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Abstract—Gyroscope is playing a key role in helping estimate camera
rotation during mobile video capture. The fusion of gyroscope and visual
measurements needs the knowledge of camera projection parameters,
the gyroscope bias and the relative orientation between gyroscope and
camera. Moreover, the timestamps of gyroscope and video frames are
usually not well synchronized. In this paper, we propose an online method
that estimates all the necessary parameters while capturing videos. Our
contributions are (1) simultaneous online camera self-calibration and
camera-gyroscope calibration based on an implicit extended Kalman
filter, and (2) generalization of coplanarity constraint of camera rotation
in a rolling shutter camera model for cellphones. The proposed method
is able to accurately estimate the needed parameters online with all kinds
of camera motion, and can be embedded in gyro-aided applications such
as video stabilization and feature tracking.

I. INTRODUCTION

Mobile video capture is currently undergoing a huge growth with
the fast development of smartphone industry. Besides video recording
itself, the recorded videos also provide a great amount of opportuni-
ties for applications such as augmented reality and visual odometry.
No matter what application mobile video capture is used for, camera
motion estimation is an essential step to improve the video quality
and better analyze the video content. Hand-held mobile devices like
smartphones usually suffer from fast changing motion, which makes it
difficult to track the camera motion accurately using only the captured
videos. For this reason, inertial sensors on smartphones such as
gyroscope and accelerometer have been used to help estimate camera
motion due to their increasing accuracy, high sampling rate and
robustness to light conditions. However, most existing works assume
the inertial sensors have been calibrated and synchronized beforehand
so that the relative pose of the inertial sensors to the camera,
the measurement biases and the delay between the timestamps of
different sensors are known. Moreover, camera self-calibration is
often assumed to be done offline too. Some calibration methods can
be only performed in laboratory environments with special devices,
which further prevents amateur photographers from taking videos
conveniently with the help of inertial sensors. In this paper, we focus
on online calibration and synchronization of cellphone cameras and
inertial sensors while capturing videos, without any prior knowledge
about the devices.
The CMOS image sensors used in cellphone cameras capture

different rows in a frame sequentially from top to bottom. When
there is fast relative motion between the scene and the video camera, a
frame can be distorted because each row was captured under different
3D-to-2D projections. This is known as rolling shutter effect [1]
and has to be considered in calibration and fusion of visual and
inertial sensors. The inertial sensor that we calibrate in this paper
is gyroscope only. It has been shown that the rotation estimation
from gyroscope has been used successfully in video stabilization [2]
and feature tracking [3].

The proposed online calibration and synchronization is based on
an extended Kalman filter (EKF). Although we care about camera
rotation only, we do not assume any degeneration in the motion of
the camera. By extending the recent proposed coplanarity constraint
of camera rotation [4] to rolling shutter cameras, we come up with
a novel implicit measurement that involves only camera rotation but
works for any camera translation, including zero translation (pure
rotation). The implicit measurements can be effectively used in the
EKF to update the estimate of state vectors.

II. RELATED WORK
Camera self-calibration has been extensively studied [5], but previ-

ous work on online self-calibration is very rare. In [6] full-parameter
online camera self-calibration is first proposed in the framework of
sequential Bayesian structure from motion using a sum of Gaussian
(SOG) filter. This work assumes a global shutter camera model and
the motion of the camera has to contain large enough translation to
make the structure from motion problem well-conditioned.
The inertial sensors (gyroscope and accelerometer) are widely used

in navigation and simultaneous localization and mapping (SLAM)
together with visual measurements [7]. The estimation of inertial
sensor biases and relative pose between inertial sensors and camera
has been recently implemented online during SLAM or navigation
[8]. However, to the best of our knowledge all of the previous works
assume that the camera itself has been calibrated, i.e., the camera
projection parameters are known. Moreover, rolling shutter effect was
not taken into account in fusion of inertial and visual sensors until
very recently [9], [10].
In videos, the displacement of pixels between consecutive frames is

mainly caused by camera rotation. Based on this fact, gyroscope was
successfully applied to stabilize the video and remove rolling shutter
effect [2], [11]. Similarly, gyroscope measurements were used to pre-
warp the frames so that the search space of Kanade-Lucas-Tomasi
(KLT) [12] feature tracker can be narrowed down to its convergence
region [3]. In these works there is no need to use the accelerometer.
Therefore, only the camera and the gyroscope need to be calibrated.
To calibrate the camera and gyroscope system, [2] proposed to

quickly shake the camera while pointing at a far-away object (e.g.,
a building). Feature points between consecutive frames are matched
and all parameters are estimated simultaneously by minimizing the
homographic re-projection errors under pure rotation model. The
calibration in [3] is also based on homography transformation of
matched feature points assuming pure rotation, except that different
parameters are estimated separately first and then refined through
non-linear optimization. However, as shown in [3], when the camera
translation is not negligible relative to the distance of the feature
points to the camera, such pure rotation model becomes less accurate
and the calibration results will deviate from the ground truth. Our
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Fig. 1. Rows are captured sequentially in rolling shutter cameras.

calibration method differs with [2], [3] not only in that it is online
estimation, but also in that it does not assume zero translation at
all. Therefore, the proposed calibration can be performed implicitly
anytime and anywhere while the camera is recording video. This is
especially convenient for amateur photographers who want to take
stabilized videos with smartphone cameras.

III. ROLLING SHUTTER CAMERA MODEL AND GYROSCOPE

Points in the camera reference space are projected according to
the pinhole camera model. Assuming the 3D point coordinates in
the camera reference space is [Xc, Yc, Zc]T, its projection on image
plane can be represented as

[

ux

uy

]

=

[

cx + f Xc
Zc

cy + f Yc
Zc

]

, (1)

where f is the focal length and cx, cy are the principal point
coordinates. Here we assume that the camera projection skew is
zero and the pixel aspect ratio is 1 as in [6], which is a reasonable
assumption for today’s cellphone cameras.
In rolling shutter cameras, rows in each frame are exposed se-

quentially from top to bottom, as shown in Fig. 1 For an image pixel
u = [ux, uy ]

T in frame i, the exposure time can be represented as
t(u, i) = ti + tr

uy

h
, where ti is the timestamp for frame i and h is

the total number of rows in each frame. tr is the readout time for
each frame, which is usually about 60% − 90% of the time interval
between frames.
Usually there is a constant delay td between the recorded times-

tamps of gyroscope and videos. Thus using the timestamps of
gyroscopes as reference, the exposure time of pixel u in frame i

should be modified as

t(u, i) = ti + td + tr
uy

h
. (2)

To use the gyroscope readings we also need to know qc, the
relative orientation of the camera in the gyroscope frame of reference
(represented in quaternion). Finally, the bias of the gyroscope bg

needs to be considered. Therefore, in the online calibration we need
to estimate the parameters f , cx, cy , tr, td, bg and qc.

IV. COPLANARITY CONSTRAINT FOR CAMERA ROTATION
First let us consider a global shutter camera in which all of the

pixels in the same frame are captured at the same time. Assume
the normalized 3D coordinate vectors of a certain feature in two
viewpoints (frames) are fi and f ′i (note that by inverting (1) we can
not recover the absolute scale but only the direction of the 3D feature
vector). The well-known epipolar constraint is (fi × Rf ′i) · t = 0,
where R and t are the relative rotation and translation between the
two viewpoints. The epipolar constraint means that the vectors fi,Rf ′i
and t are coplanar, as shown in Fig. 2. By the epipolar constraint all
vectors fi×Rf ′i are perpendicular to the translation vector t, and thus
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Fig. 2. The epipolar constraint on a pair of features in two viewpoints.

Fig. 3. The cross products of all matched features are perpendicular to the
camera translation vector.

are coplanar (t is the normal vector of this plane). Such coplanarity
can be expressed by the determinant of any three vectors being zero

|(f1 ×Rf
′

1) (f2 ×Rf
′

2) (f3 ×Rf
′

3)| = 0. (3)

This coplanarity is introduced in [4] and does not depend on the
translation at all. Another good property of (3) is that it is still valid
in the extreme case of zero translation since all vectors fi×Rf ′i will
become zero.
In rolling shutter cameras, however, the viewpoint is not unique for

the features captured in the same frame. Note that both the traditional
epipolar constraint and the coplanarity constraint (3) are expressed
in the reference of one of the two viewpoints. In fact, this frame
of reference can be chosen arbitrarily. Once the reference is fixed,
we can represent the camera orientation corresponding to any feature
(determined by its exposure moment for rolling shutter cameras) in
this reference. For the matched features between any two consecutive
frames in rolling shutter cameras, we propose the following constraint

|(R1f1 ×R
′

1f
′

1) (R2f2 ×R
′

2f
′

2) (R3f3 ×R
′

3f
′

3)| = 0. (4)

Note that in (4) R′

1 means the camera orientation correspond to
feature 1 in the second frame, not the transpose of R1. Constraint (4)
does not exactly hold in general cases but only under the assumption
that the relative camera translations between the exposure moments
for all pair of matched features are in the same direction. The
readout time of two consecutive frames are at most 66ms (for 30
fps videos) and in such short period of time the camera translation
can be well approximated by a constant direction. Note that such
approximation is more general than the approximation used in [10]
which assumes the linear velocity of the camera is constant. The
constraint is illustrated by Fig. 3. We use the coplanarity constraint
(4) as implicit measurement to estimate the all the parameters in an
EKF. The way to represent the camera orientation corresponding to
each feature using the parameters and gyroscope readings is shown
in the next section.

V. EKF-BASED ONLINE CALIBRATION AND SYNCHRONIZATION

The online calibration and synchronization is based on an EKF.
Besides the parameters mentioned in Section III, we also estimate the
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Fig. 4. Timing relationship between the gyroscope readings and the video
frames.

true angular velocities corresponding to each gyroscope reading. The
gyroscope in cellphones usually has a higher sampling rate than the
video frame rate. Fig. 4 illustrates the timing relationship between the
gyroscope readings and the video frames. Assume a pair of matched
features fi and f ′i are detected as green diamonds and the reference
time is fixed as the timestamp of the next frame (shown as the purple
diamond). The relative camera orientation can then be expressed by
the angular velocities

Ri =

M
∏

n=1

Θ(ωn∆tin), (5)

where M is the total number of angular velocities involved in
computing the relative orientation (M=7 in Fig. 4) and ∆tin is the
time duration that the angular velocity ωn is used in the integration
(assuming constant angular velocity between readings). Each sub-
relative rotation matrix can be computed by exponentiating the skew
symmetric matrix formed by the product of angular velocity and its
duration:

Θ(ωn∆tin) = exp(skew(ωn)∆tin). (6)

In this way, the relative camera orientation corresponding to any
feature detected in the current and next frame can be expressed by
the angular velocities. Note that the angular velocities (gyroscope
readings) have to be transformed into the coordinate system of camera
first using qc.
Our EKF evolves when every video frame is captured, as in [9].

The state vector is defined as

x = [f cx cy tr td b
T

g q
T

c ω
T

1 . . . ωT

M ]T. (7)

A. State Prediction
All the parameters appeared in Section III except bg are constant

so they are just copied in state prediction. We model the dynamics
of bg by random-walk process. Since the EKF evolves from frame
to frame, the angular velocities in the state vector are propagated
simultaneously. As shown in Fig. 4, there will be an overlap of several
angular velocities between consecutive state vectors. The angular
velocities are propagated as following:
{

ωnk|k−1
= ωnk−1|k−1

, if ωn appears in the previous state
ωnk|k−1

= ω̂n + bg + ng, otherwise
(8)

where ω̂n is the gyroscope reading and ng is the gyroscope mea-
surement noise.

B. State Update
After features are matched between the current frame and the next

frame, we randomly picked N groups of features with 3 features
in each group. In this way we can get N measurements from

the coplanarity constraint shown in Section IV. For instance, the
measurement formed by features 1,2 and 3 is

0 = |(R1(f1 + v1)×R′

1(f
′

1 + v′

1)) (R2(f2 + v2) (9)
×R′

2(f
′

2 + v′

2)) (R3(f3 + v3)×R′

3(f
′

3 + v′

3))|, (10)

where vi and v′

i are feature detection errors. Note that the 3D feature
vectors {fi, f ′i} are obtained by inverting the camera projection (1)
and then normalizing. All of the N coplanarity constraints generates
N implicit measurements. The state update is performed right after
state prediction is done. Only one round of state prediction and update
is needed once a new frame is read and all features are tracked.

C. State Initialization
The state vector needs to be initialized carefully to make the EKF

work properly. We initialize the principle point coordinates cx, cy
to be the center of the frame. The focal length is initialized using
the horizontal view angle provided by Android camera API. If the
operation system of the smartphone does not provide the value of
horizontal view angle, SOG filters can be used with several initial
guesses as in [6]. The readout time tr is initialized as 0.0275 ms
which is about 82.5% of the entire interval between frames. The
coordinate-system of the gyroscope is defined relative to the screen
of the phone in its default orientation in all Android phones. Thus
we can get the initial guess of qc depending on whether we are using
front or rear camera. This initial guess is usually accurate enough,
but our calibration is necessary since the camera is sometimes not
perfectly aligned with the screen of the phone. The initial values of
all other parameters (td and bg) are just set as 0.
To make sure that the true value lies in the 3σ intervals of the

initial Gaussian distributions, we initialize the standard deviation of
cx, cy , f, tr, td as 6.67 pixels, 6.67 pixels, 20 pixels, 0.00167 s and
0.01 s, respectively. The standard deviation of each element in bg

and qc is initialized as 0.0067. We set the standard deviation of
gyroscope measurement noise and feature detection error as 0.003
rads/s and 1 pixels, respectively.

VI. EXPERIMENTAL RESULTS
In our experiments, we use a Google Nexus S Android smartphone

that is equipped with a three-axis gyroscope. We capture the videos
and the gyroscope readings from the smartphone and perform the
proposed online calibration and synchronization in MATLAB. The
feature points are tracked using KLT tracker. We divide the frame
into 4 equally sized bins and perform outlier rejection locally within
each bin by computing a homography transformation using RANSAC
[13], as in [14]. The ground truth of camera projection parameters
are obtained using the offline camera calibration method in [15]. The
ground truth of all other parameters are estimated using the batch
optimization method in [2]. Note that to compute the ground truth
the video need to be carefully captured since [2] assumes pure camera
rotation. We test the performance of the proposed method on various
video sequences and show the results on two typical sequences: one
shot while running forward and the other shot while panning the
camera in front of a building.
The running sequence is used to test the performance of the

algorithm under arbitrary camera motion, including very high fre-
quency shake and non-zero translation. The estimation errors of the
online calibration and synchronization are shown in Fig. 5, with blue
lines representing the estimation error and red lines representing
the 99.7%(3σ) uncertainty bounds. For the relative orientation qc

we only show the Euclidean error between the estimated quaternion
vector and the ground truth. Unlike other parameters, the gyroscope
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Fig. 5. Estimation error over the running sequence.
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Fig. 6. Estimation error over the panning sequence

bias bg keeps changing so there is no unique ground truth value and
we do not show it in the results. From Fig. 5 we can observe that
the proposed method is able to accurately estimate the parameters
in hundreds of frames. The estimation of the focal length f and the
sensor delay td appears to be over-confident due to the highly non-
linearity of the measurement equations, but the estimates themselves
still converge to the the ground truth very well.
In the second test video sequence we simply pan the camera

in front of a building. This video is used to test the algorithm
under (almost) zero camera translation (pure rotation). The estimation
errors are shown in Fig. 6. The proposed algorithm works equally
well and converge even faster than the running sequence, because
the panning motion guarantees large pixel displacement between
consecutive frames and makes the parameters more observable. The
estimate of the relative orientation qc is not as accurate as in the
running sequence, which we believe is caused by the single form of
motion (panning).

The current running speed of the proposed algorithm with MAT-
LAB implementation (feature detection and tracking is implemented
using mex functions of OpenCV implementation [16]) is 7 fps on
a laptop with 2.3GHz Intel i5 processor. Note that the we do not
have to run the calibration using every pair of adjacent frames, so
the proposed algorithm is possible to run in real-time.

VII. CONCLUSIONS
In this paper we propose an online calibration and synchronization

algorithm for cellphones that is able to estimate not only the camera
projection parameters, but also the gyroscope bias, the relative orien-
tation between the camera and gyroscope, and the delay between the
timestamps of the two sensors. The proposed algorithm is based on
the generalization of the coplanarity constraint of the cross products
of matched features in a rolling shutter camera model. Experiments
run on real data collected from cellphones show that the proposed
algorithm can successfully estimate all of the needed parameters with
different kinds of motion of the cellphones. This online calibration
and synchronization of rolling shutter camera and gyroscope make it
more convenient for high quality video recording, gyro-aided feature
tracking, and visual-inertial navigation.
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