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Abstract—Video acquired by handheld CMOS cameras may
suffer from rolling shutter artifacts. Rolling shutter art ifacts,
which are due to the rows in the image sensor array being
exposed sequentially from top to bottom, increase with thepeed
of the relative motion between the scene and camera. To refyi
these artifacts, one needs to recover the projection paranters
for each row. In this paper, we propose a probabilistic methd
to estimate 3-D camera rotation by using video and inertial
measurements on the handheld platform, such as a smart phone
Our contributions are (1) an efficient sensor fusion algorihm Fig. 1. An example of a frame with rolling shutter effectsftjleand the
using an extended Kalman filter, and (2) a quality assessment rectified frame (right).
method using vanishing point detection. Experiments indiate
that the proposed sensor fusion algorithm produces a more and accelerometers, which can be found in many modern
accurate orientation estimate and better rectifies rollingshutter  cell phones, have been used to estimate the camera motion
artifacts. directly without the help of video sequences [4], [5]. The

|. INTRODUCTION estimation time is thus greatly shortened, which makes real

Handheld video cameras, especially in cell phones hat\'/r(]a1e rectification possible.

become increasingly popular today because of their pditiabi However, the inertial measurement sensors usually suffer

X . . from measurement noise and bias, which leads to inaccurate
and low price. However, video sequences acquired by hang: '

held platforms usually suffer from annoying jitter due tmotlon estimates after long time periods. Errors also come

camera shake. In addition, many hand-held video and im‘,jrom the discretization of the continuous-time dynamic it

e . . .
capture platforms use CMOS sensors instead of CCD sens%@tem‘ Mqre apcurate motion estimates can be obtained when
al and inertial sensors are deployed together [6]. Cae w

) . VIS
due to cheaper cost and on-chip processing. In a CMOS sens ruse data from these two kinds of sensors is to use online
camera, different rows in a frame are exposed sequenti

from top to bottom. When there is fast relative motion betwe gyesian approaches such as extended Kalman filters (EKF).

. . iJrHortunately, existing algorithms assume a unique camera
the scene and the video camera, a frame can be dIStorese for each frame and therefore can fail when severegollin
since each row has its own projection parameters. Thisgg g

known as the rolling shutter effects and the distortion ligua Iuntt?rr]_effe;tsetramste. ropose an EKF-based method to es-
includes skew and wobble [1], [2]. Rolling shutter effecasic 'S paper, we propos S S

severely affect the visual quality and the follow-up pron—esgqn;aa;eurgﬁeézn}g:aegzt'?gwuﬁ:ng \k/)i(c)jt:o \/flrzun?:e alr;] d Olrr:jeer;ua;:)
ing/understanding of the video sequences. '

Given a proper model, the camera motion can be estimal Qnpare the quality of the rectn_‘led video using d|fferenj[
gorithms, we propose a new quality assessment methog usin

and then used to correct the rolling shutter effects (as sho I nishing point detection that can be used when no around
in Fig. 1) and stabilize the video simultaneously. Videg 9p 9

rectification and stabilization based on 3-D motion mod rIUth is available. Compared with other algorithms that use

usually performs better than 2-D models [3]. TraditiondD 3- Onht/i n;ertl?ilmm?iaiuremernt datiaogjrt?lgc:nthtir;i] retisurl1ts g’hﬁ{
camera motion estimation methods rely on the video framey on estimation accuracy a etier rectincation gua

only, which is computationally expensive and not robust. II. RELATED WORK

Recently inertial measurement sensors such as gyrosco . . .
y 9y peFhe readings of gyroscopes can be directly used to estimate

_ _ _ camera rotation by using integration and interpolatione Th
This research was supported by gift funding from TI. camera translation, however, cannot be accurately estimat




. . . |
from inertial measurement sensors. The readings of aceeler

| | | | |

| | | | |
eters capture not only linear acceleration of cameras, bL:lt i i i i i m
also gravity and acceleration caused by rotation. Besideg,, ! ! ! ! !
acceleration readings must be integrated twice to obtan th—
camera translation, which makes the estimation more prone
to measurement noise. Even if we can obtain accurate camefa reaoutiime . e tmety N
translation, the video rectification and stabilizationlgemn is 1" frame 2 frame
still ill-posed since it is impossible to obtain depth infaation
for every image pixel. Dense warping [3] and image-based r
dering [7] have been applied to approximate the stabitirati
results based on sparse 3-D scene reconstruction. However,

they are Computationally pl’ohlbltlve for many handheldt-plaan image poinu — [UO; Ul]T in frames, the exposure time is
forms. t(u,i) = t; + t, x @, wheret; is the timestamp of frame
Fortunately, camera shake and rolling shutter effects a&gd is the total number of rows in each frame.
caused primarily by camera rotations. In fact, [4] and [8] Assume the intrinsic camera matrix K, the sequences
have shown that taking only camera rotations into accountds rotation matrices and translation vectors of the cameea a
sufficient to produce satisfactory videos. R(t) and1(¢). A 3-D pointx and its projection image in
In our paper, we also use gyroscope readings. In th@mei should satisfy the following equation:
gyroscope-only method [4] the camera rotation is directly
estimated by integrating the gyroscope readings (angdar v u~ KR(t(u,))(x + 1(t(u,7))) (1)
locities). Another recent approach [5] uses both gyroscope
and accelerometer readings to estimate the camera ratatiyfere~ indicates equality up to scale.
based on EKF. The gyroscope readings are used as the contré{sually there is a constant delay between the recorded
inputs in the dynamic motion model. The authors assume tiestamps of gyroscopes and videos. Thus using the times-
users usually try to hold the camera in a steady positionso #2Mps of gyroscopes as reference, the exposure time equatio
gravity is approximately the only source in the acceler@netshould be modified as
measurements. Thus the accelerometer readings can be used u
as measurements of the camera rotation. t(u,i) =t; +ta +t, x Ty (2
Our 3-D orientation estimation is also based on EKF, but When pure rotation is considered, the translation vector
our measurement model is quite different from [5]. We find en p o . .
that the linear acceleration of the camera and the accigierat © o> unchanged and thus the image of a certain scene point
caused by rotation are sometimes non-negligible. Thus we Goone frame can _be mapped to another frame througx a
not use the accelerometer readings as orientation measnl%mography matrix
ments. Instead, we use the tracked feature points extracted ) e
from the video frames, which provide accurate geometrie clu u' ~ KR(t(w',i)) R ((u, 7)) K 'u ®)
for the estimation of the camera motion. Based on the faﬁhereu’ andu are the images in frarnjeandj respective|y_
that matched feature points can be related by a homographic
transformation under pure rotational motion, the relativia- IV. ONLINE ROTATION ESTIMATION
tion between consecutive frames can be measured [9]. Our online motion estimation is based on EKF. Due to
Motion estimation based on visual and inertial measuremehe special property of rolling shutter camera model and the
sensors have been extensively studied in the problem mfre rotation motion model, state definition and the stmactu
simultaneous localization and mapping (SLAM) in roboticef dynamical and measurement model need to be designed
[10]. However, the rolling shutter camera model has nevenbecarefully.
considered in SLAM before. Our algorithm is the first EKF- ) )
based motion estimation method for rolling-shutter camerd- State Vector and Dynamic Bayesian Network
that uses visual and inertial measurements. In our measurefhe gyroscope in cell phone cameras usually has a higher
ment model, tracked feature points in consecutive frames sampling frequency (around 100 Hz) than the video frame rate
only linked by the relative camera rotation between thermas illustrated in Fig. 3.
Therefore, our algorithm can be classified as a relativeanoti In Fig. 3, several gyroscope readings are grouped together
estimation method [11], [12]. since they are used to compute the camera rotations for the
same frame during its corresponding exposure time. Note tha
due to the fact that the idle timg, is large enough so that
For rolling shutter cameras, each row in a frame is exposed pixels in frame but only several pixels in frame+ 1 are
at a different time. Fig. 2 illustrates the image capture elodexposed aftefr;,3. Thuswys is relegated to group + 1.
of a rolling shutter camera, whetg is the total readout time Further we assume that a certain 3-D feature point has its
in each frame and,; is the inter-frame idle time. Thus for projection atu in frame: and u’ in frame ¢ + 1. Without

Fig. 2.1 Rolling shutter cameras sequentially expose raws+ t;q =

rame per second’

IIl. CAMERA MODEL
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) ) . Fig. 4. The probabilistic graphical model of the online mstiion.
Fig. 3. The gyroscope readings and frame timestamps

betweenx; andx;,;. We can further rewrite; as[x; 1;x; 2],
wherex; ; andx; o represents the groups of angular velocities
for frame: — 1 and: respectively. Then given the gyroscope
readingsy; (the measured angular velocity grostp,) with
Gaussian measurement noise ~ A(0,Q), we can update
the state as

loss of generality, assumigu, i) is betweenr; and 742;
t(u’,i+1) is betweenrr, 4 andry 5. Then the relative rotation
matrix relatesu’ andu is:

k+4
R(t(w,i+1)R"(t(u,i) = [ AR(w.At,) (4)

n=k+1 X_|:X21:||:X112:|+|:0:| (7)
where At; to Atp4 are equal torey2 — t(u,i + 1), Y X2 | Vi w; |’
Tht3 — Tht+2, Thtda — Thts and ¢(u’,i + 1) — 7,44 respec-
tively. Each sub-relative rotation matrix can be computgd b
exponentiating the skew symmetric matrix formed from th
angular velocity and its duration:

Note that the second group in the preceding state vector
|§ copied to the first group in the current state vector. This
is a linear motion model and if we represent it as =

f(xi—1,y:, w;), we have
i 9 0 I 0 0
Therefore, the two angular velocity groupsindi + 1 are  A; = 8_f — { o o } W = a_f _ [ ; ] . ®
enough to represent the relative rotation matrix betwegn an Xlx W,
pair of matching feature points in frameand: + 1. Thus We T initial state vectox; is just a copy of the gyroscope
define our state vector as readings Since there 15 only one aroun ot angule veloty in
it.

AR(w,At,,) = expskeww, ) Aty). )

. . . . T
x; =[w(i—1,1),...,w(E — 1, Ni—1),w(s, 1), ..., w(i, NZ)(]6) C. Measurement Model
where N; is the total number of angular velocity vectors in As we have mentioned, the measurement can be written as
group . The reason why we directly use angular velocity = [u; 1,u;2, ... ,uz-,M]T, whereu; ; is the 2-D coordinate
instead of the rotation unit quaternion (or axis-angletiota value of thej th feature point in frame. Assume its matching
representation) in the state vector is that: (a) The reatipoint in frame: — 1 is u,_; ; then according to (3) we have
poses are actually updated independently, which makeg usin
rotation representation in the state vector almost hedplgy o N
As shown in (4), angular velocities can be directly used in u;; =g (KARK‘1 [ u’_l’JlJrV”’l D +vij2  (9)
computing the relative rotation matrix, while rotation regen-
tation needs more complicated spherical linear intermmiat where ¢() is the function to convert a homogeneous vector
(SLERP). This fact matters since it will affect the comptgxi into an inhomogeneous vector; ;1 andv; j» represent the
of computing the Jacobian matrices for EKF. Gaussian messurement noise in feature point detection for
Given the definition of the state vector, Fig. 4 shows th@FLj and u; ;. Similar to the example shown in (4) the
dynamic Bayesian network that illustrates the EKF-baseglative rotation matrixAR is expressed as
online estimation. Gyroscope readingscan be used as the
control inputs. The feature points detected in fraivean be N,
used as measurementswhile assuming their matching points 1
in framei — 1 are fixed parameters. Details of the rr)notlon H AR(w(i = 1, k)Atioy H
and measurement models with EKF equations are shown d5! =1
follows: where N;_; and N; are the number of angular velocities in
) ) groupi — 1 andi. The duration timeAt for each angular
B. Dynamic Motion Model velocity can be computed in the same way as the example
Since in each state vector there are two groups of angusfrown in (4). Note that some of them will be zero. The entire
velocities for two consecutive frames, there will be overlameasurement model can be expressed as

Z_] k) (10)
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where h;() is defined in (9). Note that the key idea is to
consider{u;_; ;} as known parameters with unknown noise
and only use{u; ;} as the measurements. In this way, the
rotational homographic transformation can be directlyduse T T

in the measurement model. Due to page limits, we omit the frame number

derivation (using the chain rule) of the closed-form Jaaobi o o
matrix of (11) used for EKF. Note that when computing théle?rﬁgé The average re-projection error for each featuretpioi different
derivative with respect to the angular velocitigsR (wAt) in '

(5) can be linearly approximated as

-

average re—projection error (pixels)

4
o

o

timestamps and frame timestamps by finding the delay

1 —w At wy At between them.
AR(wAt) = w, At 1 WAt (12) The intrinsic r_natri_xK can b_e estimated separately by_some
—wy At waAt 1 camera self-calibration algorithms such as [13] based itin st
pictures without the rolling shutter effects that only appe
since At is very small. in videos. However, in this paper we follow the algorithm

The reason why this kind of relative rotational measuremept [4] to estimate all the parameters at the same time. The
model works is that the effect caused by the translatiq@jibration and synchronization algorithm in [4] is alssed
between two consecutive frames is negligible. on the homographic transformation in (3). All the paraneter
are estimated using batch optimization which means that the
objective function is the summation of all the re-projentio

Once we have run the EKF to estimate the angular velocitiggors throughout hundreds of consecutive frames. Note tha
we can compute the rotation matrix at any time. To rectify th@ie sequence of angular velocities is not an optimizatiai va
rolling shutter effect for any framg we fix a unique camera gpje in calibration. In other words, the gyroscope readargs
pose (rotation matrixR; which can be the pose either at thgrysted completely. Although this is not the assumptioneund
beginning or in the middle of the exposure time of that framgy probabilistic motion estimation framework, the cadition
Then any pixelu in the frame can be re-projected under thigesult works pretty well. These parameters are only neeled t
unique rotation matrix: be estimated once and will be fixed for further use.

V. RECTIFICATION AND STABILIZATION

v ~ KR;R” (t(u, 1)K 'u. (13) VIl. EXPERIMENTAL RESULTS

- _ In our experiments, we use a Google Nexus S Android

Ifwe_ want to further stabilize the vu_jeo, we can apply a lowgg| phone that is equipped with a three-axis gyroscope and
pass filter on the sequence of rotation matri¢8s} t0 get an accelerometer. To record the video and the inertial mea-
a new matrix sequencgR;'“’}. Then we can use similar re-gyrements at the same time, we use an application “Sensor
projection method like (13) to stabilize the video. Speaific pgig Logger” developed by Cellbots [14]. All of the other
we convert the sequence of rotation matrices to a sequenc%gjcessing is implemented in MATLAB. The feature points are
Euler angles first and apply linear _Iow pass filter on yaw,pitGyacked using the Kanade-Lucas-Tomasi (KLT) tracker [15].
and roll angle sequences respectively. The variances of the Gaussian noise in gyroscope readifs an

One problem about the rolling shutter rectification is that t featyre point detection are fixed as 0.005 and 0.3 respéctive
tra_nsformation in (13) is non—invertible, so fast invenseipo- \\e compare our algorithm with the methods in [4] and [5]
lation method does not give the accurate result. Howeven, afinat only use the inertial measurement sensors for 3-Dngplli
we compared it with different types of forward interpolatio g tter rectification and video stabilization.

warping method, we found that inverse interpolation isl stil

preferable as it is remarkably faster while only sacrificeng A- Estimation Accuracy of Camera Rotations

small amount of accuracy. In Fig. 5 we show the average re-projection error for each

feature point in different frames with and without our EKF

processing of the angular velocity. The re-projection iehas
Before we run our algorithm to estimate the camera posesen decreased significantly using the angular velocity tha

and rectify the video, we need to know the value of several estimated by EKF. However, it is unfair to claim that our

parameters of the camera such as the readout#inaad the algorithm is better since the re-projection error is what th

intrinsic matrixK. Also we need to synchronize the gyroscopEKF measurement model is based on.

VI. CALIBRATION AND SYNCHRONIZATION
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Fig. 7. The pitch angle estimate by three algorithms.

To show the accuracy of the rotation estimation with
algorithm, we put the cell phone still on a flat surface
then start recording video. We rotate the camera at will
finally put it back on the same flat surface. Theoreticallyd
should be only rotation around the z-axis of the cell pt
(the axis that points towards the outside of the front fac
the screen). So if we set the initial position of the cell phar
the reference coordinate system, the pitch angle and rglE  Fig. 9.  Top: the original frame extracted from the video withiling
will be back to zero at the end of the experiment. In Fig. 6 .. Is‘[]qtter effect. Bottom: the rectified frame (with stabifiaa) using the rotation
Fig. 7 we can clearly find that the pitch and roll angles th&t et from our algorithm.
are computed based on our algorithm converges closer to zero
compared with the estimates in [4] and [5]. The method in
[5] only performs slightly worse than ours in the sense oflfin&ithm. The difference among the rectified results with difet
estimate of p|tch and roll ang'eS, but occasiona”y thelebei motion estimation methods is Very hard to tell ViSUa”y. Sow
glitches in its rotation estimate since the gravity is netagls compare them numerically. Since there is no way to get the
the dominating source of the accelerometer measuremergs. ground truth of the frame without rolling shutter effectse w
glitches can cause wavy distortion in the rectified frame, &§nnot compute the difference between the ground truth and
shown in Fig. 8. This wavy distortion has never been fourf§e rectified results. [8] uses 3-D animation software tate

in the rectified frames using the rotation estimate from [#] $ynthetic video sequences with rolling shutter effects &ken
our method. the ground truth available. However, it is almost impossibl

) o for the synthetic data to contain real inertial measurement

B. Evaluation of the Rectification Results from cell phones accurately along with the video. Therefore

Fig. 9 is an example of rolling shutter effect rectificationhe method in [8] cannot be used to compare our algorithm
(with stabilization) using the rotation estimate from olgaa with [4] and [5].




Fig. 10. Parallel lines in 3-D world extracted from the frame

TABLE |
AVERAGE EUCLIDEAN DISTANCE FROM THE LINES TO THE VANISHING
POINT (IN PIXEL)

VIIl. CONCLUSION

In this paper we have proposed an algorithm that estimates
the 3-D camera rotation online using both visual and inkertia
measurements based on a rolling shutter camera model. The
algorithm can be directly used in rolling shutter effect-rec
tification and video stabilization for video recording orlice
phones. We have demonstrated in the experiments that our
algorithm can result in a more accurate estimate of the camer
rotations compared with the methods that use only inertial
measurements. The more accurate rotation estimate can help
us rectify the rolling shutter effects in video sequencetebe
In addition, we have proposed a new method to compare the
results of rolling shutter rectification using vanishingirgo
detection when no ground truth is available.

The main limitation of our method is that it relies on the
quality of feature point detection. In low-light conditi®rthe
frames may be blurred due to the long exposure time, so it
is harder to detect and track feature points precisely. The
inertial measurement sensors, however, can keep the same

Rectification method Video #1 | Video #2
No rectification (original) 3.500 2.800
Orientation estimated by [4] 1.820 2.150
Orientation estimated by [5] 1.628 1.387
Orientation estimated by 1.180 0.800
proposed method

(1]

In this paper we make use of the fact that under perspective
projection without rolling shutter problem parallel lings [2]
3-D world that are not parallel to the image plane should
appear to converge to a unique vanishing point. For a rollin
shutter video sequence, this property does not hold anymore
since different rows have different projection time. Weedak
several videos of buildings with clear parallel edges; thven
extracted these parallel lines from the original videos #ed
rectified videos using different algorithms, as shown in. Fig[5]
10. We find the estimated vanishing point for these lines that
minimize the average square distance from each line to thjg
point. The resulting minimum distance is used for compariso
since it shows how well the parallel 3-D lines converge t0[7]
the vanishing point after projection. Thus we can compage th
geometric correctness of the rectified frames without gdoun
truth. From Table | we can find that the proposed metho&]
outperforms the other two rectification methods.
C. Processing Time )

On a 2.3GHz Intel i5 processor, our MATLAB implemen-[lo]
tation (without parallel processing) takes 41ms on avetage
estimate the angular velocities using EKF and compute the
camera orientation for each frame (including the time fork L™
feature tracking) with 60 feature points per frame. Conside
the possible implementation improvement using more efftciel12]
programming languages and GPU-based implementation, it is
very promising to implement rolling shutter effect rectifion [13]
and video stabilization in real-time at 30fps on advancdld ce
phones. In fact, EKF-based SLAM has been implement
in real-time since as early as 2005. Our algorithm has legs)
computational complexity than traditional SLAM since we do
not have to estimate the 3-D coordinate values of the feature
points at the same time.

measurement quality.
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