”). The tail probabilities are generated for isotropic interference (λ0 = 0.01,λe = 0.0) and a mixture of

isotropic and independent interference (λ0 = 0.001,λe = 0.009). Remaining parameter values are given in Table IV.
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Fig. 5: Tail probability vs. threshold τ for interference in the absence of guard zones (δ↓ = 0). The tail probability is

compared between the numerically simulated interference (“Sim”) and the tail of the multi-variate symmetric alpha stable

distribution (“Expr”). The tail probabilities are generated for isotropic interference (λ0 = 0.01,λe = 0.0) and a mixture of

isotropic and independent interference (λ0 = 0.001,λe = 0.009). Remaining parameter values are given in Table IV.

between the in-phase components of the two receive antennas has a predicted value of 0.3λ0

λ0+λe
. Figure 7

shows that the empirically estimated value of the PMCC matches our prediction quite accurately.

VII. CONCLUSIONS

In this paper, we propose a statistical-physical framework for modeling RFI observed by a multi-

antenna receiver surrounded by interference causing emitters. Our framework incorporates random

distribution of interferer locations in two-dimensional space around the receiver with an optional
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TABLE V: Commonly used fast fading channel models [31] used in Figure 6.

Channel Model Parameters

Rayleigh fading: f (x ) = x

σ2 e
−x 2

2σ2 σ= 1

Rician fading: f (x ) =
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Fig. 6: Estimated KL divergence between simulated RFI distribution and proposed model vs. λ0, where a lower KL divergence

means a better fit, using different fast fading channel models. The density function corresponding to each channel model

is provided in Table V. λe = 0.01− λ0, and remaining parameters are given in Table IV. D(P ||Q) denotes KL divergence

between distributions P and Q.

interferer-free guard zone, and physical mechanisms describing the generation and propagation

of interference through the wireless medium, such as fast fading and pathloss attenuation. Our

framework also incorporates partial statistical dependence of RFI across the receive antennas and

captures a continuum between spatially independent and spatially isotropic interference.

Using our proposed framework, we derive the joint statistics of interference observed across a

multi-antenna receiver, with the resulting amplitude distribution modeling both spatially isotropic

and spatially independent observations of RFI as special cases. Depending on the region within

which interferers are distributed, the interference statistics can be modeled using the Middleton

Class A or the symmetric alpha stable distribution. Some of these distributions find use in designing

interference mitigation algorithms or analyzing communication performance of receivers in the

presence of interference. By providing a link between network models and interference distribution,

our proposed models can better inform such analysis. This leads to the design of robust receivers

that are better suited to operate in the presence of interference in different network environments.
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Fig. 7: Estimated Pearson Product Moment Correlation Coefficient (PMCC) vs. λ0.λe = 0.04 and other parameter values are

given in Table IV.
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