
Noname manuscript No.
(will be inserted by the editor)

Communication-Aware Heterogeneous Multiprocessor
Mapping for Real-time Streaming Systems

Jing Lin · Andreas Gerstlauer · Brian L. Evans

Received: date / Accepted: date

Abstract Real-time streaming signal processing sys-

tems typically desire high throughput and low latency.

Many such systems can be modeled as synchronous

data flow graphs. In this paper, we address the prob-

lem of multi-objective mapping of SDF graphs onto het-

erogeneous multiprocessor platforms, where we account

for the overhead of bus-based inter-processor communi-

cation. The primary contributions include (1) an inte-

ger linear programming (ILP) model that globally opti-

mizes throughput, latency and cost; (2) low-complexity

two-stage heuristics based on a combination of an evo-

lutionary algorithm with an ILP to generate either a

single sub-optimal mapping solution or a Pareto front

for design space optimization. In our simulations, the

proposed heuristic shows up to 12x run-time efficiency

compared to the global ILP while maintaining a 10−6

optimality gap in throughput.

Keywords Synchronous dataflow · Multiprocessor

mapping · Inter-processor communication

1 Introduction

Real-time streaming signal processing applications are

pushing embedded systems’ capabilities of processing

high-volume data streams with very low latency. Such

stream-based systems are prevalent in a vast area of

This research was supported by an equipment gift from Intel.

The work in this paper was presented in part at the 2011
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing.

J. Lin, A. Gerstlauer, B. L. Evans
The University of Texas at Austin, USA
E-mail: linj@mail.utexas.edu, gerstl@ece.utexas.edu, be-
vans@ece.utexas.edu

1 2 3 4 5
2 2 3 1 1 1 1 3

3 1
11

Repetition vector: [1, 1, 3, 3, 1]

ARMinitial tokens

Mem

FPGA

Mem

DSP

Mem

Shared Memory

Bus 1

Bus 2

(a) An SDF graph and a multiprocessor platform.

3 3 3 4 4 4 4-2 4-5

4-2 21 2-3 1 2

3 3 3 4 4 4

5

2-3 4-2

4-2 4-5

1 2

3 3 3 4 4 4

5

2-3 4-2

4-2 4-5

4-2 4-5 2-3 2-3 4-2 4-5 2-3 4-2 4-5

ARM

FPGA

DSP

Bus

1 2 2-3

2-3

time 0 1

startup phase period 1 period 2

1 2

3 3 3 4 4 4

5

2-3 4-2

4-2 4-5

2-3 4-2 4-5

period 3
latency

(b) Partitioning and scheduling output.

Fig. 1: An example of the SDF mapping problem.

multimedia and communication applications. To achieve

high performance, a stream processing system should

have a highly-optimized execution path that maximizes
throughput and minimizes latency in a balanced way.

With the current trend towards heteregoeneous mul-

tiprocessor systems-on-chips (MPSoCs), the mapping

of applications onto such platforms is among the most

critical tasks in the system design process. Many real-

time streaming systems can be modeled by synchronous

data flow (SDF) graphs [5]. Multiprocessor mapping of

an SDF graph selects a number of processors from a

library, binds each actor to a processor, allocates com-

munication resources for inter-processor data exchange,

and schedules actor executions and inter-processor com-

munications (Fig. 1).

Traditionally, the synthesis of SDF models on multi-

processors has been focused on computational aspects,

assuming negligible inter-processor communication (IPC)

overhead. Earlier research efforts were devoted to SDF

mapping on homogeneous multiprocessors [5,8]. More

recent approaches have extended support to heteroge-

neous platforms [11]. In [17], the scheduling sub-problem

2 Jing Lin et al.

was formulated in a constraint programming frame-

work. The goal was to minimize memory requirements

subject to throughput constraints. In [6], a graph-based

approach was presented to globally tackle partitioning

and scheduling for homogeneous SDF graphs, and sev-

eral low complexity heuristic acceleration techniques

were proposed. All these approaches focused on through-

put and/or memory sizes as the main optimization goals,

where no explicit guarantees were given on latency,

which is among the most important real-time perfor-

mance metrics.

As the number of processors on a single chip con-

tinue to increase, the communication architecture plays

an increasingly important role in evaluating performance

of the overall system. Neglecting communication over-

head in system-level synthesis might lead to unaccept-

able deviation of the real performance from the pre-

dicted one, and to the violation of real-time constraints.

To mitigate these effects, strategies have been devel-

oped to allocate and schedule communication resources

for streaming applications. Most of these were restricted

to simple application models, such as pipelined dataflow

[12], acyclic homogeneous SDF [13,14], and message

streaming [15]. Some of them target low-end communi-

cation architectures of shared memory and shared buses

[12,14], while others take into account more complex

Network-on-Chip (NoC) architectures [13,15].

Besides providing a single mapping decision for a

single objective or cost function, a significant amount

of work has been done on generating Pareto-optimal

solution sets for design space exploration. Evolutionary

algorithms (EA) have been proven to be effective in

generating Pareto fronts in multi-objective optimiza-

tion problems. [2] and [19] have shown application of

EA in circuit synthesis and uniprocessor software syn-

thesis from SDF graphs. [3] applied a combination of

global EA and local search techniques to multiproces-

sor SDF scheduling for minimizing overall power con-

sumption and memory cost. However, to the best of our

knowledge, there are currently no approaches for map-

ping of SDF graphs onto general multiprocessor plat-

forms across a variety of quality objectives, all while

taking communication overhead into account.

In previous work [9], we have developed a first multi-

objective optimization framework that is able to jointly

optimize throughput, latency and system cost for SDF

mapping onto heterogeneous multiprocessors. The in-

clusion of latency into the optimization allows us to

give hard real-time guarantees on the task completion

deadline. In this paper, we extend this approach to ac-

count for inter-processor communications (IPC). We

target a bus-based communication architecture with

both distributed and shared memory. We derive an in-

teger linear programming (ILP) model that globally

optimizes throughput, latency and system cost, and

low-complexity EA-based heuristics to generate either

a single mapping decision or a Pareto front for design

space exploration. We thereby construct optimizations

at varying complexity and runtime that can be applied

with or without considering communication, depend-

ing, for example, on the stage of the design process or

whether a design is purely computation dominated.

1.1 Synchronous Dataflow Model

Synchronous dataflow (SDF) is a directed graph mod-

eling a set of application tasks and their data depen-

dencies [5]. Each actor produces and consumes a fixed

number of tokens per firing. The deterministic proper-

ties of SDF enable fully-static analysis and synthesis. In

particular, for consistent SDF graphs, a periodic sched-

ule and the minimum number of initial tokens on all

edges can be determined by static analysis [5] (Fig. 1a).

In modeling point-to-point streaming applications,

we assume that the SDF graph has a unique pair of

source and sink actors (i.e. actors without any incom-

ing edges, or any outgoing edges, respectively). Without

loss of generality, we assume that both the source and

sink actors fire once per iteration of the graph. Other-

wise, pseudo actors with zero execution time could be

added as source and/or sink.

1.2 Target Architecture and IPC Modeling

We target platform architectures that consist of a num-

ber of heterogeneous processors (e.g. general-purpose

processors, FPGAs, DSPs or other processing elements)

connected to a shared memory through multiple shared

buses (Fig. 1a). Each processor has a local memory as-

sociated with it. For simplicity purpose we make the

following assumptions about the target architecture:

1. The architecture is fully connected, i.e. the shared

memory and all processors are accessible via any

bus. Note that this assumption can be easily relaxed

by including additional connectivity constraints in

our ILP optimization model.

2. A bus is shared by multiple data transmissions in a

time-division multiple access (TDMA) fashion.

3. The number of memory ports is no less than the

number of buses that are connected according to the

final mapping decision. This avoids memory access

collisions even in the worst case when all buses are

accessing the same memory.

Communication-Aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems 3

4. The synchronization overhead (e.g. during connec-

tion setup and release) is negligible compared to the

data transmission delay.

5. A processor is stalled (i.e. can not simultaneously

compute) while communicating with the shared mem-

ory. In direct processor-to-processor communication,

only one processor (typically the bus master) is stalled.

Inter-processor communication is required when two

connected actors in an SDF are bound to different pro-

cessors. Generally, tokens may be routed along a multi-

hop path between the source and destination proces-

sors. However, in this work, we restrict the communi-

cation architecture to a fully-connected network with

two simple routing policies: (1) direct connection be-

tween end processors and (2) two-hop connection via

the shared memory.

To characterize the IPC behaviors, we augment an

SDF graph by inserting a pair of send and receive actors

on each edge [4] (Fig. 2). We assume that data is trans-

mitted in token units. Therefore, each send/receive ac-

tor has an input/output rate of one and it is guaran-

teed that the augmented SDF graph does not violate

the original balance equations. In other words, the aug-

mented SDF is still a consistent graph with the same

repetition vector of firing rates for the computation ac-

tors. In the two-hop IPC scenario, the send/receive

actors model the process of writing/reading a token

to/from the shared memory, while the source-to-send,

send-to-receive and receive-to-destination edges repre-

sent the local buffer on the source processor, a piece of
the shared memory, and the local buffer on the destina-

tion processor, respectively. Direct processor-to-processor

connections and processor-internal communication can

be considered as two special cases of this generic IPC

model, where either one (for direct connections) or both

(for communication within processors) of the send and

receive actors are inactive (execute in zero delay).

The send and receive actors are distinguished from

computation actors in resource occupancy. While being

executed, a computation actor only keeps a single pro-

cessor busy. By contrast, an active send/receive actor

occupies a bus while also possibly stalling the connected

processor communicating on the bus.

i i’snd rcv
P 1 1 1 1 C

i i’
P C

Fig. 2: An edge in an SDF graph (left) is augmented by

inserting a pair of send and receive actors (right).

1.3 Problem Definition

Given an SDF model for a real-time streaming system,

we assume that static analysis has been performed to

provide a consistent repetition vector and the number

of initial tokens on all edges. In addition, the execu-

tion profile on a multiprocessor platform is provided in

the form of processor-dependent worst-case execution

times of all computation actors. We aim to partition

the SDF graph onto various computation and commu-

nication resources, and construct fully-static schedules

on processors and buses. We assume that each actor is

statically bound to a unique processor and/or bus, and

actors mapped to the same processor or bus must be

executed sequentially. The schedules are represented by

a set of finite-length time-indexed sequences, each ini-

tialized with a startup phase followed by one period of

the stable phase (Fig. 1b). The period is defined as a

duration of time over which the SDF graph completes

one iteration according to the repetition vector and re-

turns to an initial state. The inverse of the period is the

throughput. The latency is defined as the time interval

between the start of the source and the end of the sink

within one graph iteration.

Based on worst-case actor execution time assump-

tions, the fully-static mapping provides hard, worst-

case guarantees on real-time performance and system

cost. In reality, due to unpredictable events such as

interrupts and malfunctions, a strictly static schedule

may become infeasible at run-time, and dynamic schedul-

ing needs to be invoked to increase system flexibility.

Despite of this, static analysis results can still be used

to provide worst-case guarantees and to provide a ref-

erence point for the run-time optimizer to reduce the

dynamic scheduling overhead. For example, the partial

execution ordering indicated by the static scheduler can

be used to define additional, artificial actor dependen-

cies to be maintained at run-time. Such a static-order

schedule will allow the dynamic scheduler to preserve

worst-case guarantees while determining exact starting

times of actors at run time, e.g. to recover any execu-

tion time slack for reallocation to other non-real-time

tasks. In this sense, the problem is related to classical

real-time analysis of aperiodic, dependent tasks [10]. In

contrast to homogenous task-graph models in classical

formulations, however, SDF graphs allow us to cover a

wider range of application scenarios.

In some cases it is advantageous to unfold a graph

and schedule multiple iterations of the graph together

in order to exploit inter-iteration parallelism more effec-

tively. Unfolding is also useful in grouping small chunks

of IPCs together to mitigate the synchronization over-

head incurred in practice. However, a disadvantage of

4 Jing Lin et al.

Parameter Definition
Ok The number of initial tokens on edge k.
Pk(Ck) The number of tokens produced (consumed)

on edge k.
Ni The number of executions of actor i in one

iteration of the graph.
Dij Execution time of actor i on processor j.
BWl Bandwidth (in bits/second) of bus l.
Sizek Token size (in bits) on edge k.
DCkl Time of transmitting a token on edge k us-

ing bus l.
Costj Cost (user-defined measure of area, price,

etc.) of processor j.

Table 1: Input parameters of the ILP model.

unfolding is the increase in design complexity at com-

pile time and of memory consumption at run time. Due

to complexity concerns, our algorithms do not auto-

matically unfold the graph. However, unfolding can be

performed as a pre-processing step where the unfolded

SDF can be represented as another (larger) SDF at the

input of our flow, if the performance metrics of mapping

the original graph are not satisfactory.

2 A Global ILP Model

The global optimization of multiprocessor SDF parti-

tioning and scheduling is NP-hard [5]. In this section,

we formalize the problem as an integer linear program-

ming (ILP) model. Despite of its intractability in prac-

tical implementation, the ILP formulation is useful to

explore the problem structure, which provides cues for

low-complexity heuristics as described later.

2.1 Parameters and Variables

The inputs to the ILP include an SDF graph (whose

static behavior has been analyzed at compile time), and

the computation and communication profile of the mod-

eled application on the selected target platform. In the

following, we describe the input parameters to our ILP

model, which are summarized in Table 1.

Let I and K be the set of computation actors and

edges, respectively, in a given SDF graph. For i ∈ I,

k ∈ K, the structure and static behavior of an SDF

graph can be represented by: (1) the number of initial

tokens Ok and the number of tokens Pk and Ck pro-

duced and consumed, respectively, on edge k; and (2)

the repetition vector of the original SDF, whose i-th

element is Ni.

Let J define the set of processors, and L the set of

buses available on a target platform. For j ∈ J , the

computation profile of an SDF graph on the platform

is given by the execution time of actor i on processor

j, denoted by Dij . The communication delay for trans-

mitting a single token over a link between two memory

locations depends on the bandwidth (in bits/second) of

the allocated bus, BWl (l ∈ L), and on the token size

(in bits) on edge k, Sizek. The token sizes are gener-

ally indicated by the modeled application, and in real-

ity might be adjusted to the bit-width of the bus in-

terface. Without loss of generality, we assume uniform

bit-width among all bus interfaces. Therefore, the de-

lay it takes to transmit a token on edge k using bus

l is DCkl
4
= Sizek/BWl. Furthermore, each processor

is associated with certain user-defined measure of cost

(e.g. area, price, etc.), denoted as Costj .

Given the input parameters, the procedure of par-

titioning the SDF graph onto various computation and

communication resources consists of: (1) binding each

computation actor to a unique processor; (2) deciding

the IPC routing policy (either direct connection be-

tween end processors or via the shared memory); and

(3) allocating each of the send and receive actors to a

unique bus. The following decision variables are able to

completely capture the partitioning:

– aij : Binary indicator of whether actor i is bound to

processor j;

– chk: Binary indicator of whether the IPC on edge k

(if any) is routed through the shared memory;

– bskl, brkl: Binary indicator of whether the send or

receive actor on edge k is allocated to bus l.

To facilitate our discussion, we define auxiliary vari-

ables {ipck} that distinguish edges on which IPC is

required from others. They are related to {aij} via

ipck =
∑
j asrc(k)j · adst(k)j , where src(k) and dst(k)

are defined as the indices of the source and destination

actors of edge k, respectively.

The schedules for the computation, send and re-

ceive actors can be described by three sets of time-

indexed counting processes starting from 0 with unit in-

crements, namely si(t), ssk(t) and srk(t), respectively.

They can be interpreted as how many times the cor-

responding item has been fired at or before time t.

For notation simplicity, we define corresponding vari-

ables to count the number of ended executions of the

send/receive actors, i.e. esk(t) and erk(t). They are re-

lated to the other variables through

esk(t) =ipck
∑
l

bskl · ssk(t−DCkl)

+ (1− ipck)ssk(t), (1)

erk(t) =ipck · chk
∑
l

brkl · srk(t−DCkl)

+ (1− ipck · chk)srk(t). (2)

Communication-Aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems 5

i i’Pk

Bus l (BWl)

Ck
Ok

Sizek

10110...

Processor j

(Costj)

Mem

aij

Shared

Memory

Processor j’

(Costj’)

Mem

ai’j’

Edge k

chk

Bus l’ (BWl’)

bskl

brkl’

Actor Exec. Time
i Dij

i’ Di’j

Edge Comm. Time
k DCkl

Fig. 3: Parameters and variables of the global ILP.

This is equivalent to saying that a send/receive actor

either has a bus-dependent delay, or is inactive (with

delay 0). The placement of the variable chk thereby de-

termines whether the send or receive processor is stalled

(i.e. is the bus master) during a direct processor-to-

processor communication. Furthermore, we introduce

an additional sequence start(t) that consists of a sin-

gle impulse indicating the beginning of the first period,

i.e. that marks the transition between the startup and

the periodic phase. For clarity purposes, we summarize

some fundamental parameters and variables in Fig. 3.

2.2 Constraints

Constraints need to be imposed in order to satisfy the

semantics of the augmented SDF graph and the restric-

tions imposed by the underlying target architecture.

Note that an ILP without communication considera-

tions can be constructed by removing all decision vari-

ables, terms and constraints related to communication

actors, as shown in [9].

Static partitioning. Each actor is statically bound to a

unique processor, and each send or receive actor to

a unique bus. This requires that ∀i, k,∑
j

aij = 1,
∑
l

bskl = 1, and
∑
l

brkl = 1. (3)

Counting processes. The following three sequences are

unit incremental counting processes starting from 0:

0 ≤ si(t)− si(t− 1) ≤ 1, si(0) = 0,

0 ≤ ssk(t)− ssk(t− 1) ≤ 1, ssk(0) = 0,

0 ≤ srk(t)− srk(t− 1) ≤ 1, srk(0) = 0. (4)

Precedence. Enough tokens have to be accumulated on

an input edges before an actor is allowed to fire. For

any edge k, let i1 = src(k) and i2 = dst(k), and

erk(t)− si2(t)Ck +Ok ≥ 0,

esk(t)− srk(t) ≥ 0,∑
j

ai1j · si1(t−Di1j)Pk − ssk(t) ≥ 0. (5)

Resource sharing. Items sharing the same resource (pro-

cessor or bus) need to be executed sequentially. A

processor can be busy executing a computation ac-

tor, or stalled during an IPC transmission, giving∑
i

[si(t)− si(t−Dij)] · aij

+
∑
k

[ssk(t)− esk(t)] · asrc(k),j

+
∑
k

[srk(t)− erk(t)] · adst(k),j ≤ 1. (6)

IPCs are scheduled on a bus by time-division mul-

tiplexing, leading to∑
k

[ssk(t)− esk(t)] · bskl

+
∑
k

[srk(t)− erk(t)] · brkl ≤ 1. (7)

Periodicity. The schedule constructed initializes with

a startup phase before it reaches a single execution

of the periodic pattern, the beginning of which is

marked by the single impulse in start(t),∑
t

start(t) = 1. (8)

The period corresponds to one iteration of the entire

SDF graph. Let wi, wsk and wrk denote the num-

ber of time slots that a computation, send or receive

actor has been executed at or before time t, respec-

tively. They are related to the decision variables as

follows:

wi(t) =
∑
τ≤t

[si(τ)− si(τ −Dij)] · aij ,

wsk(t) =
∑
τ≤t

[ssk(τ)− esk(τ)],

wrk(t) =
∑
τ≤t

[srk(τ)− erk(τ)]. (9)

The number of time slots that each actor executes

during one period is therefore:

ri = wi(Tmax)−
∑
t

wi(t) · start(t),

rsk = wsk(Tmax)−
∑
t

wsk(t) · start(t),

rrk = wrk(Tmax)−
∑
t

wrk(t) · start(t), (10)

where the periodicity requires that each actor com-

pletes a specific number of iterations (indicated by

the repetition vector) within the period, i.e.

ri = Ni
∑
j

aijDij , (11)

rsk = Nsrc(k)Pk · ipck
∑
l

bskl ·DCkl, (12)

rrk = Ndst(k)Ck · ipck · chk
∑
l

brkl ·DCkl. (13)

6 Jing Lin et al.

2.3 Objectives

To jointly optimize multiple quantities in an ILP set-

ting, one common way is to define the objective function

as a linear combination of single objectives:

min {λ1 · Period+ λ2 · Cost+ λ3 · Latency}, (14)

where λ1, λ2 and λ3 are non-negative weights. The pe-

riod of the schedule can be determined as

Period = Tmax −
∑
t

t · start(t). (15)

The processor cost is defined as

Cost =
∑
j

I{
∑
i

aij > 0} · Costj , (16)

where I{
∑
i aij > 0} is the indicator function of whether

processor j is allocated. Note that (16) can be readily

extended to also include bus costs.

By the assumption of a unique pair of source and

sink actors in an SDF graph (see Section 1.1), the la-

tency (in the periodic phase) is defined as the interval

between the time the source actor starts a particular it-

eration and the sink actor ends the same iteration. Let

ts
(k)
i be the time when actor i starts its k-th iteration,

and define ui(t) as the sum of the time stamps when

actor i starts execution up to time t:

ui(t)
4
=

∑
k

ts
(k)
i I{ts(k)i ≤ t} =

∑
τ≤t

τ [si(τ)− si(τ − 1)].

Suppose actor i executes once per period, as is the case

for the source and sink actors, its starting time in the

period then becomes Ui
4
= ui(Tmax)−

∑
t ui(t)start(t).

Hence, the latency can be determined from one period

of the schedule as:

Latency =UI − U1 +
∑
j

aIjDIj

+ [s1(Tmax)− sI(Tmax)] · period, (17)

where the first line captures the difference in time be-

tween the end of the sink (indexed by I) and the start

of the source actor (indexed by 1) within the period,

and the second line takes into account the fact that the

source and sink actors might be in different iterations.

2.4 Linearization

To eliminate the nonlinearity present in the model above,

we apply conversions introduced in [7]. Let M be a

tight upper bound of an integer variable x. We replace

each product between a binary variable b and x with

an auxiliary variable y, and add the following linear

constraints:

y ≥ x−M(1− b), y ≤Mb, x ≥ y, (18)

We substitute the indicator function I{x > 0} (x is a

non-negative integer variable here) by a binary variable

b, and put two constraints on b:

x ≤Mb, x ≥ b. (19)

The resultant ILP is equivalent to the nonlinear opti-

mization model described above.

3 Heuristics

Despite its completeness and optimality, the global ILP

model is NP-hard. Hence, efficient heuristics are desired

to combat the exponentially increasing complexity.

In practice there are plenty of design scenarios where

optimizing the throughput and the cost is prioritized

over minimizing latency. We can observe that without

explicit constraints on memory requirements, the par-

tition of an SDF graph onto various resources uniquely

determines not only the cost but also an upper bound

of the throughput (or equivalently, a lower bound of the

period), regardless of the scheduling. Given a partition,

the period has a lower bound determined by the critical

processor or bus, i.e. the one occupied for the longest

duration in a period:

Period ≥ Periodmin = maxj,l{Ocpj , Ocpl}, (20)

where Ocpj and Ocpl are the total duration that pro-

cessor j or bus l is occupied during a period. Crucially,

Ocpj and Ocpl only depend on partitioning:

Ocpj =
∑
i

aijDij

+
∑
k

ipck · asrc(k)j
∑
l

bsklDSkl

+
∑
k

ipck · chk · adst(k)j
∑
l

brklDRkl, (21)

Ocpl =
∑
k

ipck · bsklDSkl

+
∑
k

ipck · chk · brklDRkl. (22)

We empirically verify that if a partition is computa-

tionally dominated (i.e. Ocpj > Ocpl,∀j, l), the lower

bound in (20) is almost always achievable. In other

words, there exists a valid schedule with a period of

Periodmin.

This observation leads to a two-stage decision proce-

dure based on decomposition of partitioning and schedul-

ing sub-problems. By optimizing the throughput jointly

with the cost over the partitioning variables, we make a

first-stage decision on partitioning, which is one or pos-

sibly multiple optimal solutions of {aij}, {bskl}, {brkl}
and {chk}. Then, in the second stage, for each optimal

partition a schedule that minimizes the latency can be

found and the minimum achievable latency for differ-

ent partitions are compared to each other to decide the

best mappings.

Communication-Aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems 7

3.1 Two-Stage ILP

The two-stage decision procedure readily converts into

a heuristic of decomposing the global ILP into two sub-

ILPs: a partitioning ILP followed by a scheduling ILP.

Note that due to the exponential nature of ILPs, the

complexity of this two-stage ILP combination is smaller

than that of the original global ILP. The partitioning

ILP is a simple formulation that minimizes the objec-

tive function λ1·Periodmin+λ2·Cost (where λ1, λ2 ≥ 0)

under the constraints of (3) and (22). The scheduling

ILP is extracted from the global ILP (see Appendix

A). With the partitioning variables fixed and a known

period, it has a significantly reduced complexity.

The partitioning sub-problem is itself a two-objective

optimization. Since minimizing throughput and cost hap-

pen to be conflicting goals, there is no longer a single

optimal solution but rather a set of possible solutions

of equivalent quality, i.e. a Pareto front. Furthermore,

there may exist different partitions that achieve iden-

tical throughput and cost but different latencies (i.e.

points on the Pareto front corresponding to multiple

solutions). Similarly, partitions that are sub-optimal in

throughput and/or cost may allow for lower latencies

compared to those on the throughput/cost Pareto front.

Based on these concerns, we would like to (1) find all

partitions that achieve Pareto-optimal throughput/cost

and feed them into the scheduling stage in order to pick

the ones with the lowest latencies; and (2) find those

partitions that are off the throughput/cost Pareto front

but have lower latencies.

For (1), it is possible in the ILP settings to gen-

erate the Pareto front by solving a number of par-

titioning ILPs corresponding to various combinations

of λ1 and λ2. Unless (λ1, λ2) are restricted to a small

set of discrete values, however, the amount of ILPs to

be solved is infinite. Therefore efficient searching algo-

rithms are desired to find the set of Pareto-optimal so-

lutions in the partitioning sub-problem. To address (2)

within the two-stage optimization framework, a closed-

loop searching algorithm is required for decision feed-

back from the scheduling stage to aid the searching in

the partitioning stage.

3.2 Hierarchical MOEA-Driven Heuristics

An efficient technique of approximating the Pareto front

and finding the solution pool for each point on the

front are so-called multi-objective evolutionary algo-

rithms (MOEA) [20]. The Strength Pareto Evolution-

ary Algorithm II (SPEA-II) [18] is one of the MOEAs

with the best overall performance. As in other MOEAs,

each possible solution is encoded into a chromosome. In

1P1 P1 P3 P2 P3... B1 B2 B1 B2... B2 B1... 0 0...

Segment 1 Segment 2 Segment 3 Segment 4

Fig. 4: A chromosome with four segments encoding ac-

tor to processor allocation, send actor to bus alloca-

tion, receive actor to bus allocation, and edge to shared

memory allocation.

addition to a small sized population of chromosomes,

SPEA-II maintains a fixed sized archive that records

the nondominated individuals found so far. The fitness

is assigned for each individual based on how many so-

lutions it dominates, it is dominated by, and a near-

est neighbor density. Such fine-grained fitness assign-

ment, together with an archive truncation operator, ef-

fectively guides the population to evolve towards a well-

spread Pareto front.

Applying SPEA-II to the partitioning sub-problem

gives rise to a hierarchical, two-stage open-loop algo-

rithm to generate a single mapping decision. In order

to apply MOEA, we encode the partition-related vari-

ables {aij}, {bskl}, {brkl} and {chk} into a chromosome

(Fig. 4). The objectives of Period and Cost are evalu-

ated for each chromosome by (20) and (16). To gener-

ate a single mapping, we first run MOEA to generate

a two-dimensional (2D) Pareto front. At the end of the

MOEA, we pick a point on the front, and feed all parti-

tions achieving the same optimal throughput and cost

to the scheduling ILP. The resulting single mapping

decision falls onto the partition-schedule combination

that achieves the minimum latency. This process is il-

lustrated in Fig. 5a. By picking multiple points on the

2D Pareto front and feeding them all to the scheduling

ILP, this method can be extended to generate multiple

mapping decisions.

The MOEA-driven algorithm described above gen-

erally performs better than the two-stage ILP, due to

its efficiency in finding multiple optimal partitions to

feed to the scheduling sub-problem. However, both two-

stage open-loop procedures (either MOEA-driven or

ILP-driven) place strictly higher priority on through-

Fitness

Assignment

Environmental

Selection

Crossover &

Mutate

Throughput/

Cost

Computation

Stage I Stage II

Scheduling ILP

Best Mapping

Fitness

Assignment

Environmental

Selection

Crossover &

Mutate

Throughput/Cost

Computation

Scheduling

ILP

Stage I Stage II

(a) (b)

Fig. 5: Two MOEA-driven heuristics to generate (a) a

single mapping decision, and (b) a 3D Pareto front.

8 Jing Lin et al.

put and cost than on latency, and hence are blind to

the mapping solutions that have worse throughput and

cost but shorter latency. In other words, there may ex-

ist partitions that are not on the 2D Pareto front in the

first stage but allow for smaller latency than those 2D

Pareto-optimal points.

To balance the optimality of all three objectives,

we extend the open-loop MOEA-driven algorithm to a

hierarchical closed-loop method for generating a three-

dimensional (3D) Pareto front. In this case, the fitness

of a chromosome is based on a triplet of Period, Cost

and Latency. The scheduling ILP is not only invoked

for points on the Pareto front at the end of the MOEA,

but for all partitions during every generation of the

MOEA. For each chromosome, after computing its cost

and minimum period, a scheduling ILP is solved and

the optimal latency is attached to it as a third fitness

value. This algorithm is described in Fig. 5b.

4 Experimental Results

We have evaluated our ILP model and the heuristic

approaches on a variety of random homogeneous SDF

(HSDF) graphs and two realistic SDF examples of the

sample rate converter (Fig. 6a) and the MP3 decoder

(Fig. 6b). We programmed the ILP models using CPLEX

Concert Technology for C++, with the optimality gap

controlled below 10−6. The SPEA-II was implemented

using the MOGALib Genetic algorithm framework. All

experiments were run on a remote workstation with 8

quad-core 2.39 GHz AMD Opteron(tm) processors and

33 GB of shared memory.

We studied the optimality and run time complex-

ity tradeoffs among the global ILP and the heuristics.

We applied the global ILP (1ILP), the two-stage ILPs

(2ILP) and the open-loop MOEA-driven heuristic (OL-

EA) to mapping a set of HSDF graphs onto a 3-processor

platform, assuming negligible IPC. The HSDF graphs

0 1 2 3 5
3

42 3 2 4 3 3

(a) A sample rate converter

0

1 3

2 4

5 6 7 8 9

2

2

2

Huff

Req1

Req0
ReOrder0

ReOrder1

Stereo

Alias

Reduction

IMDCT

FreqInv

Synth

(b) A simplified MP3 decoder

Fig. 6: The SDF models for two realistic examples.

5 10 15
0

200

400

600

800

1000

1200

1400

Number of Actors

R
u
n
−

ti
m

e
 (

s
e
c
s
)

1ILP, cyc

1ILP, acyc

OL−EA, cyc

OL−EA, acyc

2ILP, cyc

2ILP, acyc

Fig. 7: Average run-time comparison for random SDF

graphs mapped to a three-processor platform with ran-

domized execution profiles without IPC overhead.

were randomly generated by SDF3 [16], and include

both cyclic and acyclic graphs with 5 to 15 actors, all

weakly connected. Token rates, degrees of actors and

execution times are randomly created within minimum

and maximum bounds and with specified average and

variance.

The optimized throughput, cost and latency metrics

for four sample HSDF graphs are compared in Table

2. The global ILP applies the weights of (0.8, 0.1, 0.1)

to throughput, cost and latency, respectively, while the

first stage of the two-stage ILP uses (0.89, 0.11) as the

weights of throughput and cost1. The optimality guar-

antee of the OL-EA is demonstrated by the fact that the

solution of the global ILP falls on the 3D Pareto front

produced by the OL-EA, except for the acyclic 10-actor

1 The ratio of weights between throughput and cost is kept
approximately the same as in the global ILP.

I Type
(Period, Cost, Latency)

1ILP 2ILP OL-EA

5

acyc (11,30,11) (11,30,14)
(11,30,11)
(7,40,13)
(6,60,14)

cyc (11,30,11) (11,30,11)

(34,10,34)
(23,20,23)
(11,30,11)
(7,40,13)
(6,60,14)

10

acyc (25,30,21) (25,30,38)

(25,30,25)
(17,40,24)
(15,50,33)
(12,60,26)

cyc (25,30,21) (25,30,31)

(25,30,21)
(18,40,31)
(15,50,23)
(12,60,27)

Table 2: Optimality comparison for random HSDF

graphs with I actors mapped to a 3-processor platform

with randomized execution profiles, without IPC over-

head.

Communication-Aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems 9

Parameter Value
Population Size 30

Archive Size 20
Termination Condition After 50 generations2

Crossover Probablity 0.9
Mutation Probability 0.1

Crossover Method Uniform Crossover
Selection Method Roulette Wheel

Table 3: Parameters for SPEA-II.

sample graph. The 2ILP method results in the same

throughput and cost as the global ILP, while getting a

slightly longer latency in some cases. This is because

in the partitioning stage, the ILP solver terminates af-

ter finding an optimal solution, which, according to our

discussion in Section 3.1, does not necessarily allow for

the minimum latency compared to other unfound par-

titions on the throughput/cost Pareto front.

In generating a single mapping decision, the heuris-

tics also significantly reduce the run time compared

to the global ILP. In our experiments, for a 10-actor

acyclic graph, it can take up to 5 days to solve a global

ILP with all three objectives being optimized (i.e. all

weights are non-zero). For run time comparison, we use

throughput as the single objective in the global ILP

and in the first stage of the 2ILP. Since adding other

objectives would significantly increase the complexity

of the global ILP and slightly increase that of the 2ILP,

the corresponding curves should be understood as a

lower bound of the run time. As shown in Fig. 7, the

global ILP has much poorer scalability compared to

both heuristics. Furthermore, in return for the the im-

proved optimality in latency, the OL-EA method runs

slightly slower than the 2ILP heuristic.

To show the capability of generating 2-dimensional

(2D) or 3-dimensional (3D) Pareto fronts, we applied

the MOEA-driven heuristics in Fig. 5 to the mapping

of the sample rate converter and MP3 decoder to a 3-

processor platform with a single shared bus. We applied

artificial execution profiles both with and without com-

munication overhead, where IPC delays were assumed

to be fixed at one time unit per token. For the particu-

lar examples, the parameter settings of the MOEA are

listed in Table 3. As suggested by [1], we use a popu-

lation size of approximately 1.5 log2N , where N is the

number of possible permutations of the chromosome.

Run times for generating the 2D and 3D Pareto fronts

are listed in Table 4.

Fig. 8 depicts the 2D Pareto front generated by the

open-loop MOEA-driven heuristic for the sample rate

converter. Some of the points on the Pareto front corre-

spond to multiple partitions with identical throughput

2 In all tested cases, the EA converges after 50 generations.

Example Heuristic With IPC? Run Time

Converter
OL-EA Yes 231 seconds
CL-EA Yes 278 minutes
CL-EA No 17 minutes

MP3
CL-EA Yes 41 hours
CL-EA No 23 hours

Table 4: Run times of generating 2D or 3D Pareto fronts

for the sample rate converter (Converter) and the MP3

decoder (MP3) by the open-loop MOEA-driven heuris-

tic (OL-EA) and the closed-loop MOEA-driven heuris-

tic (CL-EA), with or without IPC overhead.

10 15 20 25 30 35 40
20

30

40

50

60

Iteration Period

P
ro

c
e
s
s
o
r

C
o
s
t

36, 37

46, 55

60

50

Fig. 8: 2D Pareto front for the sample rate converter,

annotated with the latencies achieved by the corre-

sponding partitions.

and processor cost but with different minimum laten-

cies. In particular, the red circle on the upper left corner

represents two partitions with the same throughput of

1/12 and processor cost of 60. However the minimum

latency achievable is 36 for the first partition, and 37

for the second. In comparison, we ran the two-stage

ILPs with throughput as the single objective in the first

stage. The two-stage ILP took 187 seconds to complete,

but only produced a single solution with a latency of

37, since it was able to only find one of the two possible

partitions in its first stage.

Fig. 9 and Fig. 10 show the 3D Pareto fronts (red cir-

cles) generated by the closed-loop MOEA-driven heuris-

tic, along with the convergence history (green dots). In

particular, the solutions pointed out by the arrows in

Fig. 9a, (26, 60, 35) and (32, 40, 46), are the optimal so-

lutions as generated by the global ILP with (λ1, λ2, λ3) =

(0.8, 0, 0.2) and (λ1, λ2, λ3) = (0.8, 0.1, 0.1), which im-

plies closeness of the generated solution set to the opti-

mal Pareto front. The global ILP in this case took 1004

seconds (with λ2 = 0) and about 5 days (with λ2 = 0.1)

to generate a single solution. In both examples, note

that communication overhead can have a significant in-

10 Jing Lin et al.

20

30

40

50

30

40

50

60
20

40

60

80

100

Iteration PeriodProcessor Cost

L
a
te

n
c
y

(a) Without IPC

20
40

60
80

100

30

40

50

60
50

100

150

Iteration PeriodProcessor Cost

L
a

te
n

c
y

(b) With IPC

Fig. 9: Convergence to the 3D Pareto front for the MP3 decoder.

10

20

30

40

30

40

50

60
20

30

40

50

60

Iteration PeriodProcessor Cost

L
a
te

n
c
y

(a) Without IPC

10
20

30
40

50

20

40

60
30

40

50

60

70

Iteration PeriodProcessor Cost

L
a
te

n
c
y

(b) With IPC

Fig. 10: Convergence to the 3D Pareto front for the sample rate converter.

fluence on the overall performance (throughput and la-

tency) of the set of Pareto-optimal solutions.

5 Summary and Conclusions

This paper derives communication-aware approaches to

optimize multiprocessor mapping of real-time stream-

ing systems for throughput, latency and processor cost.

We propose both an optimal ILP model and two heuris-

tics to improve the run-time efficiency without compro-

mising throughput optimality. A two-stage ILP heuris-

tic can generate a single solution at significantly re-

duced runtime. Hierarchical heuristics that integrate

evolutionary algorithms with ILP solvers in an open-

loop or closed-loop fashion can generate 2D or 3D Pareto

tradeoff curves for multi-dimensional design space ex-

ploration. The various mapping approaches support dif-

ferent levels of optimality, complexity and runtime in

variants both with and without communication consid-

erations. This enables efficient design methodologies in

which different search strategies can be selectively em-

ployed at different stages of the design process and for

different characteristics of the application or target ar-

chitecture.

A Scheduling ILP

When given a partition, the execution time of conventional
SDF actors as well as the communication delays of the send
and receive actors become fixed parameters. For conciseness,
we slightly abuse the notation by defining parameters

Di =
∑
j

a∗ijDij ,

DSk = ipc∗k ·
∑
l

bs∗klDCkl,

DRk = ipc∗k · ch∗k ·
∑
l

br∗klDCkl, (23)

where v∗ denotes a specific value of a variable v. Let us de-
fine the index set Tp = [Tmax − Period∗, Tmax], in which
Period∗ is the minimum period determined by the partition.

Also denote Ks
4
= {k|ipc∗k = 1} and Kr

4
= {k|ipc∗k · ch∗k = 1},

i.e. the set of edges with an active send or an active receive
actor, respectively.

Communication-Aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems 11

The scheduling sub-problem can then be formalized as an
ILP that minimizes

Latency =
∑
t∈Tp

t[sI(t)− sI(t− 1)] + DI

−
∑
t∈Tp

t[s1(t)− s1(t− 1)]

+ (s1(Tmax)− sI(Tmax))Period∗, (24)

subject to

Precedence

ssrc(k)(t−Di)Pk − ssk(t) ≥ 0,

ssk(t−DSk)− srk(t) ≥ 0,

srk(t−DRk)− sdst(k)(t)Ck + Ok ≥ 0, ∀k. (25)

Resource sharing∑
i

[si(t)− si(t−Di)]

+
∑

k∈Ks

[ssk(t)− ssk(t−DSk)]a∗src(k)j

+
∑

k∈Kr

[srk(t)− srk(t−DRk)]a∗dst(k)j ≤ 1, ∀j; (26)

∑
k∈Ks

[ssk(t)− ssk(t−DSk)]bs∗kl

+
∑

k∈Kr

[srk(t)− srk(t−DRk)]br∗kl ≤ 1,∀l. (27)

Periodicity

∀i, t ∈ [Tmax −Di, Tmax]

si(t)− si(t− Period∗) = Ni; (28)

∀k, t ∈ [Tmax −DSk, Tmax],

ssk(t)− ssk(t− Period∗) = Nsrc(k)Pk; (29)

∀k, t ∈ [Tmax −DRk, Tmax],

srk(t)− srk(t− Period∗) = Ndst(k)Ck. (30)

References

1. Alander, J.: On optimal population size of genetic algo-
rithms. In: Proc. IEEE Int. Conf. on Comp. Sys. and
Software Eng., pp. 65–70 (2002)

2. Aslam, N., Arslan, T., Erdogan, A.: Algorithmic level
design space exploration tool for creation of highly opti-
mized synthesizable circuits. In: Proc. IEEE Int. Conf.
on Acoustics, Speech and Signal Processing, vol. 2 (2007)

3. Bambha, N., Bhattacharyya, S., Teich, J., Zitzler, E.:
Systematic integration of parameterized local search into
evolutionary algorithms. IEEE Trans. on Evolutionary
Computation 8(2), 137–155 (2004)

4. Bambha, N., Kianzad, V., Khandelia, M., Bhat-
tacharyya, S.: Intermediate representations for design au-
tomation of multiprocessor dsp systems. Design Automa-
tion for Embedded Systems 7(4), 307–323 (2002)

5. Bhattacharyya, S., Murthy, P., Lee, E.: Software synthe-
sis from dataflow graphs. Springer (1996)

6. Bonfietti, A., Benini, L., Lombardi, M., Milano, M.: An
efficient and complete approach for throughput-maximal
SDF allocation and scheduling on multi-core platforms.
In: Proc. IEEE Conf. on Design, Automation and Test in
Europe, pp. 897–902 (2010)

7. Glover, F.: Improved linear integer programming formu-
lations of nonlinear integer problems. Management Sci-
ence pp. 455–460 (1975)

8. Lee, E., Messerschmitt, D.: Static scheduling of syn-
chronous data flow programs for digital signal processing.
IEEE Trans. on Computers 36(1), 24–35 (1987)

9. Lin, J., Srivatsa, A., Gerstlauer, A., Evans, B.: Hetero-
geneous multiprocessor mapping for real-time streaming
systems. In: Proc. IEEE Int. Conf. on Acoustics, Speech
and Signal Processing (2011)

10. Marwedel, P.: Embedded System Design: Embedded Sys-
tems Foundations of Cyber-Physical Systems. Springer
Verlag (2010)

11. Pino, J., Parks, T., Lee, E.: Automatic code generation
for heterogeneous multiprocessors. In: Proc. IEEE Int.
Conf. on Acoustics, Speech and Signal Processing, pp.
445–448 (1994)

12. Ruggiero, M., Guerri, A., Bertozzi, D., Poletti, F., Mi-
lano, M.: Communication-aware allocation and schedul-
ing framework for stream-oriented multi-processor
systems-on-chip. In: Proc. conf. on Design, Automation
and test in Europe, pp. 3–8. European Design and Au-
tomation Association (2006)

13. Sih, G.: Multiprocessor scheduling to account for inter-
processor communication. University of California at
Berkeley, Berkeley, CA (1992)

14. Sriram, S., Lee, E.: Statically sceduling communication
resources in multiprocessor dsp architectures. In: Signals,
Systems and Computers, 1994. 1994 Conference Record
of the Twenty-Eighth Asilomar Conference on, vol. 2, pp.
1046–1051. IEEE (1994)

15. Stuijk, S., Basten, T., Geilen, M., Ghamarian, A., Thee-
len, B.: Resource-efficient routing and scheduling of time-
constrained streaming communication on networks-on-
chip. Journal of Systems Architecture 54(3-4), 411–426
(2008)

16. Stuijk, S., Geilen, M., Basten, T.: SDF3: SDF for free.
In: Proc. IEEE Int. Conf. on Application of Concur-
rency to System Design, pp. 276–278 (2006). Available
at http://www.es.ele.tue.nl/sdf3.

17. Zhu, J., Sander, I., Jantsch, A.: Buffer minimization of
real-time streaming applications scheduling on hybrid
CPU/FPGA architectures. In: Proc. IEEE Conf. on De-
sign, Automation and Test in Europe, pp. 1506–1511
(2009)

18. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving
the strength Pareto evolutionary algorithm. In: Eurogen,
vol. 3242 (2001)

19. Zitzler, E., Teich, J., Bhattacharyya, S.: Evolutionary al-
gorithms for the synthesis of embedded software. IEEE
Trans. on VLSI Systems 8(4), 452–455 (2000)

20. Zitzler, E., Thiele, L.: Multiobjective evolutionary algo-
rithms: A comparative case study and the strength pareto
approach. IEEE Trans. on Evolutionary Computation,
3(4), 257–271 (1999)

