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Abstract—Natural Scene Statistics (NSS) has been ap-

plied to natural images obtained through optical cameras

for automated visual quality assessment. Since NSS does

not need a reference image for comparison, NSS has

been used to assess user quality-of-experience, such as for

streaming wireless image and video content acquired by

cameras. In this paper, we take an important first step in

using NSS to automate visual quality assessment of syn-

thetic images found in video games and animated movies.

In particular, we analyze NSS for synthetic images in the

spatial domain using mean-subtracted-contrast-normalized

(MSCN) pixels and their gradients. The primary con-

tributions of this paper are (1) creation of a publicly

available ESPL Synthetic Image database, containing 221

color images, mostly in high definition resolution of 1920

⇥ 1080, and (2) analysis of the statistical distributions of

the MSCN coefficients (and their gradients) for synthetic

images, obtained from the image intensities. We find that

similar to the case for natural images, the distributions

of the MSCN pixels for synthetic images can be modeled

closely by Generalized Gaussian and Symmetric ↵-Stable

distributions, with slightly different shape and scale pa-

rameters.

Index Terms—Natural Scene Statistics, Mean subtract

contrast normalization, log contrast, Generalized Gaussian

Distribution, Symmetric ↵-Stable

I. INTRODUCTION

Recent years have seen a huge growth in the acquisi-
tion, transmission, and storage of videos. In addition to
videos captured with optical cameras, video traffic also
consists of synthetic scenes, such as animated movies,
cartoons and video games. The burgeoning popularity of
multiplayer video games (esp. on handheld platforms)
is causing an exponential increase in synthetic video
traffic. In all these cases, the ultimate goal is to provide
the viewers with a satisfactory quality-of-experience. For
video frames and other still images, many objective qual-
ity metrics for quality-of-experience have been proposed.

Full-reference image quality assessment metrics quan-
tify the distortions present in an image, in comparison
to a reference “pristine” image. However, this approach
is rendered unusable in applications where the ground-
truth reference image is not available. For these cases,
blind or no-reference image quality assessment metrics
are better suited, where, the only information available
is the distorted image. The no-reference algorithms are
primarily based on studying the overall statistical prop-
erties possessed by the pristine images, which for natural
images tend to appear irrespective of the image content,

and are based on the assumption that distortions tend
to deviate the Natural Scene Statistics (NSS). [1], [2],
[3] are some of the best performing no-reference image
quality metrics for natural images.

However, these metrics for evaluating the quality of
natural images have not been studied in the context of
images generated using computer graphics. Compared to
natural images, no-reference quality evaluation of com-
puter graphics images is even more important, because
of the non-availability of the ground truth. It has been
mentioned in literature that both computer graphics and
image distortions tend to deviate the statistics from NSS
[3]; however, the extent to which computer graphics
images deviate from their natural counterparts has not
been explicitly quantified. Also, the deviation in “natu-
ralness” caused by the distortions can be very different
from the way computer graphics deviates properties of
natural scenes. In fact, with the improvement of ren-
dering technology, rendered images are becoming more
and more photo-realistic, which has made us believe that
with some adjustments, the NSS models can potentially
be applied in the domain of computer graphics with
some modifications. A body of work aims at detecting
synthetic images from natural ones, primarily applied in
forgery detection [4], but dedicated learning of the scene
statistics for detecting distortions in synthetic images is
relatively new. [5] proposes a machine learning based
no-reference metric for quantifying rendering distortions,
but in this case, the features were chosen rather heuristi-
cally, instead of analyzing the properties of the synthetic
images under test.

II. DATABASE OF SYNTHETIC IMAGES

Getting access to a substantial number of images
is crucial for the development of any learning based
quality evaluation scheme, and the performance of the
metrics tend to become better with the availability of
more training data. For the purpose of this study, 221
synthetic images have been chosen from video games
and animated movies, which reflect sufficient diversity
in the image content. We collected these images in the
ESPL Synthetic Image Database [6]. These high quality
color images from the Internet are mostly 1920⇥1080
pixels in size. Some video games which were considered
were multiplayer role playing games (such as War of
Warcraft), first person shooter games (such as Counter



Strike), motorcycle and car racing games, and games
with more realistic content (such as FIFA). Some of the
animated movies, from which the images were collected,
are, The Lion King, the Tinkerbell series, Avatar, The
Beauty and the Beast, Monster series, Ratatouille, the
Cars series etc. 1

Care has been taken to provide as varied a range of
images as possible, by incorporating both natural and
non-photorealistic renderings of human figures, man-
made objects, fantasy figures like fairies, and monsters,
close up shots, wide angle shots, images showing both
high and low degrees of color saturation, background
textures with no foreground object etc. Fig. 1 shows a
subset of the images considered.

We generated several categories of distorted images
from the pristine images for the ESPL Synthetic Image
Database, such as images containing high frequency
noise, ringing, aliasing and banding artifacts, Gaussian
blurring, JPEG blocking artifacts, and artifacts due to
overtly saturated colors. However, as the premise of this
paper is analyzing the statistics of undistorted synthetic
images, detailed description of the methods of generating
the artifacts have been omitted.

III. SPATIAL DOMAIN NATURAL SCENE STATISTICS

Previous work has quantified NSS both in the spatial
domain and transform domains, such as using wavelets
or DCT. For this preliminary work, only spatial domain
features of natural scenes are considered. One of the
earliest attempts at quantifying the statistical properties
of the distribution of the natural images in the spatial
domain can be found in [7]. The author verified the
scale invariant properties of natural images. Since the
natural images belong to a very special category of 2D
signals, they possess unique properties which tend to
appear irrespective of image content.

A. Mean Subtracted Contrast Normalized Image Patches

As in [3], the pixels of the image are preprocessed by
mean subtraction and divisive normalization. Let M⇥N

be the dimension of the image I , I(i, j) be the pixel
value in the (i, j)-th spatial location, i 2 {1, 2, ..,M},
j 2 {1, 2, ..., N}. The mean subtracted contrast normal-
ized (MSCN) image values are generated by

Î(i, j) =
I(i, j)� µ(i, j)

�(i, j) + 1
(1)

where the local mean µ(i, j) and standard deviation
�(i, j) are defined as:

µ(i, j) =
k=KX

k=�K

l=LX

l=�L

w

k,l

I(i+ k, j + l) (2)

1All images are copyright of their rightful owners, and the authors
do not claim ownership. No copyright infringement is intended. The
database is to be used strictly for non-profit educational purposes.

�(i, j) =

vuut
k=KX

k=�K

l=LX

l=�L

w

k,l

[I(i+ k, j + l)� µ(i, j)]2

(3)
w = {w

k,l

|k = �K, ..,K, l = �L, ..., L} is a
symmetric local convolution window centered at the
(i, j)-th pixel. K and L determine the size of local patch
considered in the calculation of the mean and standard
deviation. In [3], the authors have considered 7⇥7 image
patches, and a circularly symmetric 2D Gaussian kernel
w

k,l

; however, experiments show that the distribution of
the MSCN patches are not very sensitive to the size of
the window, or the convolution kernel.

In their original work [7], the authors propose that, as
the visual systems adapt to the mean background value,
it should be removed by considering the logarithmic
intensity fluctuations above the mean value. Let I (x)
be the image intensity at spatial location x. The ’log-
contrast’ � (x) is defined as

�(x) = ln


I(x)

I0

�
(4)

where, I0 is defined in such a way that
P

x

�(x) =
0. This causes the histogram to have zero mean. The
log-contrast values are normalized with respect to their
local standard deviations. By this operation, patches of
small image contrast are expanded, while regions of high
contrast are toned down. The resulting field is given by

 (x) =
�(x)� �̄(x)

�(x)
(5)

The variance normalized image  (x) tend to be more
uniform than the original image, and almost looks like a
noise pattern, except at the object boundaries. Also, their
histograms seem to show a Gaussian-like distribution.
Compared to  (x), the standard deviation image �(x)
looks more like the original image, highlighting the ob-
ject boundaries, and attenuating the textures.  (x), and
�(x) for sample images have been shown in Section IV.

The procedure can be iterated over multiple scales.
The standard deviation image is considered as the orig-
inal image, and its log-contrast is defined as

⇠(x) = ln


�

2(x)

�

2
0

�
(6)

where, �2
0 is analogous to I0. The statistics of ⇠ are found

to be similar to those of  obtained by (5). The above can
be further re-applied for a multiscale characterization,
this time considering ⇠(x) as the original image, and
finding its log contrast. It yields two images: the vari-
ance normalized image ⇣(x), and the standard deviation
image ⌃(x). Experimental results show that  (x) and
⇣(x) show similar Gaussian-like intensity distributions,
and �(x) and ⌃(x) show image like distributions. The
multiscale generation of the MSCN coefficients has been
outlined in Fig. 2.



(a) (b) (c)

Fig. 1: Sample Synthetic Images in the ESPL database [6]

Fig. 2: Multiscale generation of the MSCN coefficients by
iterating over the variance images.

IV. EXPERIMENTAL RESULTS

This section shows some of the experimental results
obtained by modeling the distribution of the transformed
pixel intensities, obtained by (1) and (5). The analysis
has been carried out on the luminance component of
the color images. For the calculation of the mean and
standard deviation of the pixels, a window of size 7 ⇥
7 was considered at each pixel location (although, the
results were found to be almost independent of the size
of the selected local window).

As mentioned in [8], we begin our analysis by looking
at the spatial structural correlation between image pixel
densities and the neighboring pixels, computed as [9]:

⇢ =
2�

xy

+ C1

�

2
x

+ �

2
y

+ C1
(7)

where �

xy

is the cross-covariance between the two
local image patches, �2

x

and �

2
y

are their respective
variances and C1 is a constant to prevent numerical
instabilities arising if the denominator becomes close to
zero. The value of C1 has been specified in [9]. The
spatial correlation is observed for the original intensity
images, the modified MSCN coefficients, as well the
variance images. Fig. 4 illustrates the scatter diagram
between the pixels, and one of their diagonal neighbors.
The values of the structural correlation (⇢) have also
been mentioned. We also plot the structural correlation

Fig. 3: Spectrum of the original image (scale 0), and variance
images obtained by iterating the MSCN process over multiple
scales. The variance images become more correlated as we
iterate the MSCN operation multiple times. Structural correla-
tion between the original image and scale 1 variance image is
0.508, whereas, that between the variance image at level 3 and
level 4 is 0.99.

between the original image, the generated MSCN image,
and the variance image in Fig. 5.

For natural images, the power spectrum is found to
roughly follow a 1

f

� relation, where � varies over a
small range for natural images. Fig. 3 shows the power
spectrum of a synthetic image on a log-log scale. The
spectrum of the variance images has been found to align
with the power spectrum of the original image.

Next, in order to get an idea of the type of dis-
tribution which would be most suitable for modeling
the MSCN coefficients obtained from (1), skewness and
excess kurtosis values are studied. Generalized Gaussian
density [10], and Symmetric ↵-Stable distribution [11]
have been considered. Fig. 6 shows the scatter plot of
skewness and excess kurtosis values computed from the
empirical histograms of the MSCN coefficients obtained
from synthetic images in the ESPL database, and natural
images obtained from the Berkeley segmentation dataset
[12].

The empirical histogram skewness values are mostly
clustered around the zero value, with some showing
small amounts of positive shifts. This shows that a



(a) (b) (c)

Fig. 4: Scatter Diagram between pixel values, and one of their diagonal neighbors, shown for one of the images from the ESPL
database (a) Original Synthetic image, ⇢ = 0.967, (b) Modified MSCN coefficients, ⇢ = 0.296 (c) Variance image, ⇢ = 0.921.
The original image shows a high degree of correlation between the neighboring pixels. But the MSCN coefficients are much
less correlated with their neighbors. However, the correlation of the variance image shows more image-like properties, such as,
a high degree of correlation with neighboring pixels. This behavior is observed to be repeated if a new set of MSCN coefficients
is generated by treating the variance image as the original image, and iterating the process over multiple scales.

(a) (b) (c)

(d) (e) (f)

Fig. 5: Correlations between original image, MSCN coefficients, and the variance image (a) Original image (b) MSCN image
(c) Normalized windowed correlation between (a) and (b), average ⇢ = 0.596 (d) Variance image (e) Normalized windowed
correlation between (b) and (d), average ⇢ = 0.435 (f) Normalized windowed correlation between (a) and (d), average ⇢ = 0.504.
The correlation between the MSCN and variance images is somewhat lower than that between the original images and the variance
images.

symmetric non-skewed distribution should be able to
model the variation in most of the images. However,
when compared to the natural images, some of the
synthetic images tend to show a higher degree of excess
kurtosis. This is common if the images show large
textureless regions, and abrupt change of contrast, e.g.,
those occurring across sharp boundaries. This is also
found to be common feature of cartoon images. In this
case, most of the MSCN coefficients tend to be zero,
and hence, a sharp spike is observed near the origin. For
modeling these type of images, the Symmetric ↵-Stable
distribution with small values of ↵ is found to be a better
model compared to the GGD models.

The next step is to estimate the GGD mean µ, scale

↵, and shape � parameters from the sample histograms.
This is done by the method of maximum likelihood
estimation [10]. In order to understand how much these
parameters differ for natural and synthetic images in
the ESPL database, we plot the histogram of the scale
and shape parameters. Fig. 7 shows the histogram of
the GGD shape parameter �. A substantial overlap
in the distribution of � is found among natural and
synthetic images, which shows that the value of � is
not discriminative enough to classify computer generated
imagery and natural images. In fact, a natural scene
and a highly non realistic synthetic scene may show the
same distribution of the MSCN coefficients. For natural
images, � tends to cluster around 2, which corresponds



Fig. 6: Scatter plot of skewness(X-axis) and kurtosis(Y-axis) of
221 synthetic and 500 natural images. Note that the while most
the synthetic images show zero or very small skewness values,
some of them might exhibit high excess kurtosis, indicating
heavily peaked distribution of the MSCN coefficients.

Fig. 7: Normalized histogram of the shape parameter � ob-
tained over 221 synthetic and 500 natural images. Note how
� for natural images tend to cluster around 2, indicating
a Gaussian-like distribution of the MSCN coefficients. The
synthetic images show more variability in the value of �.

to the shape parameter of a Gaussian distribution. For
synthetic images, the peak of the distributions occurs
for � < 2, which means that more leptokurtic GGDs are
needed to model the MSCN coefficients.

Fig. 8 shows the histogram of the GGD scale pa-
rameter ↵. For a fixed �, the variance of a GGD is
proportional to ↵

2. For natural images, the distribution
of ↵ is found to be have a mean higher than the
corresponding distribution for synthetic images.

Fig. 9 shows the empirical distribution of the MSCN
coefficients of an image from the database. The GGD
and S↵S models are overlaid on top to show the model
match. If the X and Y components of a 2D vector

Fig. 8: Normalized histogram of the scale parameter ↵ obtained
over 221 synthetic and 500 natural images. For natural images,
since the histogram is shifted to the right, this means that
on an average, the variance of the distribution of the MSCN
coefficients is more, compared to synthetic images.

Fig. 9: Empirical distribution of the MSCN coefficients ob-
tained from (1), and the fitted GGD and S↵S distributions,
after parameter estimation from the sample histogram. The dis-
tribution shows a Gaussian signature resulting is ↵ = 0.8871,
� = 1.9440 for the GGD fit, and ↵ = 1.9801 for the S↵S fit.

are independent Gaussian distributions having a zero
mean, the vector amplitude is distributed according to
the Rayleigh distribution. So, we also chose to observe
how accurately the Rayleigh distribution can model the
amplitude of the gradient of the MSCN coefficients,
if the MSCN coefficients themselves are distributed
close to a Gaussian distribution. Fig. 10 shows both
the empirical distribution of the gradient of the MSCN
coefficients (computed by the Sobel operator), and the
best-fitting Rayleigh distribution overlaid on top of it. We
also chose to study how other asymmetric distributions,
like the Weibull and Nakagami, can account for the
distribution of the MSCN gradients.



Fig. 10: Empirical distribution of the gradient of the MSCN
coefficients obtained from (1), and the fitted Rayleigh, Weibull,
and Nakagami distributions, after parameter estimation from
the sample histogram, shown for more Gaussian-like distribu-
tion of the MSCN coefficients.

[7] considered natural scenes, which were primarily
photographed in a natural environment, such as a forest,
and contained thick foliage, streams, and rocks. For
natural or synthetic scenes containing man-made objects,
the distribution of the MSCN coefficients are found
to deviate from the Gaussian distribution, and this is
manifested in the value of the shape parameter � of the
GGD model, which best fits the data. One example of
a Laplacian type distribution of the MSCN coefficients
has been shown in Fig. 11. The shape parameter is close
to 1, which indicates a more leptokurtic distribution.

However, as the distribution of the magnitude of
the MSCN gradients tend to deviate from a Gaussian
model, the corresponding distribution of the gradients
of MSCN coefficients also start to deviate from the
Rayleigh distribution. Fig. 12 shows the mismatch in
the empirical distribution of the gradient magnitude, and
the attempts of fitting a Rayleigh, Weibull, or Nakagami
distribution.

For modeling the distribution of the ‘log-contrast’
MSCN coefficients obtained by (5), we consider the
generic ↵-stable and the Skewed Gaussian distribution
as shown in Fig. 13, since the empirical distributions
were found to show some negative skew. However,
since the Skewed Gaussian distribution can only model
moderately skewed distributions, with sample skewness
lying between [�1, 1], it gives a bad fit for heavily
skewed distributions.

In order to quantify the extent to which the probability
models fit the empirical distributions, we used the mean-
squared error, and the J-divergence. For two probability
distributions, the J-divergence between them is defined
as the sum of the two possible Kullback-Leibler dis-
tances (provided they exist). We also performed �

2

Fig. 11: Empirical distribution of the MSCN coefficients ob-
tained from (1), and the fitted GGD and S↵S distributions, after
parameter estimation from the sample histogram. The distri-
bution shows a Laplacian signature resulting is ↵ = 0.2667,
� = 1.0194 for the GGD fit, and ↵ = 1.4795 for the S↵S fit.

Fig. 12: Empirical distribution of the gradient of the MSCN
coefficients obtained from (1), and the fitted Rayleigh, Weibull,
and Nakagami distributions, after parameter estimation from
the sample histogram, shown for more Laplacian like distribu-
tion of the MSCN coefficients.

tests at 1% confidence interval. The null hypothesis was
assumed to be the distribution which we were trying to
fit to the empirical spatial domain data, and for all the
cases, the null hypothesis got accepted. The chi-square
values for all the cases were found to be smaller than the
upper cut off of the �2 distribution, �2

(0.01) = 6.635 with
degree of freedom = 1, which indicates that the values
were generated from the fitted distributions, instead of by
chance. Tables I, II, and III below show the values of the
mean square error, J-divergence, and Pearson’s �2 values
for the distributions, calculated over the synthetic image
database. Table I shows that the GGD gives a slightly
better fit to the empirical distribution of the MSCN pixels



Fig. 13: Empirical distribution of the log contrast of the MSCN
coefficients obtained from (6), and the fitted ↵-stable, and
Skewed Gaussian distribution, after parameter estimation.

compared to the S↵S distribution, both in terms of the
mean square error and the J-divergence. For the gradient
of the MSCN pixels, the Rayleigh distribution is found
to fit the empirical distribution best, followed closely
by the Nakagami distribution, as indicated by Table II.
Table III shows that for the log-contrast MSCN pixels,
the ↵-Stable distribution yields a better fit compared to
the Skewed Gaussian distribution.

TABLE I: Mean square error, J-Divergence, and Pearson’s
�2 values for the distributions fitted to the histogram of the
MSCN coefficients of an image, obtained from (1) for all
the considered parametric families, averaged over the entire
database

MSE J �2

GGD 0.00257 0.0772 0.00252
S↵S 0.00264 0.0948 0.00174

TABLE II: Mean square error, J-Divergence, and Pearson’s �2

values for the distributions fitted to the histogram of gradients
of the MSCN coefficients of an image, obtained from (1) for
all the considered parametric families, averaged over the entire
database

MSE J �2

Rayleigh 0.00891 4.730 0.769
Weibull 0.0251 5.00432 0.663
Nakagami 0.00916 5.304 0.892

V. CONCLUSION

This paper aims to analyze how well the spatial
domain natural scene statistics, which have been used
in natural image and video quality assessment, apply
to synthetic scenes. The results show that in the spatial
domain, for pristine images, synthetic scene statistics can

TABLE III: Mean square error, J-Divergence, and Pearson’s
�2 values for the distributions fitted to the histogram of log-
contrast MSCN coefficients obtained from (6) for all the con-
sidered parametric families, averaged over the entire database

MSE J �2

↵-Stable 0.00949 0.245 0.0327
Skewed Gaussian 0.0435 1.360 0.0397

also be modeled in a fashion similar to natural scene
statistics. The difference in the perception of natural
and synthetic concerns higher level cognition factors of
the human brain. The next step would be to study how
distortions of synthetic images affect the spatial domain
statistics. Future avenues of work also include analysis
of color images, and the joint spatial distribution of the
color channels using a suitable color space. They might
prove to be useful in designing no-reference metrics
aimed towards color specific distortions, such as those
arising from tonemapping of high dynamic range images.
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