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Joint Temporal Statistics of Interference in
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Abstract—Characterizing interference statistics is central to
the design and analysis of both physical layer and medium access
control layer techniques to mitigate interference in a wireless
network. The applicability of interference statistics, however, is
limited by the assumptions adopted to derive the statistics in
closed-form. Common assumptions for a decentralized wireless
network include temporally independent user locations and an
unbounded pathloss function. In this paper, we derive the joint
temporal statistics of interference that capture the temporal
correlation in the network along with the realistic assumption
of a bounded pathloss function. The closed-form statistics are
asymptotically exact for low tail probabilities, and match closely
in simulations even when the tail probability is fairly high. The
primary contributions are to (i) show that joint interference
statistics follow a multivariate Gaussian mixture distribution
under the assumption of a bounded pathloss function, and (ii)
characterize the joint tail probability decay behavior for both
bounded and unbounded pathloss functions.

I. INTRODUCTION

Communication performance of a decentralized wireless
network, such as a wireless ad hoc network, is limited due
to interference. Characterizing the interference statistics is
hence central to the design and analysis of a decentralized
wireless network. Exact closed-form interference statistics,
however, are only known under certain restrictive assumptions
on user locations and the propagation environment. Common
assumptions include: (i) temporally independent user locations
that follow a Poisson point process (PPP), and (ii) an un-
bounded pathloss function l(r) = r−

γ
2 , where r is the propa-

gation distance and γ is the power pathloss exponent. Under
these assumptions, the instantaneous statistics of interference
follows a symmetric alpha stable distribution [1]–[6]. The
assumption of temporally independent user locations limits the
applicability of the statistics since it falls short of capturing
the temporal correlation in the network [7]. An unbounded
pathloss function, on the other hand, may limit the validity
of the result by overestimating the effect of interference [8].
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Nonetheless, these assumptions are common since they lead
to closed-form interference statistics [1]–[3]. In this paper, we
address these two limitations, while still deriving closed-form
interference statistics.

Regarding assumption (i), user locations are often strongly
correlated over time due to user mobility and transmission
bursts that play out over a significantly slower time scale than
contention and channel access. The temporal correlation in
user locations results in temporally dependent interference,
which in turn causes temporal correlation in network perfor-
mance measures [7], [9]. The network model adopted in this
paper spans the extremes of temporal independence to long-
term temporal dependence in interference, thereby capturing
random mobility and random queue size of users [3], [7].
For the network model adopted in this paper, and under
the assumption of an unbounded pathloss function, the joint
temporal statistics follow a multivariate symmetric alpha stable
distribution – that is exact for Rayleigh faded user emissions,
and accurately captures the tail probability of interference
otherwise [3], [7]. Using a unified framework, we reestablish
this result for completeness, while primarily focusing on a
bounded pathloss function.

Regarding assumption (ii), an unbounded pathloss function
is not realistic because it suggests that the received power
is greater than the transmit power when r < 1. Further,
the singularity at r = 0 affects the results by significantly
overestimating the degradation in communication performance
due to interference [8]. This motivates characterizing the
interference for a more realistic bounded pathloss function.
To the best of our knowledge, closed-form instantaneous or
temporal statistics of interference under the assumption of a
bounded pathloss function are not known.

In this paper, we derive closed-form interference statistics
in a decentralized wireless network with temporally correlated
user locations, under the assumptions of both unbounded(
l(r) = r−

γ
2

)
and bounded

(
l(r) = min

(
1, r−

γ
2

))
pathloss

functions. After giving the system model in Section II, Section
III-A reestablishes that the joint temporal interference tails
follow a multivariate symmetric alpha stable distribution under
the assumption that l(r) = r−

γ
2 . The primary contributions

are to show that (i) joint temporal statistics of interference
follow a multivariate Gaussian mixture distribution for l(r) =
min

(
1, r−

γ
2

)
in Section III-B, and (ii) tail probability of

interference P (‖I‖ > β) decays as Ω
(
e−β

2
)

for a bounded

pathloss function, and not Ω
(
β−

4
γ

)
as obtained under the

assumption of an unbounded pathloss function, in Section
IV. While the statistics are exact for asymptotically low tail
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probabilities, Section V shows that simulations match closely
even when the tail probability is fairly high. Section VI
concludes the paper.

Throughout this paper, random variables are represented
using boldface notation and deterministic variables are rep-
resented using non-boldface type.

II. SYSTEM MODEL

Time is slotted at the symbol time scale. The locations of
interferers, also referred to as nodes, are modeled using a
spatial point process. As depicted in Fig. 1, a node is said
to emerge at a particular time slot if it first starts to transmit
at that time slot. The transmission burst is assumed to last for a
random duration, termed as the lifetime. The random emerging
time thus models the asynchronous nature of a decentralized
network, and the random lifetime models the random queue
size of users. All nodes transmitting at a given time slot are
referred to as active nodes at that time slot. Thus at any time
slot n, the set of active nodes is a union over the sets of
nodes that emerged at a time slot k ≤ n and are still active
at the time slot n. For simplicity in exposition, we assume
that the transmission bursts are not subject to an additional
channel access control protocol. The system model can be
readily extended for a non-contention based access protocol
(such as slotted-ALOHA) that induces an independent thinning
of the point process governing the node locations.

Emerging nodes at any time slot k are assumed to be
spatially distributed according to a homogeneous PPP Π(k) ={(

R
(k)
i ,L

(k)
i

)
, i ≥ 1

}
with intensity λ. Here R

(k)
i is the

random location of the node i that first emerged at time k,
and L

(k)
i ≥ 1 is the random number of time slots (lifetime) it

intends to be active. The point process of active nodes at time

slot n can then be represented as Ξn =
n⋃

k=−∞
Ξk,n, where

Ξk,n =
{

R : (R,L) ∈ Π(k),L ≥ n− k + 1
}

is the set of
interferers that first emerged at time slot k and are still active
at time n. Note that for n < k, Ξk,n is an empty set. The
interference at any time slot n can then be represented as

In=

n∑
k=−∞

Ik,n

=

n∑
k=−∞

∑
Ri∈Ξk,n

l(ri)hi(n)Bi(n) exp (φi(n)+θi(n)) (1)

where Ik,n is the sum interference at time slot n due to
interferers that first emerged at time slot k, i is the interferer
index, ri = ‖Ri‖ are the random distances of active interferers
from the receiver, Bi(n)ejφi(n) are the narrowband interferer
emissions from interferer i at time slot n, hi(n)ejθi(n) is the
fast fading experienced by the interferer emissions, and l(·) is
the pathloss function that models the decay of transmit power
with distance. Random variables Bi(n),hi(n),φi(n),θi(n)
are each assumed to be i.i.d. for every interferer i and time
slot n. At the symbol time scale, the random amplitude and
phase are typically uncorrelated over time, but may still be
temporally dependent. The assumption of temporally i.i.d.
amplitude and phase, however, is made for mathematical

tractability and does not affect the large scale trends (i.e.,
decay rate of tail probability) in the results. Similarly, slow
fading channel variations (e.g., shadowing) are not included
for mathematical tractability as it does not affect the large
scale trends in the results [7]. Assuming the actual emerging
time of the interferers to be uniformly distributed between two
consecutive time slots, φi(n) and θi(n) can be assumed to be
uniformly distributed on [0, 2π].

III. JOINT STATISTICS OF INTERFERENCE

Let Ik,1:n =
{

I
(I)
k,1, I

(Q)
k,1 , · · · , I

(I)
k,n, I

(Q)
k,n

}
denote the vector

of in-phase and quadrature phase components on interference
at time slots 1 through n due to nodes that emerged at
time slot k. Similarly, let I1:n =

{
I
(I)
1 , I

(Q)
1 , · · · , I(I)n , I

(Q)
n

}
denote the vector of in-phase and quadrature phase com-
ponents of interference at time slots 1 through n due to
nodes that emerged anytime until slot n. Further, let ω1:n ={
ω
(I)
1 , ω

(Q)
1 , · · · , ω(I)

n , ω
(Q)
n

}
denote the vector of frequency

variables. We consider the nodes to be distributed over disc
of radius R, denoted as b(0, R), and take the limit on the
joint distribution as R → ∞. Using (1) and noting that
the underlying PPP of emerging nodes at any time slot k is
mutually independent for all k, the joint characteristic function
of I1:n can be expressed as

ΦI1:n
(ω1:n) =

n∏
k=−∞

ΦIk,1:n
(ω1:n) (2)

where ΦIk,1:n
(ω1:n) is the joint characteristic function of

Ik,1:n. Using (1), the joint characteristic function of Ik,1:n is
given as

ΦIk,1:n
(ω1:n)

= E

{
exp

(
j

n∑
m=1

(
ω(I)
m I

(I)
k,m + ω(Q)

m I
(Q)
k,m

))}
(3)

= E

{
exp

(
j

n∑
m=1

|ωm|
∑

Ri∈Ξk,m

l(ri)hi(m)Bi(m)×

cos
(
φi(m)+θi(m)+φωm

))}
(4)

= E

{
exp

(
j

n∑
m=1

|ωm|
∑

(Ri,Li)∈Π(k)

l(ri)hi(m)Bi(m)×

cos
(
φi(m)+θi(m)+φωm

)
1 (Li≥m−k+1>0)

)}
(5)

= exp

(
λπR2

(
−1+E

{
exp

(
j

n∑
m=1

|ωm| l(ri)h(m)B(m)×

cos
(
φ(m)+θ(m)+φωm

)
1 (L≥m−k+1>0)

)}))
(6)

where |ωm| =
√(

ω
(I)
m

)2
+
(
ω
(Q)
m

)2
, φωm = tan−1

(
ω(Q)
m

ω
(I)
m

)
,

1(·) is the indicator function, and the expectation in
(6) is with respect to the set of random variables
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Fig. 1: Network model where nodes can emerge at any time slot and are active for a random number of time slots (= L).

{r,L,h(m),B(m),φ(m),θ(m)}. Equation (5) holds since
Ξk,m =

{
R : (R,L) ∈ Π(k),L ≥ m− k + 1

}
for m ≥ k,

and is an empty set for m < k. Equation (6) is derived using
the probability generating functional (PGFL) of a homoge-
neous PPP [10] and holds since the node emissions, node
lifetime, and fading are each assumed to be i.i.d. across time
slots and nodes. Note that the expectation in (6) is conditioned
such that the node locations are uniformly distributed over
b(0, R) [6], [10]. Using the identity

eja cos(φ) =

∞∑
l=0

jlεlJl(a) cos(lφ) (7)

where ε0 = 1, εl = 2 for l ≥ 1, and Jl(·) denotes
the Bessel function of order l, the log-characteristic function
ψIk,1:n

(ω1:n) , log ΦIk,1:n
(ω1:n) can be expressed as

ψIk,1:n
(ω1:n)

= λπR2

[
−1+E

{
n∏

m=1

( ∞∑
l=0

jlεlJl

(
|ωm| l(r)h(m)B(m)×

1 (L≥m−k+1>0)
)

cos
(
l
(
φ(m)+θ(m)+φωm

)))}]
(8)

= λπR2

[
−1+E

{
n∏

m=1

J0

(
|ωm| l(r)h(m)B(m)×

1 (L≥m−k+1>0)
)}]

(9)

= λπR2

[
n∑
s=1

F
(k,n)

L (s)

(
−1+

E

{
s∏

m=max(1,k)

J0 (|ωm| l(r)h(m)B(m))

})]
(10)

where

F
(k,n)

L (s) =


0 s < k,

P(L = s− k + 1) k ≤ s < n,

P(L ≥ s− k + 1) s = n.

(11)

The expectation in (8) is with respect to the set of ran-
dom variables {r,L,h(m),B(m),φ(m),θ(m)}. Equation (9)
involves expanding the expectation over φ(m) and θ(m),
where φ(m),θ(m) are mutually independent and uniformly
distributed in [0, 2π] and i.i.d. across time slots m, and
noting that Eφ(m),θ(m) {cos (l(φ(m) + θ(m) + φωm))} = 0
for l ≥ 1 for all time slots m. Equation (10) is derived by
expanding the expectation over lifetime random variable L.
The expectation in (10) is thus with respect to the set of
random variables {r,h(m),B(m)}. To further simplify (10),
we express it as

ψIk,1:n
(ω1:n) = λπ

[
n∑
s=1

F
(k,n)

L (s)Υ(k,s) (ω1:n)

]
(12)

where for any parameters {k, s},

Υ(k,s) (ω1:n)

= lim
R→∞

R2

(
− 1+

E

{
s∏

m=max(1,k)

J0 (|ωm| l(r)h(m)B(m))

})
(13)

= lim
R→∞

R2

(
− 1+

R∫
0

s∏
m=max(1,k)

Eh,B {J0 (|ωm| l(r)hB)} 2r

R2
dr

)
(14)

= −
∞∫
0

∂

∂r

 s∏
m=max(1,k)

Eh,B {J0 (|ωm| l(r)hB)}

 r2dr.

(15)

Equation (14) is derived by expanding the expectation
over r in (13) and noting that h(m) and B(m)
are each i.i.d. across time slots m. Equation (15)
involves integrating (14) by parts and noting that
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lim
R→∞

R2

(
−1+

s∏
m=max(1,k)

Eh,B {J0 (|ωm| l(R)hB)}

)
= 0

if lim
R→∞

Rl(R) = 0. The condition lim
R→∞

Rl(R) = 0 is

satisfied when γ > 2, since the power-law decay l(r) = r−
γ
2

is accurate when r � 1 [8].
To the best of our knowledge, exact evaluation of (15) for

any general distribution of the random variable hB and a
general power pathloss function l(r) is not possible. Under the
assumption that Eh,B(h2B2) is finite, we invoke the following
identity to simplify (15) [11]:

Eh,B {J0 (|ωm| l(r)hB)} = e−
|ωm|2(l(r))2Eh,B{h2B2}

4 ×
(1 + Λ(|ωm|)) (16)

where Λ(|ωm|) indicates a correction term with the lowest
exponent in |ωm| of four and is given by

Λ(|ωm|) =

∞∑
k=2

(EZ {Z})k |ωm|2k (l(r))2k

22kk!
×

EZ

{
1F1

(
−k; 1;

Z

EZ {Z}

)}
(17)

where the random variable Z = h2B2, and 1F1 (a; b;x) is
the confluent hypergeometric function of the first kind. Also
Λ(|ωm|) = O

(
|ωm|4

)
as |ωm| → 0.

From Fourier analysis, the behavior of the characteristic
function for |ω| in the neighborhood of zero governs the
tail probability of the random envelope. Thus to accurately
model the tails, we approximate Λ(|ωm|)� 1 for |ωm| in the
neighborhood of zero ∀m ∈ [1, n], such that (15) reduces to

Υ(k,s) (ω1:n)

≈−
∞∫
0

∂

∂r

(
e−

 s∑
m=max(1,k)

|ωm|2
(l(r))2Eh,B{h2B2}
4

)
r2dr. (18)

When hB is Rayleigh distributed, e.g., for constant amplitude
modulated transmissions in Rayleigh fading environment, then
Λ(|ωm|) = 0 and the expression in (18) is exact. We
now simplify Υ(k,s) (ω1:n) for the following bounded and
unbounded pathloss functions.

A. Unbounded Pathloss Function l(r) = r−
γ
2

Under the assumption of an unbounded pathloss function
l(r) = r−

γ
2 , (18) reduces to

Υ(k,s) (ω1:n)

=−

 s∑
m=max(1,k)

|ωm|2
 E

{
h2B2

}
4

 2
γ

Γ

(
1− 2

γ

)
(19)

where Γ(·) denotes the Gamma function [7]. Substituting (19)
in (12), and then using (2), the log-characteristic function of
I1:n can be expressed as

ψI1:n
(ω1:n)

=−ρ
n∑

k=−∞

 n∑
s=1

F
(k,n)

L (s)

√√√√ s∑
m=max(1,k)

|ωm|2
 4

γ

 (20)

=−ρ
n∑

i1=1

n∑
i2=i1

N
(n)

L (i1, i2)


√√√√ i2∑
m=i1

|ωm|2


4
γ

(21)

where ρ=

(
Eh,B{h2B2}

4

) 2
γ

Γ
(

1− 2
γ

)
and N

(n)

L (i1, i2) =

λπ ×


F

(i1,n)

L (i2) i1 6= 1,
∞∑
i=0

F
(i1,n+i)

L (i2 + i) i1 = 1.

Equation (21) corresponds to a 2n-dimensional symmetric
alpha stable vector with characteristic exponent α= 4

γ [12].
To gain intuition into the above expression, we express
N

(n)

L (i1, i2) in matrix form with respect to the lifetime prob-
abilities as (22). Using (21), we note that N

(n)

L (i1, i2) con-
tributes to the joint log-characteristic function in the dimen-
sions corresponding to

{
ω
(I)
i1
, ω

(Q)
i1

, · · · , ω(I)
i2
, ω

(Q)
i2

}
. Thus

N
(n)

L (i1, i2)/π is the density of interferers that first emerged
at time slot i1 (or before when i1 = 1, that corresponds to the
first row) and are active exactly until time slot i2 (or beyond
for i2 = n, that corresponds to the last column).

B. Bounded Pathloss Function l(r) = min
(
1, r−

γ
2

)
For a bounded pathloss function l(r) = min

(
1, r−

γ
2

)
, (18)

can be expressed as

Υ(k,s) (ω1:n)

= −
∞∑
k=1

(
−

(
s∑

m=max(1,k)

|ωm|2
)
Eh,B

{
h2B2

})k
4kk!

×

∞∫
0

(
∂ (l(r))

2k

∂r

)
r2dr (23)

=

∞∑
k=1

(
−

(
s∑

m=max(1,k)

|ωm|2
)
Eh,B

{
h2B2

})k
4kk!

kγ

kγ − 2
.

(24)

The multiplicative factor kγ
kγ−2 in (24) prevents the log-

characteristic function to be expressed in closed-form. Identi-
cal to the approach used in [6] for networks with guard zones,
we approximate kγ

kγ−2 as 1+ηeβk. The parameters η and β are
chosen to minimize the weighted mean squared error (WMSE)

{η, β} = arg min
η,β

∞∑
k=1

(
kγ

kγ − 2
−
(
1 + ηeβk

))2

u(k) (25)

where u(k) are the weights. The weights should be chosen
such that penalty of error is large when k is small, since it
affects the coefficients of terms with lower order exponents of
|ω|. Equation (25) is an unconstrained nonlinear optimization
problem that can be solved using numerical techniques such as
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N
(n)

L (i1, i2)=λπ



P (L≥1) P (L≥2) P (L≥3) · · · P (L≥n−1)
∞∑
k=n

P (L≥k)

0 P (L=1) P (L=2) · · · P (L=n−2) P (L≥n−1)

0 0 P (L=1) · · · P (L=n−3) P (L≥n−2)

...
...

. . . . . .
...

...
0 0 0 · · · P (L=1) P (L≥2)

0 0 0 · · · 0 P (L≥1)


. (22)

quasi-Newton methods [13]. Using the weights u(k) = e−k,
{η, β} can be estimated with an associated WMSE of less
than 10−3 in a meaningful range of the pathloss exponent
(2 < γ ≤ 8) [6]. By approximating kγ

kγ−2 as 1 + ηeβk using
(25) for k ≥ 1, (24) can be expressed as

Υ(k,s) (ω1:n) = −(1 + η) + e−
Eh,B{h2B2} s∑

m=max(1,k)
|ωm|2

4 +

ηe−
Eh,B{h2B2}eβ s∑

m=max(1,k)
|ωm|2

4 . (26)

This approach can be generalized for any bounded pathloss

function l(r) by replacing kγ
kγ−2 with

∞∫
0

(
∂(l(r))2k

∂r

)
r2dr in

(25). Using (12), (26), and (2), the log-characteristic function
of I1:n becomes

ψI1:n
(ω1:n) =

n∑
i1=1

n∑
i2=i1

N(i1, i2)

(
−(1+η)+

e−
E{h2B2}

i2∑
m=i1

|ωm|2

4 +ηe−
E{h2B2}eβ

i2∑
m=i1

|ωm|2

4

)
. (27)

Equation (27) corresponds to the log-characteristic function
of a multivariate Gaussian mixture distribution. The joint
characteristic function, if expressed directly using (27), in-
volves many summations. Each exponential term in the log-
characteristic function leads to a Gaussian mixture series
expression in the joint characteristic function. Using (27), and
truncating each of the Gaussian mixture series summation to
NT terms, the joint characteristic function can be expressed
in a more concise form as

ΦI1:n
(ω1:n) ≈

e−(1+η) n∑
i1=1

n∑
i2=i1

N
(n)
L (i1,i2)

×
(NT )

2n!∑
i=1

p(i)e
−

n∑
m=1

|ωm|2σ2m(i)

2 (28)

where p =
n⊗

i1=1

(
n⊗

i2=i1

ki1,i2

)
is a (NT )

2n! × 1 length vector

of mixture probabilities. Here ki1,i2 = k
(1)
i1,i2

⊗
k
(2)
i1,i2

, and for
i2 ≥ i1,

k
(1)
i1,i2

, k
(2)
i1,i2

= e
−(1+η)

n∑
i1=1

n∑
i2=i1

N
(n)
L (i1,i2)

×





(
N

(n)
L (i1,i2)

)0

0!

...(
N

(n)
L (i1,i2)

)NT−1

(NT−1)!

 ,


(
ηN

(n)
L (i1,i2)

)0

0!

...(
ηN

(n)
L (i1,i2)

)NT−1

(NT−1)!

 . (29)

Similarly σ2
m =

n⊕
i1=1

(
n⊕

i2=i1

t
(m)
i1,i2

)
are a (NT )

2n! × 1 length

vector of mixture variances corresponding to the mth com-
ponent in the joint distribution. Here t(m)

i1,i2
= t

(m,1)
i1,i2

⊕
t
(m,2)
i1,i2

,
and

t
(m,1)
i1,i2

, t
(m,2)
i1,i2

=
Eh,B

{
h2B2

}
2

×

 0
...

NT − 1

 ,
 eβ×0

...
eβ×(NT − 1)

 if i1 ≤ m ≤ i2,

0, 0 otherwise.

(30)

where 0 represents a NT × 1 zero vector. Expressing the joint
characteristic function of I1:n as (28) is helpful in recognizing
the multivariate Gaussian mixture form. The approximation in
(28) can be made arbitrarily accurate by increasing NT .

IV. JOINT TAIL PROBABILITY OF INTERFERENCE
AMPLITUDE

In this section, we provide the results for the joint tail
probability of interference given as

P(∆>n)=P (‖I1‖>β1, ‖I2‖>β2, · · · , ‖In‖>βn) . (31)

Equation (31) directly relates to an joint outage event where
the signal-to-interference ratio falls below the detection thresh-
old for n consecutive time slots [7], [14].

A. Unbounded pathloss function l(r) = r−
γ
2

For l(r) = r−
γ
2 , the multivariate symmetric alpha stable

distribution in (21) is shown to accurately model the joint
interference tails. For β1, · · · , βn large, the joint amplitude
tails corresponding to the joint characteristic function (21) was
derived in [7], and is given as

P(∆>n)≈

√√√√ n∑
i=1

β2
i

−α 2αρN
(n)

L (1, n)
Γ
(
1+α

2

)
Γ
(
1−α2

) . (32)
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B. Bounded pathloss function l(r) = min
(
1, r−

γ
2

)
For l(r) = min

(
1, r−

γ
2

)
, the multivariate Gaussian mixture

distribution in (28) is shown to accurately model the joint
interference tails. Using (28), the joint amplitude tails are given
as

P(∆ > n) ≈

e−(1+η) n∑
i1=1

n∑
i2=i1

N
(n)
L (i1,i2)

×
(NT )

2n!∑
i=1

p(i)e
−

n∑
m=1

β2m
2σ2m(i) . (33)

Note that the right hand sides in (32) and (33) are the
dominant terms of the joint tail probability for unbounded
and bounded pathloss functions, respectively. Thus a bounded
pathloss function l(r) = min

(
1, r−

γ
2

)
leads to Ω

(
e−β

2
)

decay in tail probability, as opposed to Ω (β−α) under the
assumption of an unbounded pathloss function.

V. SIMULATION RESULTS

Using the physical model discussed in Section II, we apply
Monte Carlo numerical techniques to simulate the interference
observed at any typical receiver in a decentralized wireless net-
work. Accuracy of the interference distributions is established
by comparing the empirical and analytical joint tail probability
for both bounded and unbounded pathloss functions. The
network model parameters used in numerical simulations are:
γ = 4, λ = 0.005,B = 10, and the lifetime (L) of a typical
node is assumed to follow a truncated Poisson distribution over
[1, Lmax = 10] time slots and a mean of L = 5 time slots,
given as

L ∼

(
Lmax∑
l=1

L
l

l!

)−1
L
l

l!
l = 1, · · · , Lmax. (34)

Figs. 2 and 3 show the joint tail probability of inter-
ference over n = {2, 3} consecutive time slots in the
presence of Rayleigh

(
h ∼ Rayleigh

(
1√
2

))
and Nakagami(

h2 ∼ Gamma(0.5, 2)
)

fading, respectively. The multivariate
symmetric alpha stable and the multivariate Gaussian mixture
distributions can be seen to accurately model the tail probabil-
ity of interference for unbounded

(
l(r) = r−

γ
2

)
and bounded(

l(r) = min
(
1, r−

γ
2

))
pathloss functions, respectively. Fur-

ther, the correspondence in tail probability is more accurate
for Rayleigh fading since Λ(|ωm|) = 0 when hB ∼Rayleigh,
and thus (18) is exact. The decay rate of tail probability
for unbounded and bounded pathloss functions is accurately
captured for any fading distribution. While omitted for clarity,
similar correspondence in instantaneous (n = 1) and higher-
order (3 < n ≤ Lmax) joint tail probabilities was observed.

VI. CONCLUSION AND APPLICATIONS

In this paper, we derive the joint temporal statistics of
interference in a decentralized wireless network with tempo-
rally correlated user locations. We show that joint interference
statistics follow a multivariate Gaussian mixture distribution
under the assumption of a bounded pathloss function. We
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Fig. 2: Joint tail probability of interference over n time slots assuming both
bounded (BPL) and unbounded (UBPL) pathloss functions in the presence of
Rayleigh

(
1√
2

)
fading. Simulated tail probabilities are compared against the

estimated Gaussian mixture (GMM) and symmetric alpha stable (SAS) tails
for BPL and UBPL, respectively. Empirical and estimated tail probabilities
match closely for probability less than approximately 10−1.
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Fig. 3: Joint tail probability of interference over n time slots assuming both
bounded (BPL) and unbounded (UBPL) pathloss functions in the presence of
Nakagami(0.5, 1) fading. The decay of the simulated tail probability matches
the estimated Gaussian mixture (GMM) and symmetric alpha stable (SAS)
tail decay for BPL and UBPL, respectively.

also characterize the joint tail probability decay behavior for
both bounded and unbounded pathloss functions. While the
assumption of an unbounded pathloss function simplifies the
derivation of joint interference statistics, it significantly over-
estimates the effect of interference on network performance
measures. Thus the assumption of an unbounded pathloss func-
tion should be used with caution [8]. The distributions derived
in this paper can be extended to include a slotted-ALOHA
channel access protocol [14] in conjunction to the network
model assumed in the paper. Extensions for contention based
channel access protocols (such as CSMA), however, appears
nontrivial [14] – but approximations may be proposed based
on Poisson assumption with a Guard zone, that is analytically
similar to the bounded pathloss function case [6].
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The closed-form interference statistics can be used to
derive closed-form network performance measures that are
asymptotically exact in the low outage regime [7], [14], [15].
Under the assumption of an unbounded pathloss function,
this approach was used in [7] to derive closed-form single-
hop communication performance measures, such as local
delay, outage probability, and average network throughput.
The closed-form expressions yielded up to 2× improvement
in network throughput by optimizing the lifetime distribution
in view of the temporal correlations in the network [7]. Under
the realistic assumption of a bounded pathloss function, the
interference statistics derived in this paper can be used to
revisit the analysis of [7] to further the accuracy of the results
presented therein.

The closed-form interference statistics can also be used to
design physical layer methods to improve the communication
performance of receivers when treating interference as noise.
The non-Gaussian interference statistics may severely degrade
the communication performance of receivers that are designed
assuming additive Gaussian noise in the system. The statistics
of interference-plus-thermal-noise at the receiver governs the
choice of the bit-error-rate optimal Bayesian detection rule,
filtering structure, and more fundamentally, the distance mea-
sure (instead of the Gaussian optimal Euclidean norm) used to
design the receiver [16], [17]. Prior papers have demonstrated
5–20dB gain in detection performance by using the optimal
Bayesian detection rule, thereby improving the link spectral
efficiency by several bps/Hz [16]–[19].
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