3D ROTATIONAL VIDEO STABILIZATION USING MANIFOLD OPTIMIZA

TION

Chao Jia and Brian L. Evans

Department of Electrical and Computer Engineering
The University of Texas at Austin, Austin, Texas, 78712 USA
Email: cjia@utexas.edu, bevans@ece.utexas.edu

ABSTRACT

We present a novel video stabilization method for cell phcae-
eras. Our video stabilization is based on a pure 3D rotatiotiam
model, which can better capture the motion of the camera aczadp
with 2D models. 3D camera rotation can be reliably captuned b

Under a 3D rotational model, camera motion for a video can be
considered as a sequence of 3D rotation matrices. We forenmie-
tion smoothing with a regularization term indicating theosithness
of the sequence of rotation matrices. Unlike traditiongdrapches,
we exploit the manifold structure of the sequence of rotatiatri-
ces. The formulated problem is based on geodesic distanteeon

gyroscope as commonly found on a smart phone or tablet. $n thiRjemannian manifold. Previous methods only exploit theoprties

paper we directly smooth the sequence of camera rotatioricest
for the video frames. Our contributions are (1) a smoothnestsic
for a sequence of 3D rotation matrices based on geodesandist
on a non-linear manifold, and (2) an efficient global motiorosth-
ing algorithm using manifold optimization. Our smoothnesstric
better exploits the manifold structure of sequences ofimtanatri-
ces. Experimental results show that our video stabilinatieethod
outperforms state-of-the-art methods by generating nmaigesand
visually pleasant videos.

Index Terms— Video stabilization, manifold optimization, spe-

cial orthogonal group

1. INTRODUCTION

Hand-held video cameras, such as in smart phones and tadnlets
widely used to capture interesting or memorable momentsezon
niently at any time. Videos shot with hand-held cameras,dvew
often suffer from annoying jitter due to camera shake. Viden
bilization aims at removing the unwanted jitter to genesaseally
stable and pleasant videos. Generally video stabilizatborsists of
three major steps: (1) camera motion estimation, (2) camet&n

smoothing and (3) frame synthesis. In this paper we focushen t

second step.

We use a 3D rotational camera motion model for a calibrated

on the manifold of the individual 3D rotation matrO(3) (Spe-
cial Orthogonal Group), so they can only smooth the camettzomo
locally through low-pass filtering. We further consider drgire set
of sequences of rotation matrices as a Riemannian mangolthat
we can model the motion smoothing problem globally and sitlve
optimally. We propose to use Netwon’s algorithm on the nadif
structure, which has much better convergence propertyribamal
non-linear optimization algorithms in the Euclidean spaggperi-
mental results show that our motion smoothing method ofdpes
state-of-the-art methods by generating more stable videtbsless
distortion.

2. RELATED WORK

Camera motion has been commonly modeled using 2D affine er pro
jective approaches. Using full 3D models including botfatioin and
translation for calibrated cameras was first proposed imifit] fur-
ther discussed in [2]. In both papers complicated approtkana are
used in frame synthesis to handle the problem of missinghdegit
ues. In [3] and [4] pure 3D rotational models were shown tegate
high-quality results while only needing homography-bas@gping

in frame synthesis.

Gyroscopes and other inertial measurement sensors hame bee

camera with a known intrinsic matrix. Compared to 2D affine orWidely used in robotic localization problems together wiibual

projective motion models, 3D motion models can more acelyat
reflect the real camera perspective projection, and thus migre
realistic motion smoothing and avoid image distortion amfie syn-
thesis. We ignore 3D translation of the camera because €1)rih
wanted jitter in videos are primarily caused by camera imtaaind
(2) frame synthesis with 3D camera translation would needlépth
value at every pixel, which is impossible to obtain. To estienthe

measurements. However, they were not used in video statiiliz
to replace the feature-based motion estimation until tleeame ac-
curate enough and widely available in cell phones recehtb].

Motion smoothing methods using 2D models are based on Eu-
clidean distance. 2D camera motion can be smoothed using lo-
cal methods such as Gaussian-kernel low-pass filteringg[6hal
methods such a&;-based regularization [7], and real-time meth-

3D camera rotation we use a gyroscope that is available inymanods such as Kalman filtering [8]. 3D rotation smoothing hasnbe

smart phones and tablets. Current gyroscopes in smart plinave
very high precision and can return more reliable 3D cametation
estimates compared to the estimates obtained from visaiiress in
the video sequence, especially when there are many movjegtsb
in the scene or it is difficult to track features points due tation
blur and illumination changes.

This research was supported by gift funding from TI.

implemented locally by low-pass filtering based on eithecligan
distance [4] or geodesic distance on the maniféddi(3) [2, 5]. Al-
thoughSO(3) has additional applications in computer vision, med-
ical imaging and robotics [9], we have not found any previaask
considering the sequence of 3D rotation matrices as a whothis
paper we directly exploit the manifold structure of sequsnaf ro-
tation matrices so that we can formulate 3D rotation smaogthis a
regression problem.



3. GEODESIC DISTANCE AND VIDEO STABILIZATION

on the geodesic distance between elemen8@{3), it is defined
on the rotation matrix sequence manifold . For brevity, we use

All of the 3 x 3 rotation matrices constitute an embedded Riemanniak ¢ M g to represent the rotation matrix sequef&2** } in form
submanifold of the set of all x 3 real matrices. In group theory this of (2) and write the objective function to minimize #éx).

manifold is known as special orthogonal gro8®(3), in which
any elemenR satisfies the orthonormality constraiRR"T = 1.
A natural extension of Euclidean distance in Euclidean spadhe
Riemannian manifol&O(3) is the geodesic distance

dg (Rom R) = [[logMm(R;, Ro) (@)
where logng-) is the matrix logarithm operator and- || is the
Frobenius norm of a matrix. In fact, logR;,R.) is a skew-
symmetric matrix representing a tangent vector in the tahggace
Twr,,SO(3) that indicates the non-normalized direction frtn, to
R, 0nSO(3). Usually we also write logifR7,R.») aslogg R
and call it a logarithmic mapping. Inversely, given any tamg
vector¢ € Twr,,SO(3), we can definexpg, { = Rnexpm(),
where expnir) is the matrix exponential operator. Hetspg ¢
is called an exponential mapping and is used to nRyealong the
direction defined by on SO(3).

4. SOLVING VIDEO STABILIZATION USING
GRADIENT-RELATED METHODS

The formulated problem in (5) is equivalent to an unconsadi
guadratic programming problem in Euclidean space. In Haaln
space, such problems have closed-from solutions; howewer,
non-linear manifolds we have to use iterative algorithmeadgent-
related iterative algorithms are widely used in optimiaatifor
manifolds as for Euclidean space [10]. For any elemein the
manifold of rotation matrix sequenc®t z, given any tangent vector
&x € TxMpg, we can movex along the direction defined b
using the exponential mapping 4x. Note that given the sep-
arability property of the tangent vectors the exponentiabping
can also be implemented separately for different rotatiatrices
in the sequence. i« is a descent direction related to the gradient

For each video sequence, we can obtain a sequence of 3D rot@f the objective function ak, then we have the gradient-related

tion matrices corresponding to all of the frames from thenggope
readings. Next we consider the sequence of 3D rotation cestri
as a whole and exploit the properties of the Riemannian rolahif
constituted by these sequences.

algorithm on the manifold\U . In fact, similar convergence results
of gradient-related algorithms has been extended from tleédean
space to general manifolds [10]. In this paper we investigan
popular gradient-related descent directions: steepestiant de-

Assume the sequence of 3D camera rotation for any video sé&cent and Newton's method.

guence withV frames can be represented by

x=[R1,Ra,...,Rn]". 2)
All of the possible rotation matrix sequences withelements con-
stitute a manifoldM g with dimension3N. Indeed, this manifold is
a Cartesian product d¥ SO(3) manifolds.

Mg =S0(3) x SO(3) x ... x SO(3). ®3)

4.1. Steepest Gradient Descent

The descent direction of steepest gradient descent digoig sim-
ply the opposite of the gradient grigk). To compute the gradient
we first rewrite the objective function as

N

N—-1
F6) =3 gux) +a 3 hu(x),

n=1

(6)

n=1

The manifold Mk is also an embedded Riemannian submanifold of

3N x 3 real matrices€ R°Y). Furthermore, for anx € Mg, the
tangent spac&x.M r atx can be represented by
[Q1,9Q,..

'7QN]T7 (4)

where {Q,,} are real skew-symmetric matrices. In other words,

the tangent vectors and corresponding exponential (araditbgnic)
mapping are still separable as the elements in the manifioid-o
tation matrix sequences. This fact makes the gradientectlapti-
mization algorithms easy to implement.

The goal of video stabilization is to remove visible jitterda
make the camera motion trajectory change smoothly. Givemgmn-

ifold structure ofSO(3), it is natural to define the smoothness of a

rotation matrix sequence as the sum of geodesic distantesdre
adjacent rotation matrices. At the same time, we need tcagtes
that the smoothed camera motion trajectory does not defriaite
the original trajectory too much. As a result, we formuldie video
stabilization problem as

N

=z

-1

1 O new new new
§d§(Rnld7 Rn ) +a di(Rn 7Rn+1)7 (5)

N —

min
{Rnew} £—
n=

n=1

where {R;.°“} is the sequence of stabilized rotation matrices,

{R2%} is the original sequence of rotation matrices,is the
weighting parameter controlling the smoothness of theilstatd
trajectory. Note that although the objective function isviEd based

whereg, (x) = 3d2 (R34, R”) andhn (x) = 3d5 (R, R5Y).
Note thatR,°” is one of the3 x 3 rotation matrix inx. For brevity
we defineR;,*Y = A, x, whereA,, is a3 x 3N matrix that is used
to extractR.°” from x. Similarlly we can maR,.°" back to its
corresponding location ir by ATR™%.

If we considerid; (R;'?, R;“*) as a function oR;*", it has
been proven [11] that

grad S d2(R;!, RI"™) = ~Iogr.. R3. ™)
Given the separability feature &f we can further obtain
gradg.(x) = —Ajlog, Ry
gradhn(x) = —Aplog, Ant1x — Ap 109, | Anx.
®

Using linearity of the gradient, we can obtain

gradf(x) = —Aj(log,, R{" +l0g 4, Asx)

N-1
— Y Al(log,, Ry 4100, Ans1x +10g, L An-1x)  (9)

n=2
old

—An(log, R +1log, An-1X).

Equation (9) clearly shows the decomposition of gfést) into v
skew symmetric matrices corresponding to ffie@otation matrices



in x. Given the direction, we can use exponential mapping totep
x in each iteration with a proper step size to guarantee dedte
the value of objective function. In this paper we choose tap size
using the Armijo rule [12].

In Euclidean space the convergence rate of steepest gradie
scent is strongly affected by the eigenvalues of the Hessitrix of
the objective function Hesg(x). This property also holds for nor
linear manifolds [10]. In fact we can check that the Hessiatrix
of the given objective function is ill-conditioned (the dast eigen-
value is much larger than the smallest eigenvalue). Thexethe
steepest gradient descent method converges only sulijinear

4.2. Newton’'s Method

Newton’s method has been proven to converge locally quiadfiyt
to the optimal solution for both Euclidean space and noedinman-
ifolds. Newton’s method needs calculating the Hessian Hégs.

To calculate the Hessian on manifolds is a very difficult tag¥e

start to derive the Hessian of the proposed objective fandtiom

the following lemma in [13].

Lemma 1. Consider the geodesic distance functigg(P) =
d2(P,Q), whereP,Q € SO(3). Letr = d4(P,Q) be the
geodesic distance. Lef(t) : [0,7] — SO(3) denote the unit speed
geodesic connectin@ to P. Vép,np € TpSO(3), we have the
Hessian operator

Hess ¢ (P) (e, 11p) = (&p.p) + s (68 78),  (10)

( /2)

where|| and L signs denote parallel and perpendicular orthogonal

components of the tangent vector with respeei(io). Here<(r) €
TpSO(3) is the parrallel translation ofy(0) = loggP along the
geodesic fronQ to P.

Given Lemma 1 and any orthonormal bagif®};—; 23 of
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Fig. 1. Convergence of the gradient-related algorithms in vidae s
bilization.

Due to paper length constraints, we only sketch the prod.her
The proof is established by exploiting the independencengnaiif-
ferent components in the rotation matrix sequence and tfiititn
of the Hessian operator based on Levi-Civita connectioh [14ing
Theorem 1 and linearity of the Hessian we can obtagiVax 3N
matrix representatiodi/ of Hessf(x) for a given orthonormal ba-
sis{E%}. To compute the direction in Newton’s method, we first
compute gradf(x) and then represent it as a vectoander the or-
thonormal basi§ E% }. Then we just need to solve the linear system
H - uw = —v and the direction is represented by the veetamder
the same basis. Given the update direction we still use thajér
rule to select the step size.

5. EXPERIMENTAL RESULTS

We first compare the convergence rate of steepest gradisoéiae
method and Newton’s method in solving the formulated pnoblin
the experiment we try to smooth a sequence of 478 3D rotatepn m

TeSO(3) we can compute the matrix representation of the Hessiatrices (478 frames) witlw = 1000. Figure 1 shows the values of

operator by computing its result on every pair of basis tahgec-

the objective function inl0 iterations. Newton’s method success-

tors. Lemma 1 gives us a way to compute the Hessian matrix whefully converges in juse iterations. Each iteration of the Newton’s

the objective function is the geodesic distance defineor{3).
In our proposed problem we need to find the Hessiangfdix)
and h,(x), which are defined on the manifold1r of rotation
matrix sequences. Note that due to the separability featfitbe

method takes 2.93 seconds on a 2.3GHz Intel i5 processorimeach
with MATLAB implementation (without parallel processingWe
find that the number of iterations needed before convergencet
affected by the total number of frames in the video, so theveon

tangent vectors ofM z, we can always find an orthonormal basis gence time increases gracefully (linearly) with the inseeén the

{EL}i=1,2,3n=1,...~5 Of Tx Mg, Where onlyA,, E’, is non-zero and
it is equal to the basis vectd@® defined forTs,,xSO(3). In other
words, the orthonormal basis @&.Mr can be represented by
subgroups and each subgroup corresponds to one partiotation
matrix in the entire sequence. We propose the followingréeo

Theorem 1. Given the decomposed objective functions defined i

equation (6) and an orthonormal basis Bf Mz in form of { E%,},
we have

Hess g, (x)(EL, E}) = Hess ngR%zd(Anx)(Ei7 E7) (11)
Hess gn(x)(EL, E}) = 0,if m #norl #n

Hess h,(x Eﬁl, El) = Hess DA 1x(AnX) (B, E)
n+17 n+1) Hess ¢Anx(A"+1x) (Ei7 Ej)

(
Hess hn(x)(
(E’YL“ n+1) = —Hess ¢An+1x(Anx)(Ei7 EJ)
(&
(

(%)

(%)

Hess hn(x)
(B, 1) = ~Hoss o, (Ans2) (', )
(x) N)=0if m#n,n+lorl#nn+1

(12)

Hess h,(x i1, B
Hess hn(x)(E:,, E

number of frames.

We use the proposed motion smoothing method in video stabi-
lization and compare the results with two state-of-theraethods:
(1) L, regularization on 2D affine models [7] (used in the YouTube
video editor) and (2) Low-pass filtering on 3D rotation modst
ing Hamming window [5]. The 2D motion is estimated from tradk
feature points, while the 3D rotations is directly obtaibgdntegrat-
ing the gyroscope readings. None of the methods is full-éraideo
stabilization so we need to crop the stabilized outputs. driggnal
frame size of the videos 20 x 480 and the stabilized video from
the YouTube video editor [7] has been automatically cropipéal
540 x 360. So in comparison we use the same size to crop the re-
sults of our method and our implementation of [5] to make thenk
size consistent. However, we need to mention that our method
generate larger-size cropped videos without unknown baxiesl In
the experiments we fix the smoothness parameter-asl 00.

First, we test different methods on a video shot by a walkang f
ward person. In Figure 2 we detect Harris corner points inreace
frame and track them for ten frames. We show the startingdram

The computation on the right hand side of the equations has be with yellow curves indicating the tracks of the feature peiim the

defined in Lemma 1.

following 10 frames. For a stabilized video the tracks stooé



Fig. 2. Stabilization comparison for a video shot by a walking for- Fig. 3. Stabilization comparison for a video shot while panning th

ward person.

(c) Result of [7]

(d) Our result

very short since the camera is always facing forward in spfijé-
ter caused by hand shake. The 2P-regularization method [7] can
smooth and shorten the tracks compared to the original ytne¢dhe
feature points are still moving up and down. 3D local lowspfis
tering method [5] and our algorithm can keep the featuretpaiary
steady and our result is slightly better than [5]. Note thatdetect
the feature points independently in the four videos so tleation
and number of the feature points are different.

camera.

vy

(c) Result of [7] (d) Our result

6. CONCLUSIONS

In this paper we propose a novel video stabilization methsidgua
3D rotational camera motion model. We exploit the manifatds
ture of not only the 3D rotation matrices, but also the seqesrof
3D rotation matrices. We formulate the global motion smowlas
a regularization problem based on geodesic distance asdrmiran
efficient Newton’s algorithm to solve the problem on the megd
manifold. The 3D camera rotation for each frame is obtairedd r
ably using gyroscopes that are equipped in most smart pteormks
tablets. We have demonstrated in experiments that ourigigor
is very fast and can generate better video stabilizationltethan

Next we take a test on a video shot while panning the camerastate-of-the-art methods.

Video stabilization should only remove the unwanted jittérile

keeping the panning motion of the camera. In Figure 3 we do the
same kind of test as in Figure 2. All of the three methods ssce

fully smooth the tracks of the feature points. The track$aresult
of [7] are not as straight as those in the result of [5] and esult if
we zoom in the results (notice the two ends of the tracks).

The stabilization results are best viewed in video form.aBée

see the video examples on the Web page of our paper [15]. Inthe

cal comparison (10 frame duration) in Figure 2 and Figuree3dhbal
smoothing method [5] performs similarly to our method. Hoere
our method works better globally. In addition, the weightedrage
computation on rotation matrices based on geodesic distzarmot
be solved analytically and needs iterative algorithms. t&olécal
low-pass filtering method in [5] needs to run iterative aitons for
each frame and thus takes longer than our method, especiadin
the Hamming window size is large. Some other works tried teeso
the rotation averaging approximately [2] or just based oalilaan
distance to increase the processing speed but with saagifstabi-
lization quality. In the two video examples features are/¢asrack
since there is very little motion blur in the frames. Howewehen
the videos are shot in low light condition the visual-baseatiom
estimation used in [7] will fail sometimes while the 3D ratetal
video stabilization using gyroscopes is not affected.
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