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Abstract—Periodic impulsive noise synchronous to the main
powerline frequency is the dominant noise component in OFDM-
based narrowband (NB) powerline communications (PLC). Such
noise occurs in periodic bursts, where a single burst could
corrupt multiple OFDM symbols. Standardized NB PLC systems
use frequency-domain interleaving (FDI) in combination with
forward error correction to combat impulsive noise. Alternate
designs adopt time-domain block interleaving (TDI) in which
the receiver deinterleaver scatters an impulsive noise burst into
short impulses over a large number OFDM symbols. In bursty
impulsive noise, TDI-OFDM (FDI-OFDM) works better at high
(low) SNR. In this paper, we develop non-parametric methods
for periodic impulsive noise mitigation in coded TDI-OFDM
systems. We exploit the sparse structure of the time-domain noise
after the deinterleaver, and propose sparse Bayesian learning
based algorithms that estimate and remove the noise impulses
by observing the null and pilot tones of received signal and using
decision feedback from the decoder. The proposed methods do not
assume any statistical noise model and hence do not require any
training. In simulations, the proposed methods in TDI-OFDM
systems achieve up to 6 dB SNR gain over FDI-OFDM systems
at typical NB PLC SNR values.1

I. INTRODUCTION

Due to the high penetration of powerline infrastructures
and hence low deployment costs, powerline communications
(PLC) plays a prominent role in enabling a variety of smart
grid applications, such as automatic meter reading, grid status
control and monitoring, and real-time pricing [1]. In 2011, PLC
was the most adopted (60% market share) technology in smart
meters for communication with local utilities [2]. In particular,
narrowband (NB) PLC is used for the communications be-
tween smart meters and data concentrators, which are deployed
by local utilties on medium-voltage (in the US) or low-voltage
(in Europe) power lines. NB PLC uses orthogonal frequency
division multiplexing (OFDM) to deliver several hundred kbps
in the 3–500 kHz band. Examples of NB PLC systems have
been specified in the industry-developed standards such as G3
and PRIME, and recent international standards such as IEEE
P1901.2 and ITU-T G.hnem.

One of the major challenges for NB PLC is to overcome
additive powerline noise. Such noise is generated by electrical
devices connected to the power lines, and by external noise
and interference coupled to the power grids via radiation or
conduction [1]. Recent field measurements on both indoor and

1This work was supported by gift funding and equipment donations from
National Instruments, as well as grant funding from the Semiconductor
Research Corporation under SRC GRC Task 1836.063 with liaisons Freescale
Semiconductor, IBM and Texas Instruments.

Fig. 1. Periodic impulsive noise synthesized from a linear periodically time
varying system model adopted by the IEEE P1901.2 narrowband powerline
communications standard. The noise exhibits cyclostationarity in both time
domain (bottom) and frequency domain (top).

outdoor power lines have identified periodic impulsive noise
(also termed “cyclostationary noise”) synchronous to the main
powerline frequency as the dominant noise component in the
3–500 kHz band [3], [4], [5]. This type of noise contains
long noise bursts that occur periodically with half the AC
cycle. Typical noise bursts cover 10% − 30% of a period,
which amounts to 833 µs − 2.5 ms in the US. A single
noise burst may corrupt multiple consecutive OFDM symbols.
For example, the OFDM symbol duration in G3 operating in
the CENELEC-A band from 3–95 kHz [6] is 695 µs, and a
noise burst lasting for 30% of a period will contaminate up
to 4 consecutive OFDM symbols. During the bursts, the noise
power in certain frequency bands can reach 30–50 dB higher
than in the rest of the period [4]. A primary source of periodic
impulsive noise is switching mode power supplies (e.g. light
dimmers and DC-DC converters) [5].

The temporal and spectral properties of periodic impulsive
noise in NB PLC have been captured by a linear periodically
time varying (LPTV) system model [4], which has been
adopted by the IEEE P1901.2 NB PLC standard. According
to the model, a period of the noise can be partitioned into
several intervals, within each the noise is a stationary Gaussian
process that is spectrally shaped by a linear time-invariant
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Fig. 2. Periodic impulsive noise before (top) and after (bottom) a time-domain
block deinterleaver over one period of the noise.

filter. Fig. 1 shows a noise trace, along with its spectrogram,
synthesized from an LPTV system model that is fitted to noise
measurements collected at an outdoor low-voltage site [4].

Periodic impulsive noise may cause severe deterioration
in communication performance at OFDM-based NB PLC
receivers. Commercial PLC modems feature low power trans-
mission [7], which is further attenuated by significant path
loss over powerline channels [1]. The communication sig-
nal, if received during the impulsive noise bursts, could be
overwhelmed and severely corrupted. Since statistics of the
noise significantly deviates from that of additive white Gaus-
sian noise (AWGN), additional degradation in communication
performance can be expected at conventional OFDM receivers
designed under the assumption of AWGN. Furthermore, since
the bursty duration is comparable or even longer than the
OFDM symbol duration, the corruption generally affects mul-
tiple consecutive OFDM symbols [8].

Standardized NB PLC systems use frequency-domain
block interleaving (FDI) in combination with forward error
correction (FEC) coding to combat periodic impulsive noise
[6]. The FDI-OFDM transmitter contains a sample-level in-
terleaver across multiple OFDM symbols in the frequency
domain, i.e., before the inverse discrete Fourier transform
(IDFT). The corresponding deinterleaver at the receiver effec-
tively spreads the bursty errors into isolated errors over a large
number of OFDM symbols, in order to reduce their impact
on bit error rate (BER) in coded systems. Alternate designs
adopt time-domain block interleaving (TDI) [9], where the
signal is interleaved and deinterleaved in the time domain, i.e.,
post-IDFT at the transmitter and pre-DFT at the receiver. The
deinterleaver at the receivers scatters noise bursts into short
isolated impulses in the time domain (Fig. 2). TDI-OFDM
achieves superior BER improvement over FDI-OFDM in high
SNR regimes (e.g. above 10 or 20dB, depending on specific
noise scenarios), whereas FDI-OFDM performs better towards
lower SNRs [9].

To further compensate the communication performance
loss due to non-AWGN statistics of the noise, receiver methods
that exploit statistical properties of periodic impulsive noise
have been investigated. In [10], cyclic spectrum analysis
was used to detect and extract second-order cyclostationary

process. A linear MMSE frequency domain equalizer was
derived for single-carrier OFDM systems in cyclostationary
noise [11]. Recent studies targeting NB PLC proposed adaptive
error prediction filters [12], [13] and noise whitening filters
[14] to mitigate periodic impulsive noise in the time domain.
These parametric methods assume a specific statistical model
of the noise, and estimate model parameters by training. Unfor-
tunately, parameter estimation for periodic impulsive noise is
generally of high complexity. This is because of the significant
increase in the number of parameters, and hence the degrees
of freedom, in order to capture the non-negligible time-domain
correlation in periodic impulsive noise. Accurate estimation of
these parameters generally requires a large amount of data, i.e.,
over multiple cycles, which entails not only significant training
overhead, but also a large memory typically not present in
current PLC modems. Furthermore, the increased degrees of
freedom makes the estimation more vulnerable to outliers.

Non-parametric methods, on the other hand, do not make
any assumptions on statistical models of the noise and hence
do not require any training overhead. Our previous work
[8], [15] on mitigating asynchronous impulsive noise, which
consists of short impulses with random occurence, developed
two non-parametric algorithms to estimate and subtract the
noise impulses from received OFDM signal. The idea was to
exploit the sparse structure of the noise in the time domain
and formulate a compressed sensing problem, where the sparse
noise vector can be estimated by observing various subcarriers
(a.k.a. tones) of a received OFDM symbol. We then solved the
compressed sensing problem using sparse Bayesian learning
(SBL) techniques [16].

In this paper, we aim to develop non-parametric receiver
methods to mitigate periodic impulsive noise in TDI-OFDM
systems for NB PLC. Towards this end, we first describe
our system model in Section II. After introducing the SBL
algorithm in Section III, we briefly review our previously
developed SBL-based methods in Section IV-A and show that
these methods can be applied to mitigate periodic impulsive
noise in TDI-OFDM systems. Then in Section IV-B we extend
the SBL-based methods to a novel closed loop algorithm that
exploits decision feedback from the decoder to further improve
the communication performance.

II. SYSTEM MODEL

We consider a TDI-OFDM system [9] whose complex
baseband equivalent representation is shown in Fig. 3. At the
transmitter, binary data packets are encoded and mapped to
OFDM symbols, each with M non-data tones and N − M
data tones. The non-data tones are either null tones for spectral
shaping and inter-carrier interference reduction, or pilots for
channel estimation and synchronization. An OFDM symbol,
denoted by x, is converted to the time domain by IDFT. After
the IDFT, multiple OFDM symbols are interleaved using a
sample-level block interleaver. A cyclic prefix (CP), assumed
to be longer than the channel delay spread, is inserted to
the beginning of each OFDM symbol to prevent inter-symbol
interference. Inserting the CP after the interleaver maintains
the cyclic structure within each transmitted OFDM symbol,
and hence the received signal after CP removal is the cir-
cular convolution of the transmitted signal with the multi-
path channel. Similarly to conventional OFDM systems, such
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Fig. 3. A time-domain interleaved OFDM system. Π denotes the sample-level interleaver, and Π−1 the corresponding deinterleaver.

signal can be equalized by one-tap frequency-domain channel
equalizers (FEQ). The equalized signal is then deinterleaved
before converted to the frequency domain by DFT. Assuming
perfect channel estimation, the demodulated OFDM signal y
can be expressed as

y = x + Feπ + Fnπ = x + Feπ + gπ. (1)

Here F is the N -point DFT matrix, eπ and nπ denote the
time-domain impulsive noise and additive Gaussian noise after
deinterleaving, and we have defined gπ , Fnπ . Note that
although the AWGN n in Fig. 3 is spectrally shaped by the
FEQ, it becomes less correlated in the time domain after the
block deinterleaver and hence nπ , as well as gπ , can be well
approximated by AWGN.

Let I denote the index set of the null and pilot tones, where
|I| = M < N . Also, let (·)I denote the sub-matrix (or sub-
vector) corresponding to the rows (or elements) indexed by the
set I. The impulsive noise can be observed from the null and
pilot tones of the received OFDM symbol, since

z , yI − xI
= FIeπ + gI ,

gI ∼ CN (0, σ2IM ), (2)

where xI contains elements that are either zero or known
pilots. Note that we have dropped the subscript π in gπ for
conciseness purposes.

The recovery of the length-N vector eπ from the noisy
underdetermined M × N linear system is generally an ill-
conditioned problem. However, if the time-domain deinter-
leaved noise eπ has a sparse structure, it could be accurately
estimated by compressed sensing techniques from (2). Let us
define the sparsity of a vector as the percentage of non-zero
elements. In compressed sensing algorithms, lower sparsity of
eπ generally leads to improved recovery performance.

Given a particular noise scenario, the size of the interleaver
is an important design factor that determines the sparseness of
eπ and therefore the performance of the SBL-based algorithms.
The key is to maintain the sparseness of eπ (i.e., number of
non-zero elements) below a certain level that allows accurate
estimation by the SBL techniques. In NB PLC systems, the
interleaving can be done over an entire packet, which contains
up to 56 QPSK modulated OFDM symbols according to the
G3 standard in the CENELEC-A band. This gives a maximum
interleaver size of 38.92 ms, spanning about 2.3 AC cycles
in the US, or equivalently 4.6 noise periods. The maximum
packet duration will be doubled in BPSK modulation and even

larger when repetition code is used. As such, we claim that
the assumption of having a large interleaver with the size
approximately equal to integer multiples of the noise period is
realistic in NB PLC systems. Such interleavers will result in
eπ with sparseness typically ranging from 10% to 30%, which
can be accurately recovered by the SBL-based algorithms, as
will be demonstrated by the simulation results.

We would like to use the estimated impulsive noise to
improve the detection of x. More specifically, the impulsive
noise estimate êπ can be subtracted from the received symbol
on the data tones to form a new decision metric

ŷI = yI − FI êπ
= xI + gI + FI(eπ − êπ). (3)

where (·) indicates set complement and thus I indicates the
set of data tone indices. Assuming that êπ ≈ eπ , the receiver
can then proceed as if only AWGN were present and apply
the conventional detection and decoding algorithms.

III. SPARSE BAYESIAN LEARNING

Among various compressed sensing algorithms, sparse
Bayesian learning (SBL) has become increasingly attractive
due to its improved robustness over deterministic approaches
such as Basis Pursuit [17]. SBL was first proposed by Tipping
[18], and was introduced to sparse signal recovery by Wipf
and Rao in [16].

Generally, SBL is a Bayesian learning approach for solving
the linear regression problem

t = Φw + v, v ∼ CN (0, σ2IM ), (4)

where t is an observation vector, Φ ∈ CM×N is an overcom-
plete basis (i.e., M < N ), and w is a sparse weight vector to
be estimated.

SBL imposes a parameterized Gaussian prior on w

p(w;Γ) = CN (w;0,Γ), (5)

where Γ , diag{γ}, and γ ∈ RN whose i-th component γi
is the variance of wi. Given the prior, the likelihood of the
observation can be expressed as

p(t;Γ, σ2) = CN (t;0,ΦΓΦ∗ + σ2IM ). (6)

A maximum likelihood (ML) estimator solves the hyperpa-
rameters γ and σ2 that maximize (6). The ML solution is
computed iteratively using expectation maximization (EM),
treating w as the latent variable.



Given the observations and the estimated hyperparameters,
the posterior density of e is also a Gaussian distribution

p(w|t;Γ, σ2) = CN (w;µw,Σw),

µw = σ−2ΣwΦ∗t,

Σw = (σ−2Φ∗Φ + Γ−1)−1. (7)

The maximum a posteriori (MAP) estimate of w is the
posterior mean µw.

Due to the sparsity promoting property of the prior, upon
convergence, most components of γ and hence µw are driven
to zero, rendering a sparse estimate of w. It has been shown
in [16] that SBL has improved robustness compared to other
deterministic compressed sensing algorithms such as Basis
Pursuit [17] and FOCUSS [19].

IV. NON-PARAMETRIC NOISE MITIGATION METHODS

In this section, we first briefly review the two SBL-based
impulsive noise mitigation methods we previously developed
[15]. Although initially designed for mitigating asynchronous
impulsive noise, these methods can also be applied to mitigate
periodic impulsive noise in TDI-OFDM systems, since the
compressed sensing problem in (2) takes exactly the same
form as that in [15]. Then we extend the methods to a novel
closed-loop algorithm that exploits decision feedback from
the decoder to further improve the robustness of the noise
estimator in the presence of long noise bursts.

A. Open Loop Noise Estimation Methods

The SBL technique can be directly applied to estimate the
deinterleaved periodic impulsive noise eπ from the null and
pilot tones of the received OFDM symbol. Substituting t = z,
Φ = FI , w = eπ , and v = gI into (4) gives exactly (2). We
therefore apply SBL to obtain the MAP estimate of êπ and
subtract it from the received signal according to (3).

The robustness of the noise estimator using null and pilot
tones is affected by the number of null and pilot tones in an
OFDM symbol, and the sparsity of eπ . With a fixed number of
null and pilot tones, as the number of non-zero elements in eπ
increases to above a certain threshold, the problem becomes
ill-conditioned and hence significant estimation error could be
incurred. In periodic impulsive noise with long bursts, after
appropriate deinterleaving, eπ might not be sparse enough to
guarantee successful recovery from the observation on null and
pilot tones. To improve the robustness of the noise estimator
in the presence of long noise bursts, it is desirable to exploit
more information from received signal.

A simple way to do this is to exploit information available
on data tones. We define u , x + g, and augment the
observation vector z by the data tones of received signal, i.e.,[

z
yI

]
= Feπ +

[
uI
uI

]
,

uI ∼ CN (0, σ2IM ),

uI ∼ CN (xI , σ
2IN−M ). (8)

The system model in (8) has the same form as (1), with
an additional hyperparameter xI . Although xI consists of
constellation points (i.e., they are discrete values), to estimate it

by the EM algorithm, we temporarily relax it to be continuous.
Upon convergence of the EM algorithm, we make a hard
decision on xI before passing it to the convolutional decoder.

B. A Closed Loop Noise Estimation Method

The open loop noise estimation methods exploit infor-
mation in various tones of the received OFDM symbol. In
coded systems, the decision feedback from the convolutional
decoder could also be utilized as side information to aid the
noise estimation. The SBL framework makes it convenient to
integrate such side information. To do this, we impose a prior
distribution on the hyperparameters Γ, or equivalently on the
precision matrix T , Γ−1. Let τ , [τ1, · · · , τN ]T denote the
vector formed by the diagonal elements of T . The conjugate
prior on τ is a Gamma distribution

P (τ ;a,b) =

N∏
i=1

Ga(τi; ai, bi). (9)

where Ga (·; a, b) denotes the pdf of the Gamma distribution
with parameters a and b. When ai = 0, bi = 0,∀i, (9) reduces
to a uniform distribution, which is a non-informative prior im-
plicitly imposed in the previously described SBL framework.
Non-zero values of ai and bi contain prior information that
can be integrated into the likelihood function of z, resulting in

p(z; T , σ2,a,b) = CN (z;0,FIT −1F∗I + σ2IM )×
Ga(T ;a,b). (10)

The maximum likelihood (ML) estimate of τi can be solved
individually as

τi = γ−1i =
1 + 2ai

µe
2
,i + Σe,ii + 2bi

, (11)

where µe and Σe denote the posterior mean and covariance
of eπ given z and the values of hyperparameters in the current
iteration. We can see the prior information contained in ai
and bi does affect the ML estimates of γ. Since (11) is the
conjugate prior on τ , the posterior probability of τ given eπ,a
and b is also Gamma distributed, i.e.,

P (τ |eπ;a,b) =
N∏
i=1

Ga(τi; ãi, b̃i) (12)

with the updated parameters

ãi = ai +
1

2
,

b̃i = bi +
|eπ,i|2

2
. (13)

Suppose that in addition to the MAP estimate êπ given by
the estimator using null and pilot tones, a second estimate
of eπ , denoted by ê′π , is available based on certain side
information. The side information contained in ê′π can be fused
into êπ via the posterior distribution of τ given ê′π . More
specifically, given ê′π , we update a and b according to (13),
and then solve the ML estimate of τ (11) with the updated
values of ã and b̃.

In coded OFDM systems, the redundancy in the coded sig-
nal on the data tones can be exploited as the side information to
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Fig. 4. A closed loop periodic impulsive noise estimator using decision
feedback from the decoder.

provide a second estimate of ê′π . More specifically, the decoder
takes the OFDM symbols after impulsive noise mitigation as
the input, and produces hard decisions on the uncoded and
coded bits, b̂ and ĉ, respectively. Using ĉ we can recover the
data tones of the OFDM symbols by appropriate constellation
mapping. This gives an estimate of x̂I , which is transformed
to the time domain and subtracted from the received signal
r to generate the estimate of ê′π . Then we use ê′π to update
a and b, through which the information extracted from the
coding redundancy is transferred back to the impulsive noise
estimator. As such, we form a decision feedback estimator that
transfers information back-and-forth between the impulsive
noise estimator using null and pilot tones and the decoder
using data tones (Fig. 4). Compared to the estimator using
all tones, the decision feedback estimator is expected to have
better performance by exploiting the redundant information
(i.e., coding structure) on the data tones.

V. SIMULATION RESULTS

To evaluate the performance of our non-parametric noise
estimation methods, we simulate a complex baseband TDI-
OFDM system over a flat channel. The system parameters are
listed in Table I and compared with those in the G3 standard
operating in the CENELEC-A band.

We generate periodic impulsive noise using the LPTV
system model in [4]. We divide one period of the noise into
three intervals, each assuming an individual spectral shape
(Fig. 1). The spectral shapes are fitted to noise measurement
collected at an outdoor low-voltage site as shown in [4]. We
vary the duration of noise bursts (i.e., the total duration of the
second and the third intervals) from 10% to 30% of a period.

In periodic impulsive noise, we simulate our proposed algo-
rithms in a coded TDI-OFDM system, and compare their BER
performance with both TDI-OFDM and FDI-OFDM systems
without noise mitigation. In both TDI and FDI OFDM systems,
we use two interleaver sizes, one spanning approximately half
an AC cycle (i.e., one period of the noise), and the other about

Parameters Simulation G3 in CENELEC-A
Sampling Frequency 400 kHz 400 kHz

FFT Length 128 256
Modulation QPSK DQPSK
# of Tones 128 128

# of Data Tones 72 36
# of Null Tones 56 92

FEC code Rate-1/2 Rate-1/2
Convolutional Convolutional

Interleaver TDI or FDI FDI
Interleave Size 0.5–1 AC cycles up to about 2 AC cycles

TABLE I. PARAMETERS OF THE SIMULATED COMPLEX BASEDBAND
OFDM SYSTEM AND THE REAL PASSBAND OFDM SYSTEM USING
DQPSK MODULATION IN THE G3 STANDARD OPERATING IN THE

CENELEC-A BAND.

an entire AC cycle. Both interleaver sizes are smaller than the
maximum interleaver size in G3, which according to Section
II spans 2.3 AC cycles.

With the interleaver size fixed at approximately an AC
cycle, we increase the noise burst duration from 10% to
30% of a period. The BER performance of all algorithms
are plotted in Fig. 5. Without any noise mitigation, the TDI-
OFDM system performs worse than the conventional FDI-
OFDM system until the SNR reaches 9 dB in the 10% burst
case. This corresponds well to the results in [9] that the BER
improvement of TDI-OFDM over FDI-OFDM can only be
achieved above certain SNR threshold. By embedding the
three SBL-based denoising algorithms into the TDI-OFDM
framework, we are able to lower such SNR threshold to 6 dB,
0 dB and -3 dB, respectively. As the length of noise bursts
increases to 30% of a period, the TDI-OFDM system without
noise mitigation starts to show BER improvement over the
FDI-OFDM system earlier at 7 dB. Embedding our SBL-based
estimators into the TDI-OFDM system, especially the ones
using all tones and decision feedback, further lowers the SNR
threshold to about -1.5 dB and -4 dB, respectively. We notice
that the SNR gains obtained by our proposed algorithms over
the TDI-OFDM system itself are smaller than in the previous
10% burst case. The SBL algorithm using null tones even
performs slightly worse than the TDI-OFDM system without
noise mitigation as the SNR grows above 6.5 dB. The reason
is that in the 30% burst case, after deinterleaving, the number
of impulses per OFDM symbol increases to a level where the
performance of the SBL technique begins to saturate.

To demonstrate the robustness of our proposed algorithms
to different interleaver sizes, we simulate the algorithms with
a shorter interleaver spanning about half an AC cycle, while
fixing the noise burst duration to 30% of a period. Since both
interleaver sizes are an integer multiple of the noise period,
in theory, after the deinterleaving, the noise within an OFDM
symbol should have the same average sparseness. Therefore the
same BER performance can be expected from our proposed
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noise mitigation. The interleaving is done over an entire AC cycle. The burst interval varies from 10% (left) to 30% (right) of a period.

algorithms. Comparing the BER performance in Fig. 6 to
Fig. 5, we observe that decreasing the interleaver size leads to
negligible effects on all BER curves, except for the marginal
BER loss for the TDI-OFDM system without noise mitigation
at SNRs above 6dB. This is because the TDI-OFDM system
itself assumes AWGN, and a larger interleaver is useful to
make noise samples within an OFDM symbol less correlated,
i.e., closer to AWGN in statistics.

VI. CONCLUSION

This paper presents three non-parametric methods for im-
proving communication performance of time-domain inter-
leaved OFDM systems for NB PLC in the presence of periodic
impulsive noise. We exploit the sparse structure of the deinter-
leaved impulsive noise in the time domain, and apply sparse
Bayesian learning (SBL) techniques to estimate the impulsive
noise from the received signal by observing information on
various subcarriers and by utilizing decision feedback from
the decoder. All the methods are non-parametric; i.e., they do
not require prior knowledge on the statistical noise model or
model parameters. We validate the proposed algorithms based
on simulated periodic impulsive noise.
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