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Abstract—Sonar sensor arrays potentially produce huge 

amounts of data to be recorded or transmitted over a telemetry 

system. Compression can reduce the required storage or 

transmission bandwidth, or allow a larger or higher fidelity 

array. We use a dataset for a sonar array receiving acoustic 

communication signals from a transmitter in a lake test. We 

compress the received signals to evaluate the effect of 

compression on performance. Based on analysis of the dataset, 

we use non-uniform quantization with a Laplace distribution 

along with noise-shaped feedback coding. We demonstrate that 

this sonar data can be compressed from 16-bit to five-bit values 

with little or no change in performance using our technique. 

I. INTRODUCTION 

A sonar array system typically produces a very high rate of 
data output, especially when used for imaging or navigation. 
Typical sonar systems can have data rates as high as 
1 GB/s [1]. Compressing data reduces the amount of resources 
required for storage and transmission. 

One way to compress sonar data is by passing the 
discretized voltage values produced by hydrophones through a 
non-uniform quantizer whose distribution closely matches to 
that of the quantizer input. Those quantization values are then 
used by the receiver to process and decode the input signal. 
Meanwhile, the quantization error is fed back to the quantizer 
through a low-pass filter so that the quantization noise is 
shaped into higher, out-of-band or otherwise less important 
frequencies. 

In November 2009, engineers from Applied Research 
Laboratories (ARL) conducted field measurements on Lake 
Travis in Austin, TX, using a single transmitter to transmit 
packets to a five-element sonar array [2, 3]. Fig. 1 shows 
bathymetric data of the testing site. The receiver was on the test 
station while the transmitter was on top of the boat [3]. These 
measurements were initially conducted to evaluate various 
Doppler correction algorithms. We used the dataset made 
publicly available in [4] to observe how much compression 
was possible. This dataset contains 360 packets of acoustic 
communication signals modulated by binary phase shift keying 
(BPSK) or quadrature phase shift keying (QPSK), and that 
each has about 0.5 s of samples. 29 QPSK-modulated packets 
were used as a representative subset of the dataset for analysis 
in [3]. 

In this paper, we describe the proposed compression system 
and how the noise shaper was designed. We compare the bit 
error rates (BER) of the packets using the Doppler correction 
algorithm concluded to be the best of the ones tested in [3] 
without this compressor and the BER of the packets using the 
same Doppler correction algorithm with the compressor. We 
demonstrate that this sonar data can be compressed from 16-bit 
to five-bit values with little or no change in performance. 

II. BACKGROUND 

Due to the high volume of data produced by sonar systems 
that often must be stored or transmitted in low-bandwidth 
acoustic channels [5], compression is very useful. One way is 
to use discrete wavelet transforms to compress the data [5]. 
However, using wavelet transforms cannot be based on input 
signal changes [6] and they smooth out sharp edges in sonar 
images [7], both of which are undesirable in applications 
requiring detection of sudden input changes. 

To compress the sonar data, we propose using data 
conversion to decrease the number of the bits that represents 
each sample. We can accomplish this by passing the analog-to-
digital converter (ADC) output through a quantizer with 2
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Fig. 1. Aerial view of the Lake Travis testing site with lake bed elevations in 

meters above sea level. The water level is at 198 m. Figure reprinted from [3]. 

 



levels, where B is the number of bits we want to compress each 
sample to. While this creates greater quantization error, if we 
pass the quantization error signal through a low-pass filter 
(LPF) and feed it back to the system, we can “shape” the 
quantization noise power towards frequencies that will 
subsequently be filtered out [8]. Fig. 2 shows a block diagram 
of the compressor and decompressor. In Fig. 2, x is the input 
signal, Q is the quantizer, Q

-1
 is the inverse quantizer, H is the 

feedback LPF, y is the compressed output signal, and     s the 
decompressed output signal. 

We can further improve performance by taking into 
account the distribution of the data. Fig. 3 shows a histogram 
of one of the packets we analyzed that is representative of all 
the packets in the dataset. We see from Fig. 3 that the data has 
close to a Laplace distribution. For a random variable with a 
Laplace distribution, the probability density function (PDF) is 
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where   and b are parameters that define a Laplace 
distribution. Here,   is the mean and b is related to the standard 
deviation   by the equation 

     √   

To validate that the Laplace distribution is a good fit, we 
compute the mean square error (MSE) between the empirical 
CDF (ECDF) of the data and the CDF of the Laplace and 
similar distributions with the same mean and variance as those 
of the data. We generate an ECDF using a histogram with 
1,000 evenly spaced bins, compute the error between the 
ECDF of the data and the CDF of a Laplace, Gaussian, and 
logistic distribution at the bin edge points, and average the 
squared errors. As Table I shows, the Laplace distribution has 
the best fit among common distributions similar to it. Using (1) 
and (2), we can design a non-uniform quantizer where the 
quantization levels resemble a Laplace distribution based on 
the statistics of the data [9]. 

III. METHODOLOGY 

The first step in making the compressor was to design the 
non-uniform quantizer. When the quantizer is given  , a 
lookup table of quantization thresholds is generated such that 
the quantization levels has a Laplace distribution with mean 0 
and standard deviation  , and 0 is one of the thresholds. The 
thresholds are created such that the difference between the 
CDF values of two adjacent thresholds is constant. Further, the 
CDF value of each threshold is halfway between the CDF 
values of the threshold’s two adjacent levels. 

We next took into account the fact that a Laplace 
distribution extends to infinity while we know the input will 
always be bounded. First, we set bounds to the quantization 
values based on the range of the ADC output. In this case, the 
range was -1 V to 1 V. Knowing this, we designed the 
quantizer such that the quantization levels represent a truncated 
Laplace distribution. Therefore, the quantization levels 
represent a distribution with PDF  
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evaluated from (2) when     [10]. 

 
Fig. 2. Compressor and decompressor block diagram. 

 

 

Fig. 3. Histogram of a data packet. 

 
TABLE I.   

MSE BETWEEN DATA DISTRIBUTION AND REFERENCE DISTRIBUTIONS 

Reference Distribution Mean Squared Error 

Laplace 0.000549 

Gaussian 0.001724 

Logistic 0.001229 

 
 



 Another consideration we made is what level value the 
quantizer would assign if the input was below the lowest 
threshold or above the highest threshold. Although we know 
the limits of the ADC output, it may not necessarily be good to 
have -1 and 1 as quantization levels, which correspond to a 
CDF of 0 and 1, respectively. Unless the ADC is at least close 
to being saturated, most likely there are no receiver samples 
that are near those bounds. Because of this, we assigned special 
levels for the two extreme cases. The special levels are 
determined using the formulae 
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where    is the nth level and    is the nth threshold between 
   and     . Fig. 4 shows an example of a 4-bit Laplace 
quantizer with     and      , with the aforementioned 
conditions included. 

Although the quantization thresholds are zero-mean, an 
input signal with a nonzero mean that did not saturate the ADC 
can be accommodated by subtracting the mean from the 
compressor input, and then adding the mean to the 
decompressor output. If a signal with nonzero mean does 
saturate the ADC, then the quantization thresholds will likely 
need to be generated to have a nonzero mean for optimum 
performance. Since that was not a problem in this case because 
the minimum and maximum input values were not close to the 
minimum and maximum ADC output values, we can then 
design a quantizer that can tune to the input by adjusting both 
the mean and variance of the quantization levels based on the 
mean and variance of the input. 

Note that   does not have to be equal to the standard 
deviation of the data. In fact, setting   to be the standard 
deviation of the input signal results in too high quantization 
errors for input values distant from the mean. By setting   to 
be slightly greater than the standard deviation of the data, those 
input values can be better received at the cost of higher 

quantization errors for input values around the mean. If   of 
the quantization levels is set too high, quantization errors for  
inputs around the mean will be too high. After trying different 
values of  , we found that the Laplace distributed quantizer 
worked well for all the packets when   was set to about 1.4 
times the standard deviation of the input. 

The next step was to have a LPF that shapes the 
quantization noise to frequencies outside the band of interest. 
We used an eight-tap Hodie window [11] as the feedback filter. 
The Hodie window has significant stopband attenuation with a 
small transition region using only a small number of 
coefficients. 

To test how well the compressor works, we compare the 
BER of each packet analyzed in [3] from each of the five 
receiver elements after Doppler correction without 
compression to the BER after compression, decompression, 
and Doppler correction. Since the receiver generated 16-bit 
samples, we tested performance using a quantizer with 2
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quantization levels, where    16. While [3] had several 
Doppler correction algorithms presented, we considered only 
the algorithm that was most reliable, which was to find the 
frequency with the highest power, remove the offset between 
the expected center frequency and that frequency, baseband the 
corrected signal, and apply an adaptive equalizer. We also 
considered the “overall” BER of each packet by compar ng the 
input with an output of symbols made by taking the mode of 
the symbols decoded by the five receiver elements at each 
symbol time. In case of a tie, the symbol with the smallest 
magnitude and smallest phase in the range (-π, π]  s chosen as 
the mode. 

IV. RESULTS 

The initial performance results of the compressor are 
shown in Fig. 5 and 6. Fig. 5 shows results based on treating 
each element output of each packet separately. Fig. 6 shows 
results based on treating the five-element outputs of each 
packet as one output. For each output, we considered the 
Doppler correcting receiver with compression to have the 
“same” performance as the Doppler correcting receiver without 
compression if the BER with compression is within 5% of the 
BER without compression. This was done to take into the 
account the effect that small quantization noise introduced by 
the compressor could cause a symbol initially decoded 
correctly to be decoded incorrectly and vice versa. (From here 
onward, quantization noise will only refer to the quantization 
noise of the compressor and not the quantization noise of the 
ADC.) Accordingly, the output with compression is considered 
“better” than the output w thout compress on  f the BER w th 
compression is less than 95% of the BER without compression, 
and the output with compression  s cons dered “worse”  f the 
BER with compression is greater than 105% of the BER 
without compression. Results for        are not shown 
because either they are similar to the case when     or they 
show 100% “same” performance. 

From Fig. 5 and 6, the results show there was a trend of a 
higher percentage of worse outputs as the number of 
quantization bits is lowered. This is a result we expected. One 
of the results that we did not expect is that there were outputs 
that performed better with compression than without. In 
addition, there was an increase in the amount of better outputs 

 

 

Fig. 4. 4-bit modified Laplace quantizer with     and      . 

 



from 5-bit to 4-bit quantization values. Furthermore, separate 
element outputs were more likely to perform the same or better 
with the compressor than the five-element receiver outputs 
except in the 1-bit and 2-bit quantizer case. 

Upon further analysis, we found that two stages in the 
receiver were sensitive to quantization noise when the signal-
to-noise ratio (SNR) of the input was sufficiently low. The first 
stage was the frame synchronizer. In this stage, the training 
sequence is correlated with the received packet, and the peak 
value is used to indicate where the data starts. When the SNR 
is low, the quantization noise can cause the peak correlation to 
be at a different point, causing the receiver to begin decoding 
somewhere else in the packet. The second stage was the 

Doppler detector. In this stage, the receiver will look for the 
frequency with the highest magnitude and determine the offset 
between that frequency and the expected center frequency of a 
signal unaffected by Doppler effects. When the SNR is low, 
the quantization noise can cause the peak magnitude to be at a 
d fferent frequency, caus ng the rece ver to “correct” Doppler 
effects with a different offset. Slight changes in either the 
frame synchronization stage or the Doppler detection stage 
could cause a packet decoded well with the receiver without 
the compressor to be decoded poorly with the compressor. 
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Fig. 5. Percentage of separate element outputs that performed better, same, 

and worse after being compressed than the original uncompressed separate 
element outputs. 
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Fig. 6. Percentage of receiver outputs based on taking the mode of element 
outputs that performed better, same, and worse after being compressed than 

the original uncompressed packets. 
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Fig. 7. Percentage of separate element outputs that performed better, same, 

and worse after being compressed than the original uncompressed separate 

element outputs by modifying the receiver with the compressor to determine 

the same data start and Doppler offset as the receiver without the compressor. 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5 4 3 2 1

P
e
rc

e
n

ta
g
e
 o

f 
O

u
tp

u
ts

Quantization Bits, B

Performance Results of Compressor on 

Five-Element Receiver Outputs

Better

Same

Worse

 

Fig. 8. Percentage of receiver outputs based on taking the mode of element 

outputs that performed better, same, and worse after being compressed than 

the original uncompressed packets by modifying the receiver with the 
compressor to determine the same data start and Doppler offset as the 

receiver without the compressor. 

 

 



Interestingly, the reverse effect can also happen, so a packet 
initially decoded poorly without the compressor can be 
decoded well with the compressor solely because the 
quantization noise by chance “corrects” the rece ver  n f nd ng 
where the data starts or what the Doppler offset is. With this 
information, we then modified the receiver with compression 
to fix the data start location and the Doppler offset to the values 
determined by the receiver without compression and reran the 
results. The performance results are shown in Fig. 7 and 8. Fig. 
7 shows results based on treating element outputs of each 
packet separately, and Fig. 8 shows results based on treating 
five-element outputs of each packet as one output. 

From Fig. 7 and 8, there is once again a trend of a higher 
percentage of worse outputs as the number of quantization bits 
is lowered. However, there were no outputs of the receiver 
with compression that perform more than 5% better than their 
corresponding outputs of the receiver without compression. 
Under the assumption that the quantization noise does not 
affect the rece ver’s ab l ty to determ ne where the data starts 
and what the Doppler offset is, the compressor using a 5-bit 
quantizer did not significantly alter the rece ver’s performance 
in decoding the packet. Finally, the five-element receiver 
outputs are just as likely as or more likely to have the same 
performance with the compressor as without the compressor 
than individual element outputs. 

V. CONCLUSION 

Our research has demonstrated that this sonar dataset can 
be compressed from 16 bits to five bits with little to no change 
in bit-error rates using a non-uniform quantizer tuned to the 
distribution of the data, and by shaping the quantization noise 
to frequencies outside the band of interest. We assumed that 
the signal-to-noise ratio is high enough so that the quantization 
noise of the compressor does not cause the receiver to 
significantly change where it determines the data starts and the 
center frequency of each packet. This technique could be 
applied to other types of sonar data so that the required storage 
or bandwidth can be lowered, or so arrays can increase in size 
or fidelity. 
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