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Abstract—We propose two real-time motion smoothing algo-
rithms for video stabilization using a pure 3D rotation motion
model with known camera projection parameters. Both propogd
algorithms aim at smoothing 3D rotation matrix sequences ina
causal way. The first algorithm smooths the 3D rotation sequeces
in a way similar to 1st-order IIR filtering. The second algorithm
uses sequential probabilistic estimation under a constarangular
velocity model. These two algorithms are generalized fromlas-
sical 2D motion smoothing algorithms. We exploit the maniftd
structure of the rotation matrices so that the proposed algathms
directly smooth the 3D rotation sequences on the manifold.n
addition, we introduce a simple projection step in order to
guarantee that no black borders intrude into the stabilizedvideo
frames. Experimental results show that the proposed algothms
are able to effectively stabilize video sequences and outpem
their 2D counterparts with less jitter and distortion.

I. INTRODUCTION
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(2) frame synthesis with 3D camera translation would need
the depth value at every pixel, which is very difficult to
obtain accurately. To estimate the 3D camera rotation we
use a gyroscope that is available in many smart phones and
tablets. Current gyroscopes in smart phones have very high
precision and can return more reliable 3D camera rotation
estimates compared to vision-based camera motion esbimati
especially when there are many moving objects in the scene
or there is severe motion blur or illumination changes.

Under a 3D rotational model, camera motion for a video can
be considered as a sequence of 3D rotation matrices. We pro-
pose two algorithms for real-time 3D rotation smoothing)-ge
eralized from two classical 2D motion smoothing algoritams
The first algorithm smooths the 3D rotation sequence in a
way similar to 1st-order IIR filtering. The second algorithm
works as sequential estimation with a constant angulacitglo

Digital video stabilization seeks to remove the unwantadlodel. We exploit the manifold structure of the rotation

frame-to-frame jitter and generate visually stable andigdat
videos. In general, digital video stabilization consistshoee

matrices so that the proposed algorithms directly smoath th
3D rotation sequences on the manifold.

major steps, namely motion estimation, motion smoothirdy an Due to the camera motion change from motion smoothing,

frame synthesis. This paper focuses on the second step.

some areas in the synthesized frame will be undefined. This is

Given the estimated camera motion for each frame, moti@nown as black border problem. In practice we have to crop
smoothing aims at designing a new smooth camera motithte resulting video frames. Still, in motion smoothing, vexé
path. Most existing works address motion smoothing as @mconstrain the change of camera motion in order to guagante
offline processing after the entire video sequence has bekat no black borders intrude into the stabilized video fam

recorded. However, real-time video stabilization is neaeg

for applications such as video conferencing and broadaasti

Besides, for just video recording, real-time stabilizatican

greatly improve the user experience with the stabilizee¢ogl

This is achieved by adding a projection step for each frame.

Il. RELATED WORK
Camera motion has been commonly modeled using 2D

displayed in real-time on the viewfinders. Real-time videmodels. Using full 3D models including both rotation and
stabilization is also able to reduce the memory requirementanslation for calibrated cameras was first proposed|imifit]

with frames stabilized before compression. In real-tindewoi

further discussed ir_[2]. In both papers complicated approx

stabilization, camera motion is required to be smoothed mmations are used in frame synthesis to handle the problem of
a causal way. This is more difficult than offline motiormissing depth values. Inl[3] and|[4] pure 3D rotational medel
smoothing because we are missing information of how camevare shown to generate high-quality results while only imeged

motion changes afterward.

homography-based warping in frame synthesis.

In this paper, we focus on real-time motion smoothing basedWhether 2D or 3D rotational motion models were used,
on a 3D rotational camera motion model for a calibratesiany (if not most) existing motion smoothing algorithms are
camera. Compared to 2D (translational, similarity, or &ffin offline smoothing. Local Gaussian window filtering was used
motion models, 3D motion models can reflect the real camarader 2D affine model in_[5] and under 3D rotational model
projection more accurately, and thus give more realistiiono in [6]. Another kind of algorithms smooth the camera motion
smoothing and avoid image distortion in frame synthesis. W& minimizing a certain objective function that represetfie
ignore 3D translation of the camera because (1) the unwantdoothness of the camera motion trajectory. Such methods
jitter in videos are primarily caused by camera rotatiord arwere applied on both 2D motion models [7] and 3D rotational



motion models[[B]. Some other work directly smooths the Assume the intrinsic projection matrix of the camera is
feature trajectories instead of camera motign [9]. given asK. Under pure 3D camera rotation, for any pixel

Prior work on real-time motion smoothing was only restrictfuy;, vi;]" in the stabilized framé, its corresponding 2D pixel
ed to 2D motion models. I [10] IIR filtering was proposedocation in the original framéiiy;, 7,;]" can be computed as
for online motion smoothing based on 2D translational mmotio

. In [11], the intentional moti i . Uk
model. In _[ ], t e intentional motion parameters (under Uk _y KRkR,glK‘l vy , 3)
2D translational motion model) were modeled by a constant Ui 1

velocity linear system so Kalman filtering could be used to

optimally estimate them. The same Kalman-filtering motiowhere the function
smoothing framework was extended to 2D affine motion model T -
in [12], leading to a better performance. The black-border 92y, 2]') = [2/2,y/2] )

constraints were rarely considered in online motion smiagth is ysed to convert the homogeneous coordinates into inho-
In [13] the authors first proposed to use constrained Kalmaibgeneous coordinates. Assume that the frame size in the
filtering for 2D translational motion model. original video isw x k, and the coordinates of the top left
corner and bottom right corner of the cropped rectangleén th

I1l. 3D ROTATION AND GEODESICDISTANCE = ; ;
. . ] _ stabilized video ardcy, d1], [ce, d2], the hard constraint for
All of the 3 x 3 rotation matrices constitute the Special;jaq stabilization can be represented as

Orthogonal Groug8O(3), in which any elemenR satisfies

the constrainRR™ = I. SO(3) can be also considered as 0<ag <w v i) 44 a1 Lug; < e
an embedded Riemannian submanifold of Euclidean space | < o <h [ } 5t dy < vy < da
RY (represented a8 x 3 real matrices). A natural extension

of Euclidean distance in Euclidean space to the Riemannidf matter what real-time rotation smoothing method is used,

®)

Vkj

manifold SO(3) is the geodesic distance the estimated smoothed rotation for each frame may vidhate t
T constraint[(b). Therefore, the original rotation estimiates to
dg(Ri, R;) = [[logm(R; R;)|[r, (1)  be projected onto the constraint set. The constraint (5pig v

where lognt.) is the matrix logarithm operator and||  is the complex with respect to the rotation matrices that we want to
Frobenius norm of a matrix. In fact, logiRR;) is a skew- compute and no algorithms as far as we know are guaranteed
symmetric matrix representing a tangent vector in the tangd® handle it efncu?ntly. We propose an simple approximate
spaceTr,SO(3) that indicates the non-normalized directiofPriection method:

fromR; to R; onSO(3). Usually we also write logitR;R ;) R = P(R*) = Rexpn(5*logmR'R*)), (6)
asloggr, R; and name it the logarithmic mapping. Inversely, _ _ _

given a vectok € Tg,SO(3), we can define the exponentiawhere 3* € [0,1] is the maximum possible value so that
mapping asexpg. £ = R;expm(¢), where exprt) is the the projection result satisfies constraint (R).is the original
matrix exponentiél operator. This is used to mdRg along rotation matrix andR* is the initial estimate of the smoothed
the direction defined by on SO(3). The logarithmic mapping rotation matrix. In other words, we only search along the

and exponentia| mapping together define a curve direction defined by the tangent vector |0@ﬁﬂ_11§{*). The
proposed projection returns the exact solution if the cairst
t €[0,1] = 7(t) = expg, (t-logg, R;) , (2)  setis a geodesic ball aroui} which is a good approximation

which is known as the minimizing geodesic froR; to ©f the constraint set15). In practicgi" can be efficiently
R;. It is a generalization of the notion of “straight line” infound by bisection search. During the search, whether the
Euclidean space to Riemannian manifolds, representing fstraint is satisfied can be evaluated only using the four
shortest path between two points on the manifolds. Thelhen%lomer points of the cropped rectangle, becadse (3) is a
of the minimizing geodesic is defined il (1). omography transformation. The projectidd (6) can thus be
implemented very fast. In the following sections we will use
IV. BLACK-BORDERCONSTRAINT AND ESTIMATE it to keep the online smoothing results satisfying the black
PROJECTION border constraint.

In the last step of video stabilization, the synthesized
frames may contain black borders since not every pixel in
the synthesized frame is visible in the original frame due Assuming the 2D motion parameter for each frakrie the
to the change of camera orientation. Therefore, we have @dginal video is@y, 1st-order [IR smoothing calculates the
crop the synthesized frames into a smaller size so that théfeoothed motion parametéy, by
are no black borders. Given a preferred size of the staHilize ; ;
video, the video stabilization sygtem must guarantee trexte Ok = b1+ (1= )b, ™
pixel in the cropped stabilized frames is visible in the ovéd wherea € [0, 1] is the smoothing coefficiené, is a vector in
frames. This is a hard constraint that has to be consideredmulti-dimensional Euclidean space. For instance, if 2Dnaffi
the camera motion smoothing algorithm. motion model is used, the dimension 6f is six. If we

V. ROTATION SMOOTHING VIA |IR FILTERING



use 3D rotational camera motion model, howeVer, (7) is natherew, ~ N(0,Q) is the process noise corresponding to

appropriate because it is defined based on distance measungular acceleratior® is the quaternion multiplication and the

in Euclidean space instead 8f0(3) manifold. In fact, the functiong(wy_1) is used to convett_; to a unit-quaternion-

weighted sum on the right hand side [of (7) does not necegsariépresented rotation. If the 3D rotation is represented atyim

return a valid 3D rotation matrix. ces theny,—1 ® q(wr—1) is equivalent toR ,_expmwy_1).
The 1st-order IR filtering in({[7), however, can be interpet The measurement model is then

in another way as -
Y = a ® q(vi), (12)

wherev, ~ N (0, R) is the measurement noise agg is the
. ) ] ) . original camera rotation for framk. The system defined by
In other wordsg;; is a linear interpolation betweef),—, and ) and [(I]1) is actually defined based on geodesic distance
6 based on Euclidean distance. Given the geodesic dista%eso(:s) and can be considered as a “linear” system on
defined onSO(3), we can naturally extendl(8) as the manifold though linearity is not defined on manifolds.

R, — mad (R.Re )2+ (1—a)d.(R.R.)2. (9 However, so farthere is no efficient iterative algorithmatve

e = argmin ady (R, Ry—1)” + (1= a)dy (R, Re)™ - O) o imation problem for such system exactly. In pragtice

can solve the estimation problem on its embedded Euclidean
ce. In Euclidean space the system is clearly nonlinear.
his paper we use unscented Kalman filtering (UKF) to
; . i .~ solve the problem. UKF picks a minimal set of sample points
(slerp) on unit quaternion representation of 3D rotatiorrina sigma poiF;ns) to represeir)n the posterior probability stt;e
ces [14], which can be computed very fast. The interpolati(é/n ctor and propagate them through the non-linear dynandc an
result for every frame is_projected biyl (6) before being u.sen("?easurement functions, from which the mean and covariance
for the next frame. Algorithrl]1 shows the proposed ”R'“k%f the estimate are therlu recovered. The UKF usually outper-
3D rotation smoothing. We use unit quaternions to repres%gt y

the 3D rotations instead of matrices, but the represemistio fms gxtend_ed Kalman filter (E}.(F) for squen'ual nonllngar
. estimation with a small increase in computational comyexi
can be easily converted from one to the other.

More details of UKF can be found in [15].
We summarize the proposed UKF-based rotation smoothing
algorithm in Algorithm[2.

0, = argmin o6 — Or_1|>+ (1 —a)||6—6.]>. (8

This is just a linear interpolation betwedd,_; and Ry, on
SO(3) based on the geodesic distance. It has been show tﬁ%ﬁ
such interpolation is equivalent to spherical linear iptédation

Algorithm 1 1IR-like 3D Rotation Smoothing

1: Input: qi,---,qx (original rotations)
2: Output: Gu,---, gk (smoothed rotations) Algorithm 2 UKF-based 3D Rotation Smoothing
3: ?1 2‘31% X d 1: Input: qi1,--- ,qx (original rotations)
4: orA B | 0 9 2: Output: q1,---,qx (smoothed rotations)
5. Qi = slerp(qy, qr—1, ) 3: Parameters: Q, R (process and measurement noise vari-
6: qr < P(qk) ance)
7: end for 4: for k=1to K do
5. Obtain unconstrained UKF estimadg, @y, Pk
6: Qi< ¢ g normalization
VI. ROTATION SMOOTHING VIA UNSCENTEDKALMAN . gi - ;’Eég?km ( )
FILTERING 8 (Mean and covariance estimate to pass to the next stage

A constant-velocity model defines the motion parameters — areq, wg, Pi)
and their velocities as state variables. The velocities aré end for
assumed to be constant in propagation except for a small
random acceleration (usually modeled as Gaussian noise). VIl. PARAMETER SELECTION
The measurements are the original motion parameters and th

smoothed parameters are just the estimated states. For 2D mf‘ow fo select the parameters for the proposed online mo-

tions, a linear system is sufficient to model the dynamics a|11'8n smpothlng algorithms is |mp0rtanF. For ||R-I|ke_rotnt .
moothing, the only parameter to tune is the smoothing weigh

measurements so state estimate can be obtained precit uss . 2 .
precisigly in Algorithm[d. Clearly largery generates smoother rotation

Kalman filtering (assuming independent Gaussian process ah . .
g( 9 P P uences without the black-border constraint. Howeots; r

measurement noise). Here we use the same idea to deSiqSlrin smoothing with larget deviates farther from the original
constant-velocity model for 3D rotation. Similarly, theatst 9 9 9

camera motion, and thus triggers estimate projection iti&ec

variable for each stage (frame) consists of the 3D rotatiwh : .
the angular velocity. We still use unit quaternion représgon atM more .frfaquently. The constr_aunts are actually (_jeterrmne
by the original (unsmooth) rotation and therefore differoss

of 3D rotations. The dynamic model is different frames. Frequent estimate projection may add the
Qe | _ |dr-1® q(wi—1) (10) unwanted camera shake back and reduce the smoothness of
Wk—1 + Wg ’ the rotation smoothing output. In the following experimgent

Wi



we fix thea = 0.95 if not mentioned, which does not triggers 0t

estimate projection very often. I
For the UKF-based rotation smoothing we need to choose °3/1 _ _ Original yaw
the process and measurement noise covarighemdR. We ~—— Smoothed pitch| |\ /
. . . . —~ 92j| —— Smoothed roll ! ;
smooth the test videos with the recent proposed offlineiootat e smoothedyaw | |\ |
smoothing method [16] and use the results as the ground truth ¢ o
of the intentional (smooth) camera motion. The measurement &
noise covarianc® can then be learned from the differences g
between the original and the smoothed rotation sequences. &
We fix R as diag(0.002, 0.002, 0.002). The process noise !
covarianceQ reflects the expected angular acceleration range or '
and works similarly asy in the IIR-like rotation smoothing. s ‘ ‘ ‘ ‘ ‘ ‘ ‘
We fix Q as diag(3e-10, 3e-10, 3e-10) to reach a balance R

between smoothness and less frequent estimate projectionkig. 3. Comparison of the original and the smoothed camesioa using
the proposed IIR-like rotation smoothing algorithm for e@dno. 2.

VIIl. EXPERIMENTAL RESULTS
TABLE |

We show the video stabilization results on two realNumerIcAL COMPARISON BETWEEN ORIGNAL AND SMOOTHED VIDEOS
videos. We refer the readers to the webpage of this paper

(http://users.ece.utexas.edbévans/papers/2014/stabilizationl) Video no. 1 |
; i ; ; < mean angular velocity | mean angular acceleratiop

to view the original wdgos and all our results. Both vide S Unsmoothed 00328 00770

are captgred by a V\{alkl_ng person with Nexus S smartphoR§r smoothing | 0.00730 0.00408

The original frame size 1820 x 480 and we use &40 x 360 UKF smoothing | 0.00957 0.00413

cropping size for the stabilized video. The camera rotaison Video no. 2

obtained by integrating the gyroscope readings after sensa mean angular velocity | mean angular acceleratiop
libration. Fig[l and Fid.]2 show a comparison between t gnsmoothed 0.0293 0.0256

calit - F1g a : p °N 9R smoothing | 0.00805 0.00331

original and the stabilized videos by the proposed algor#th [UKF smoothing | 0.00884 0.00303

We use feature trajectories as a visualization of the cantis
frames. We detect feature points in a certain frame and traglere are always wavy distortion because of the inaccuracy
them for 20 frames. The feature trajectories are plotted @sthe motion model. This distortion cannot be found in the
black curves on top of the starting frame (the frame is ptbttetabilized videos using 3D rotational model.
using alpha channel 0.5 (more transparent) to make the gurve
clearer). Both proposed algorithms are able to effectiveﬁl IR vs. UKF
smooth the feature trajectories. Note that we detect amtf tra The IIR-based and UKF-based methods have long been
the feature points independently in the videos so the lopatiused to smooth 2D camera motion sequences (for 2D models
and number of the feature points can be different. the constant-velocity-based smoothing is solved via Kalma
We compare original and smoothed camera rotation usifiliering instead of UKF because the system is linear). Both
the proposed IIR-like smoothing algorithm for video no. 2 imlgorithms have been shown to effectively smooth camera
Fig. [3. In this figure, the camera rotation corresponding tootion in real time.. In terms of computational speed, the
each frame in the video sequence is shown in the form BR-like smoothing algorithm is much faster. With MATLAB
Tait-Bryan angles. Note that, however, our motion smoathinmplementation on a 2.3GHz Intel i5 processor machine, the
is performed directly on the manifol8O(3) instead of the IIR-like smoothing algorithm takes only 1.54ms/frame wehil
Euclidean space of rotation angle representations. the UKF-based smoothing algorithm takes 6.97ms/frame.
To evaluate the the video stabilization algorithms numeri- If there are abrupt changes in the intentional camera motion
cally we compare the mean éf norm of the angular velocity the UKF-based method tends to perform better with less
and acceleration of the rotation sequences. The numerifralguent triggering of estimate projection. The reasorhd t

comparison is shown in Tab[& . in UKF-based smoothing algorithm we only assume that
] ] ) ) the angular velocity is almost constant, not that the arrgula
A. Comparison Against 2D motion Smoothing velocity is almost zero. By estimating the angular velocity

We compare the proposed 3D rotational real-time motidngether with the smoothed rotation, we can better keefx trac
smoothing algorithms with existing 2D motion smoothingf the change in intentional camera motion. In this Tdble I
algorithms. Compared to 2D models, the 3D rotational modek compare the two algorithms for video no. 2, in which
can reflect the real camera motion more accurately and sestittere is a sudden change (panning) of the intentional camera
in smoother results. Fid. 4 shows a comparison of featuratation. To make a fair comparison we tune the parameter
trajectories between the proposed IIR-like rotation sthimgt in the IIR-like smoothing algorithm from 0.95 to 0.9 so that
and IIR motion smoothing with 2D affine model (both usingt triggers the same times of estimate projection as theutdtefa
a = 0.95). In the stabilized videos using 2D affine modeUKF-based smoothing algorithm. We can find that under the


http://users.ece.utexas.edu/~bevans/papers/2014/stabilization/

(a) Original video (b) Proposed IIR-like smoothing (c) Proposed UKF-based smoothing

Fig. 1. Stabilization comparison for video no. 1. Featunesteacked from frame 31 to frame 50.

@ Original video (b) Propdéed IIR-like smoothing (c) Proposed URF-based smoothing

Al

- ]
Fig. 2. Stabilization comparison for video no. 2. Featunesteacked from frame 46 to frame 65.
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