

Probabilistic 3D Motion Estimation for Rolling Shutter Video Rectification from Visual and Inertial Measurements

Chao Jia and Brian L. Evans

1. Problem

Handheld cameras

- Fast motion
- Camera shake

CMOS image sensors

 Rows in sensor array are exposed sequentially from top to bottom

Rolling shutter effects

2. Rolling shutter rectification

General steps:

Camera motion estimation (for each row)

Challenges and solutions

- Image warping accuracy \rightarrow Pure rotational model

Gyroscopes in mobile phones [Karpenko et al., 2011]

- High sampling rate (> 100Hz)
- Samples have unknown bias and noise
- SLERP interpolation to align with row exposure time

Combine gyro with other information to improve accuracy

- Accelerometer [Hanning et al., 2011]
- Our method: visual measurements (tracked features)

Gyro and feature point correspondence

• Gyro returns measurements with higher sampling rate

Compute the relative rotation between two exposure time

$$\mathbf{R}(t(\mathbf{u}', i+1))\mathbf{R}^T(t(\mathbf{u}, i)) = \prod_{n=k+1}^{n+1} \Delta \mathbf{R}(\omega_n \Delta t_n)$$
 $\Delta \mathbf{R}(\omega_n \Delta t_n) = \exp(\operatorname{skew}(\omega_n) \Delta t_n)$

3. Combining Gyro and Visual Data

Angular velocity estimation based on extended Kalman filtering State vector: two groups of angular velocities

Dynamic model (state prediction)

$$\mathbf{x}_i = \left[egin{array}{c} \mathbf{x}_{i,1} \ \mathbf{x}_{i,2} \end{array}
ight] = \left[egin{array}{c} \mathbf{x}_{i-1,2} \ \mathbf{y}_i \end{array}
ight] + \left[egin{array}{c} \mathbf{0} \ \mathbf{w}_i \end{array}
ight]$$

Measurement model (state update)

- Use only feature points in current frame as the measurements
- Matching points in previous frame used as known parameters using raw gyro readings

$$\mathbf{u}_{i,j} = g\left(K\Delta RK^{-1}\left[\begin{array}{c}\mathbf{u}_{i-1,j} + \mathbf{v}_{i,j,1}\\1\end{array}\right]\right) + \mathbf{v}_{i,j,2}$$
 state vector determines the relative rotation
$$\prod_{k=1}^{N_{i-1}}\Delta R(\omega(i-1,k)\Delta t_{i-1,j,k})\prod_{k=1}^{N_i}\Delta R(\omega(i,k)\Delta t_{i,j,k})$$

Final measurement equation

4. Sensor Synchronization & Calibration

Parameters

- Rolling shutter speed (actual exposure time)
- Camera intrinsic parameters
- Delay between timestamps of gyro and video

Batch optimization [Karpenko et al., 2011]

- Initialize camera intrinsic parameters by self-calibration
- Get relative rotation from gyro readings
- Minimize average re-projection error over all matching points
- Solve by Levenberg-Marquardt algorithm

5. Experimental Results

Zero-angle test

- Start with cell phone on a flat surface
- Rotate cellphone at will, then put it back on the surface, stay still for several seconds
- Repeat ten times
- Ground truth available naturally for pitch and roll

Rotation estimation accuracy (with bias)

Rotation estimation accuracy using unbiased gyro readings

Rolling shutter rectification

Numerical comparison

gyro

- No ground truth → no-reference method
- Vanishing point check
- Lines detected manually
- Find vanishing point by least-square

