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Abstract—We propose two real-time motion smoothing algo-
rithms for video stabilization using a pure 3D rotation motion
model with known camera projection parameters. Both proposed
algorithms aim at smoothing 3D rotation matrix sequences ina
causal way. The first algorithm smooths the 3D rotation sequences
in a way similar to 1st-order IIR filtering. The second algorithm
uses sequential probabilistic estimation under a constantangular
velocity model. These two algorithms are generalized from clas-
sical 2D motion smoothing algorithms. We exploit the manifold
structure of the rotation matrices so that the proposed algorithms
directly smooth the 3D rotation sequences on the manifold. In
addition, we introduce a simple projection step in order to
guarantee that no black borders intrude into the stabilizedvideo
frames. Experimental results show that the proposed algorithms
are able to effectively stabilize video sequences and outperform
their 2D counterparts with less jitter and distortion.

I. I NTRODUCTION

Digital video stabilization seeks to remove the unwanted
frame-to-frame jitter and generate visually stable and pleasant
videos. In general, digital video stabilization consists of three
major steps, namely motion estimation, motion smoothing and
frame synthesis. This paper focuses on the second step.

Given the estimated camera motion for each frame, motion
smoothing aims at designing a new smooth camera motion
path. Most existing works address motion smoothing as an
offline processing after the entire video sequence has been
recorded. However, real-time video stabilization is necessary
for applications such as video conferencing and broadcasting.
Besides, for just video recording, real-time stabilization can
greatly improve the user experience with the stabilized videos
displayed in real-time on the viewfinders. Real-time video
stabilization is also able to reduce the memory requirements
with frames stabilized before compression. In real-time video
stabilization, camera motion is required to be smoothed in
a causal way. This is more difficult than offline motion
smoothing because we are missing information of how camera
motion changes afterward.

In this paper, we focus on real-time motion smoothing based
on a 3D rotational camera motion model for a calibrated
camera. Compared to 2D (translational, similarity, or affine)
motion models, 3D motion models can reflect the real camera
projection more accurately, and thus give more realistic motion
smoothing and avoid image distortion in frame synthesis. We
ignore 3D translation of the camera because (1) the unwanted
jitter in videos are primarily caused by camera rotation, and

(2) frame synthesis with 3D camera translation would need
the depth value at every pixel, which is very difficult to
obtain accurately. To estimate the 3D camera rotation we
use a gyroscope that is available in many smart phones and
tablets. Current gyroscopes in smart phones have very high
precision and can return more reliable 3D camera rotation
estimates compared to vision-based camera motion estimation,
especially when there are many moving objects in the scene
or there is severe motion blur or illumination changes.

Under a 3D rotational model, camera motion for a video can
be considered as a sequence of 3D rotation matrices. We pro-
pose two algorithms for real-time 3D rotation smoothing, gen-
eralized from two classical 2D motion smoothing algorithms.
The first algorithm smooths the 3D rotation sequence in a
way similar to 1st-order IIR filtering. The second algorithm
works as sequential estimation with a constant angular velocity
model. We exploit the manifold structure of the rotation
matrices so that the proposed algorithms directly smooth the
3D rotation sequences on the manifold.

Due to the camera motion change from motion smoothing,
some areas in the synthesized frame will be undefined. This is
known as black border problem. In practice we have to crop
the resulting video frames. Still, in motion smoothing, we have
to constrain the change of camera motion in order to guarantee
that no black borders intrude into the stabilized video frames.
This is achieved by adding a projection step for each frame.

II. RELATED WORK

Camera motion has been commonly modeled using 2D
models. Using full 3D models including both rotation and
translation for calibrated cameras was first proposed in [1]and
further discussed in [2]. In both papers complicated approxi-
mations are used in frame synthesis to handle the problem of
missing depth values. In [3] and [4] pure 3D rotational models
were shown to generate high-quality results while only needing
homography-based warping in frame synthesis.

Whether 2D or 3D rotational motion models were used,
many (if not most) existing motion smoothing algorithms are
offline smoothing. Local Gaussian window filtering was used
under 2D affine model in [5] and under 3D rotational model
in [6]. Another kind of algorithms smooth the camera motion
via minimizing a certain objective function that represents the
smoothness of the camera motion trajectory. Such methods
were applied on both 2D motion models [7] and 3D rotational



motion models [8]. Some other work directly smooths the
feature trajectories instead of camera motion [9].

Prior work on real-time motion smoothing was only restrict-
ed to 2D motion models. In [10] IIR filtering was proposed
for online motion smoothing based on 2D translational motion
model. In [11], the intentional motion parameters (under
2D translational motion model) were modeled by a constant
velocity linear system so Kalman filtering could be used to
optimally estimate them. The same Kalman-filtering motion
smoothing framework was extended to 2D affine motion model
in [12], leading to a better performance. The black-border
constraints were rarely considered in online motion smoothing.
In [13] the authors first proposed to use constrained Kalman
filtering for 2D translational motion model.

III. 3D ROTATION AND GEODESICDISTANCE

All of the 3 × 3 rotation matrices constitute the Special
Orthogonal GroupSO(3), in which any elementR satisfies
the constraintRRT = I. SO(3) can be also considered as
an embedded Riemannian submanifold of Euclidean space
R

9 (represented as3 × 3 real matrices). A natural extension
of Euclidean distance in Euclidean space to the Riemannian
manifoldSO(3) is the geodesic distance

dg(Ri,Rj) = ||logm(RT
iRj)||F , (1)

where logm(·) is the matrix logarithm operator and||·||F is the
Frobenius norm of a matrix. In fact, logm(RT

iRj) is a skew-
symmetric matrix representing a tangent vector in the tangent
spaceTRi

SO(3) that indicates the non-normalized direction
fromRi to Rj onSO(3). Usually we also write logm(R′

iRj)
as logRi

Rj and name it the logarithmic mapping. Inversely,
given a vectorξ ∈ TRi

SO(3), we can define the exponential
mapping asexpRi

ξ = Riexpm(ξ), where expm(·) is the
matrix exponential operator. This is used to moveRi along
the direction defined byξ onSO(3). The logarithmic mapping
and exponential mapping together define a curve

t ∈ [0, 1] 7→ γ(t) = exp
Ri

(

t · log
Ri

Rj

)

, (2)

which is known as the minimizing geodesic fromRi to
Rj . It is a generalization of the notion of “straight line” in
Euclidean space to Riemannian manifolds, representing the
shortest path between two points on the manifolds. The length
of the minimizing geodesic is defined in (1).

IV. B LACK -BORDER CONSTRAINT AND ESTIMATE

PROJECTION

In the last step of video stabilization, the synthesized
frames may contain black borders since not every pixel in
the synthesized frame is visible in the original frame due
to the change of camera orientation. Therefore, we have to
crop the synthesized frames into a smaller size so that there
are no black borders. Given a preferred size of the stabilized
video, the video stabilization system must guarantee that every
pixel in the cropped stabilized frames is visible in the original
frames. This is a hard constraint that has to be considered in
the camera motion smoothing algorithm.

Assume the intrinsic projection matrix of the camera is
given asK. Under pure 3D camera rotation, for any pixel
[ukj , vkj ]

T in the stabilized framek, its corresponding 2D pixel
location in the original frame[ũkj , ṽkj ]

T can be computed as

[

ũkj

ṽkj

]

= g



KRkR̂
−1

k K−1





ukj

vkj
1







 , (3)

where the function

g([x, y, z]T) = [x/z, y/z]T (4)

is used to convert the homogeneous coordinates into inho-
mogeneous coordinates. Assume that the frame size in the
original video isw × h, and the coordinates of the top left
corner and bottom right corner of the cropped rectangle in the
stabilized video are[c1, d1], [c2, d2], the hard constraint for
video stabilization can be represented as

{

0 ≤ ũkj ≤ w

0 ≤ ṽkj ≤ h
, ∀

[

ukj

vkj

]

s.t.

{

c1 ≤ ukj ≤ c2

d1 ≤ vkj ≤ d2
(5)

No matter what real-time rotation smoothing method is used,
the estimated smoothed rotation for each frame may violate the
constraint (5). Therefore, the original rotation estimatehas to
be projected onto the constraint set. The constraint (5) is very
complex with respect to the rotation matrices that we want to
compute and no algorithms as far as we know are guaranteed
to handle it efficiently. We propose an simple approximate
projection method:

R̂ = P(R̂∗) = Rexpm(β∗logm(R−1R̂∗)), (6)

where β∗ ∈ [0, 1] is the maximum possible value so that
the projection result satisfies constraint (5).R is the original
rotation matrix andR̂∗ is the initial estimate of the smoothed
rotation matrix. In other words, we only search along the
direction defined by the tangent vector logm(R−1R̂∗). The
proposed projection returns the exact solution if the constraint
set is a geodesic ball aroundR, which is a good approximation
of the constraint set (5). In practice,β∗ can be efficiently
found by bisection search. During the search, whether the
constraint is satisfied can be evaluated only using the four
corner points of the cropped rectangle, because (3) is a
homography transformation. The projection (6) can thus be
implemented very fast. In the following sections we will use
it to keep the online smoothing results satisfying the black-
border constraint.

V. ROTATION SMOOTHING VIA IIR FILTERING

Assuming the 2D motion parameter for each framek in the
original video isθk, 1st-order IIR smoothing calculates the
smoothed motion parameterθ̂k by

θ̂k = αθ̂k−1 + (1− α)θk, (7)

whereα ∈ [0, 1] is the smoothing coefficient.θk is a vector in
multi-dimensional Euclidean space. For instance, if 2D affine
motion model is used, the dimension ofθk is six. If we



use 3D rotational camera motion model, however, (7) is not
appropriate because it is defined based on distance measure
in Euclidean space instead ofSO(3) manifold. In fact, the
weighted sum on the right hand side of (7) does not necessarily
return a valid 3D rotation matrix.

The 1st-order IIR filtering in (7), however, can be interpreted
in another way as

θ̂k = argmin
θ

α||θ − θ̂k−1||
2 + (1 − α)||θ − θk||

2. (8)

In other words,̂θk is a linear interpolation between̂θk−1 and
θk based on Euclidean distance. Given the geodesic distance
defined onSO(3), we can naturally extend (8) as

R̂k = argmin
R

αdg(R, R̂k−1)
2 + (1− α)dg(R,Rk)

2. (9)

This is just a linear interpolation between̂Rk−1 andRk on
SO(3) based on the geodesic distance. It has been show that
such interpolation is equivalent to spherical linear interpolation
(slerp) on unit quaternion representation of 3D rotation matri-
ces [14], which can be computed very fast. The interpolation
result for every frame is projected by (6) before being used
for the next frame. Algorithm 1 shows the proposed IIR-like
3D rotation smoothing. We use unit quaternions to represent
the 3D rotations instead of matrices, but the representations
can be easily converted from one to the other.

Algorithm 1 IIR-like 3D Rotation Smoothing
1: Input: q1, · · · ,qK (original rotations)
2: Output: q̂1, · · · , q̂K (smoothed rotations)
3: q̂1 = q1

4: for k = 2 to K do
5: q̂k = slerp(qk, q̂k−1, α)
6: q̂k ← P(q̂k)
7: end for

VI. ROTATION SMOOTHING VIA UNSCENTEDKALMAN

FILTERING

A constant-velocity model defines the motion parameters
and their velocities as state variables. The velocities are
assumed to be constant in propagation except for a small
random acceleration (usually modeled as Gaussian noise).
The measurements are the original motion parameters and the
smoothed parameters are just the estimated states. For 2D mo-
tions, a linear system is sufficient to model the dynamics and
measurements so state estimate can be obtained precisely using
Kalman filtering (assuming independent Gaussian process and
measurement noise). Here we use the same idea to design a
constant-velocity model for 3D rotation. Similarly, the state
variable for each stage (frame) consists of the 3D rotation and
the angular velocity. We still use unit quaternion representation
of 3D rotations. The dynamic model is

[

qk

ωk

]

=

[

qk−1 ⊗ q(ωk−1)
ωk−1 +wk

]

, (10)

wherewk ∼ N (0,Q) is the process noise corresponding to
angular acceleration.⊗ is the quaternion multiplication and the
functionq(ωk−1) is used to convertωk−1 to a unit-quaternion-
represented rotation. If the 3D rotation is represented by matri-
ces thenqk−1 ⊗ q(ωk−1) is equivalent toRk−1expm(ωk−1).
The measurement model is then

q̃k = qk ⊗ q(vk), (11)

wherevk ∼ N (0,R) is the measurement noise andq̃k is the
original camera rotation for framek. The system defined by
(10) and (11) is actually defined based on geodesic distance
on SO(3) and can be considered as a ”linear” system on
the manifold though linearity is not defined on manifolds.
However, so far there is no efficient iterative algorithm to solve
the estimation problem for such system exactly. In practice, we
can solve the estimation problem on its embedded Euclidean
space. In Euclidean space the system is clearly nonlinear.
In this paper we use unscented Kalman filtering (UKF) to
solve the problem. UKF picks a minimal set of sample points
(sigma points) to represent the posterior probability of the state
vector and propagate them through the non-linear dynamic and
measurement functions, from which the mean and covariance
of the estimate are then recovered. The UKF usually outper-
forms extended Kalman filter (EKF) for sequential nonlinear
estimation with a small increase in computational complexity.
More details of UKF can be found in [15].

We summarize the proposed UKF-based rotation smoothing
algorithm in Algorithm 2.

Algorithm 2 UKF-based 3D Rotation Smoothing
1: Input: q1, · · · ,qK (original rotations)
2: Output: q̂1, · · · , q̂K (smoothed rotations)
3: Parameters:Q, R (process and measurement noise vari-

ance)
4: for k = 1 to K do
5: Obtain unconstrained UKF estimatêqk, ω̂k, Pk

6: q̂k ← q̂k/||q̂k||2 (normalization)
7: q̂k ← P(q̂k)
8: (Mean and covariance estimate to pass to the next stage

are q̂k, ω̂k, Pk)
9: end for

VII. PARAMETER SELECTION

How to select the parameters for the proposed online mo-
tion smoothing algorithms is important. For IIR-like rotation
smoothing, the only parameter to tune is the smoothing weight
α in Algorithm 1. Clearly largerα generates smoother rotation
sequences without the black-border constraint. However, rota-
tion smoothing with largerα deviates farther from the original
camera motion, and thus triggers estimate projection in Section
IV more frequently. The constraints are actually determined
by the original (unsmooth) rotation and therefore differ across
different frames. Frequent estimate projection may add the
unwanted camera shake back and reduce the smoothness of
the rotation smoothing output. In the following experiments,



we fix theα = 0.95 if not mentioned, which does not triggers
estimate projection very often.

For the UKF-based rotation smoothing we need to choose
the process and measurement noise covarianceQ andR. We
smooth the test videos with the recent proposed offline rotation
smoothing method [16] and use the results as the ground truth
of the intentional (smooth) camera motion. The measurement
noise covarianceR can then be learned from the differences
between the original and the smoothed rotation sequences.
We fix R as diag(0.002, 0.002, 0.002). The process noise
covarianceQ reflects the expected angular acceleration range
and works similarly asα in the IIR-like rotation smoothing.
We fix Q as diag(3e-10, 3e-10, 3e-10) to reach a balance
between smoothness and less frequent estimate projection.

VIII. E XPERIMENTAL RESULTS

We show the video stabilization results on two real
videos. We refer the readers to the webpage of this paper
(http://users.ece.utexas.edu/∼bevans/papers/2014/stabilization/)
to view the original videos and all our results. Both videos
are captured by a walking person with Nexus S smartphone.
The original frame size is720× 480 and we use a540× 360
cropping size for the stabilized video. The camera rotationis
obtained by integrating the gyroscope readings after sensor
calibration. Fig. 1 and Fig. 2 show a comparison between the
original and the stabilized videos by the proposed algorithms.
We use feature trajectories as a visualization of the continuous
frames. We detect feature points in a certain frame and track
them for 20 frames. The feature trajectories are plotted as
black curves on top of the starting frame (the frame is plotted
using alpha channel 0.5 (more transparent) to make the curves
clearer). Both proposed algorithms are able to effectively
smooth the feature trajectories. Note that we detect and track
the feature points independently in the videos so the location
and number of the feature points can be different.

We compare original and smoothed camera rotation using
the proposed IIR-like smoothing algorithm for video no. 2 in
Fig. 3. In this figure, the camera rotation corresponding to
each frame in the video sequence is shown in the form of
Tait-Bryan angles. Note that, however, our motion smoothing
is performed directly on the manifoldSO(3) instead of the
Euclidean space of rotation angle representations.

To evaluate the the video stabilization algorithms numeri-
cally we compare the mean ofL1 norm of the angular velocity
and acceleration of the rotation sequences. The numerical
comparison is shown in Table I.

A. Comparison Against 2D motion Smoothing

We compare the proposed 3D rotational real-time motion
smoothing algorithms with existing 2D motion smoothing
algorithms. Compared to 2D models, the 3D rotational model
can reflect the real camera motion more accurately and results
in smoother results. Fig. 4 shows a comparison of feature
trajectories between the proposed IIR-like rotation smoothing
and IIR motion smoothing with 2D affine model (both using
α = 0.95). In the stabilized videos using 2D affine model

0 50 100 150 200 250 300 350
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

frame index

R
ot

at
io

n 
an

gl
e 

(r
ad

s)

 

 
Original pitch

Original roll

Original yaw

Smoothed pitch

Smoothed roll

Smoothed yaw

Fig. 3. Comparison of the original and the smoothed camera rotation using
the proposed IIR-like rotation smoothing algorithm for video no. 2.

TABLE I
NUMERICAL COMPARISON BETWEEN ORIGNAL AND SMOOTHED VIDEOS

Video no. 1

mean angular velocity mean angular acceleration
Unsmoothed 0.0328 0.0270
IIR smoothing 0.00730 0.00408
UKF smoothing 0.00957 0.00413

Video no. 2

mean angular velocity mean angular acceleration
Unsmoothed 0.0293 0.0256
IIR smoothing 0.00805 0.00331
UKF smoothing 0.00884 0.00303

there are always wavy distortion because of the inaccuracy
of the motion model. This distortion cannot be found in the
stabilized videos using 3D rotational model.

B. IIR vs. UKF

The IIR-based and UKF-based methods have long been
used to smooth 2D camera motion sequences (for 2D models
the constant-velocity-based smoothing is solved via Kalman
filtering instead of UKF because the system is linear). Both
algorithms have been shown to effectively smooth camera
motion in real time.. In terms of computational speed, the
IIR-like smoothing algorithm is much faster. With MATLAB
implementation on a 2.3GHz Intel i5 processor machine, the
IIR-like smoothing algorithm takes only 1.54ms/frame while
the UKF-based smoothing algorithm takes 6.97ms/frame.

If there are abrupt changes in the intentional camera motion,
the UKF-based method tends to perform better with less
frequent triggering of estimate projection. The reason is that
in UKF-based smoothing algorithm we only assume that
the angular velocity is almost constant, not that the angular
velocity is almost zero. By estimating the angular velocity
together with the smoothed rotation, we can better keep track
of the change in intentional camera motion. In this Table II
we compare the two algorithms for video no. 2, in which
there is a sudden change (panning) of the intentional camera
rotation. To make a fair comparison we tune the parameterα
in the IIR-like smoothing algorithm from 0.95 to 0.9 so that
it triggers the same times of estimate projection as the default
UKF-based smoothing algorithm. We can find that under the

http://users.ece.utexas.edu/~bevans/papers/2014/stabilization/


(a) Original video (b) Proposed IIR-like smoothing (c) Proposed UKF-based smoothing

Fig. 1. Stabilization comparison for video no. 1. Features are tracked from frame 31 to frame 50.

(a) Original video (b) Proposed IIR-like smoothing (c) Proposed UKF-based smoothing

Fig. 2. Stabilization comparison for video no. 2. Features are tracked from frame 46 to frame 65.

(a) 2D affine smoothing (b) 3D rotational smoothing

Fig. 4. Stabilization comparison for video no. 2 between 2D affine smoothing
and 3D rotational smoothing. Features are tracked from frame 246 to 265.

TABLE II
NUMERICAL COMPARISON BETWEENIIR-LIKE AND UKF-BASED

ROTATION SMOOTHING ALGORITHMS FOR VIDEO NO. 2

mean angular velocity mean angular acceleration
IIR smoothing 0.01020 0.00367
UKF smoothing 0.00884 0.00303

same times of estimate projection the UKF-based smoothing
algorithm generates a smoother rotation sequence.

IX. CONCLUSIONS

In this paper we propose two real-time motion smoothing
algorithms for video stabilization using a pure 3D rotation
motion model. Both algorithms directly smooth the 3D rota-
tion sequences on theSO(3) manifold. The first algorithm is
similar to 1st-order IIR filtering and requires only one slerp
step for each frame. The second algorithm assumes a constant
angular velocity model of the smooth rotation sequences and
obtain the smooth rotation matrix for each frame via sequential
probabilistic estimation. The estimation problem is solved
efficiently using unscented Kalman filter. We also add a simple
projection step to guarantee that no black borders intrude
into the stabilized video frames. We have demonstrated in
experiments that our algorithms are very fast and can generate
better video stabilization results than their 2D counterparts.
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