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Abstract—The gyroscope is playing a key role in helping has been shown that through the fusion of visual and inertial
estimate 3D camera rotation for various vision applicatiors on information, camera motion can be estimated more accyratel
cellphones including video stabilization and feature traking. 5.4 reliably [2], [3]. The fusion of camera and inertial senss
Successful fusion of gyroscope and camera data requires tha S . . L .
the camera, gyroscope and their relative pose to be calibratl. hoyveve_r, requires precise Cal'k_’raF'On' the coordinatéesys
Moreover’ the timestamps of gyroscope readings and videodmes of inertial sensors does not coincide that of camera, and the
are usually not well synchronized. Previous work performed timestamps of inertial sensor readings and video framesdare
camera-gyroscope calibration and synchronization offlineafter \ye|| synchronized. Apart from the relative pose and timegta
the entire video sequence has been captured with restrictis on delay, camera and inertial sensors themselves also hawe to b

the camera motion, which is unnecessarily restrictive for eeryday librated so that tial t h as focahl
users to run apps that directly use the gyroscope. In this pagr, C2!10rale€d S0 that essential parameters such as foca angt

we propose an online method that estimates all of the necesga SENSOr biases are known.
parameters while a user is capturing video. Our contributins Many existing approaches in visual-inertial sensor fusion

are (1) simultaneous online camera self-calibration and gaera- assume that calibration and synchronization have been done
gyroscope calibration based on an implicit extended Kaman ffine peforehand. Moreover, camera self-calibrationti{es

filter, and (2) generalization of the multiple-view coplanaity fi f intrinsi t I cut
constraint on camera rotation in a rolling shutter camera model ~Mation of camera Intrinsic parame ers) are usually exelcute

for cellphones. The proposed method is able to estimate the Separately from relative pose and delay calibration betwee
needed calibration and synchronization parameters onlinewith camera and inertial sensors [4], [5]. Some calibration meth
all kinds of camera motion, and can be embedded in gyro-aided ods can be only performed in laboratory environments with
applications such as videp stabilization and featyre trackg. special devices (e.g. spin table and checkerboard) [6], [7]
Both Monte Carlo simulation and cellphone experiments show - .
that the proposed online calibration and synchronization nethod which further p“?Ve”tS Qveryday USErs from using cellphone
converges fast to the ground truth values. cameras conveniently with the help of inertial sensorshis t
paper, we focus on online calibration and synchronizatibn o
cellphone cameras and inertial sensors while users capture
videos, without any prior knowledge about the devices or any
special calibration hardware.
Unlike traditional cameras, most cellphone cameras do
not capture the rows in a single frame simultaneously, but
ELLPHONE cameras have been increasingly populgequentially from top to bottom. When there is fast relative
for video capture due to the portability and processingiotion between the scene and the camera, a frame can be
power of cellphones. An increasing number of users aggstorted because each row was captured under different 3D-
getting used to record their memorable events by cellphofe2D projections. This is known as rolling shutter effeg}, [
cameras. Beyond the video recording itself, video acqoisit [9], [10] and has to be considered in calibration and fusibn o
also provides opportunities for applications such as am@te visual and inertial sensors.
reality and visual odometry. No matter what application ifb  Although some applications such as visual odometry require
video capture is used for, camera motion estimation is @atimation of both camera rotation and translation, estirga
essential step to improve the video quality and better @ealytotation using only the gyroscope has been used successfull
the video content. in video stabilization [11] and feature tracking [12]. When
Hand-held mobile devices such as cellphones usually suffae displacement of pixels between consecutive video fsame
from egomotion that is changing very fast, which makes i§ primarily caused by camera rotation, a gyroscope-only
difficult to track the camera accurately using only the cegdu approach successfully stabilized video and removed llin
videos. For this reason, inertial sensors on cellphoneb suhutter effects [11], [13]. Similarly, gyroscope measueets
as gyroscopes and accelerometers have been used to (iRlfe used to pre-warp the frames so that the search space
estimate camera motion because of their increasing agcurast the Kanade-Lucas-Tomasi (KLT) [14] feature tracker can
high sampling rate and robustness to lighting conditiobs. Be narrowed down to its convergence region [12]. In these
. _ , proposed methods there is no need to use the accelerometer.
C. Jia and B. L. Evans are with the Department of Electrical @mputer Therefore, only the camera and the gyroscope need to be
Engineering, The University of Texas at Austin, Austin, T28712, USA. !
E-mail: cjia@utexas.edu, bevans@ece.utexas.edu calibrated. In this paper we focus on such camera-gyroscope

TXThLiJsSr:search was supported by gift funding from Texas Umsénts, Dallas, calibration, and our proposed approach does not assume that
I5art of this paper has been presented in 2013 IEEE Globale@ardfe on the camera undergoes pure rotation.

Signal and Information Processing [1] The proposed online calibration and synchronization is

Index Terms—Camera calibration, visual-inertial sensor fu-
sion, multiple view geometry, gyroscope, rolling shutter amera.

I. INTRODUCTION
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based on an extended Kalman filter (EKF). Each video fram3® scene structure. In addition, camera translation esitma
provides a view of the 3D scene and triggers the update of thed accelerometer calibration require large enough camera
EKF through multiple view geometry. Although we care aboutanslation to initialize absolute scale and speed estif24],
camera rotation only, we do not assume any degeneration[28]. Therefore, such methods are too complicated if we only
the motion of the camera. By extending the recent proposeale about camera rotation and just want to use gyroscope to
multiple-view coplanarity constraint of camera rotatid®[to estimate and track camera motion.
rolling shutter cameras, we propose a novel implicit measur To calibrate the camera and gyroscope system, the method
mentthat involves only camera rotation. This measurementiis [11] proposed to quickly shake the camera while pointing
valid when there is non-zero or zero camera translafidve at a far-away object (e.g., a building). Feature points betw
implicit measurements can be effectively used in the EKF tmnsecutive frames are matched and all parameters are es-
update the estimate of state vectors. timated simultaneously by minimizing the homographic re-

This paper is organized as follows. Section Il reviewgrojection errors under a pure rotation model. The calibra-
previous algorithms on camera self-calibration, cameeatial tion in [12] is also based on homography transformation of
calibration, and camera-gyroscope calibration. Sectibimd matched feature points assuming pure rotation, except that
troduces the rolling shutter camera model and summarizes thifferent parameters are estimated separately first and the
parameters that we need to estimate in this paper. Sectionrgfined through non-linear optimization. However, as shown
presents the coplanarity constraint on camera rotatiomén tin [12], when the camera translation is not negligible et
rolling shutter camera model. This constraint is then used o the distance of the feature points to the camera, such
implicit measurements by the proposed EKF-based onlinie cglure rotation model becomes less accurate and the catibrati
bration and synchronization approach in Section V. Sedtion results will deviate from the ground truth. Our calibration
shows and analyzes the results of Monte Carlo simulation amethod differs with [11], [12] not only in that it is online
cellphone experiments using the proposed approach. 8ectstimation, but also in that it does not assume zero traoslat
VIl concludes the paper. at all. Therefore, the proposed calibration can be perfdrme
implicitly anytime and anywhere while the camera is recogdi
video. This is especially convenient for amateur photolgyeap
who want to take stabilized videos with smartphone cameras.

Camera self-calibration has been extensively studied [16]
for both 9'°b‘.”" shutter camera [6] and rpllmg sh_utter CANEY || ROLLING SHUTTER CAMERA MODEL AND GYROSCOPE
[17], but previous work on online self-calibration is sonfeaw
rare. In [18] full-parameter online camera self-calibpati ~ Points in the camera reference space are projected acgordin
is first proposed in the framework of sequential Bayesidfa the pinhole camera model. Assuming the 3D point coordi-
structure from motion using a sum of Gaussian (SOG) filtgates in the camera reference space [&fg Y., Z.]", their
Their work assumes a global shutter camera model and ®i@jection onto the image plane can be represented as
motion of the camera has to contain large enough translation x
to make the structure from motion problem well-conditioned [um} — T f?C

The inertial sensors (gyroscope and accelerometer) are Uy ¢y +fzt
widely used in camera motion estimation and simultaneo
localization and mapping (SLAM) together with visual mea:
surements [19], [4], [5]. Especially for hand-held devisash
as cellphone cameras, inertial-aided approaches appaar m
robust in camera tracking and SLAM when compared to pur
vision-based approaches [20], [21].

%

Il. RELATED WORK

; 1)

\Llﬁﬁeref is the focal length and,, ¢, are the principal point
coordinates. Here we assume that the camera projection skew
|s zero and the pixel aspect ratio is as in [18], which
iS a reasonable assumption for today’s cellphone cameras.
imilarly, given the pixel coordinatg:,, u,]T, we can invert

to obtain the 3D coordinates of the corresponding featur

Relative pose between inertial sensors and camera has Nt in the camera reference space up to an unknown scale

successfully estimated offline with special hardware [7]
simply with a known calibration pattern [22]. Online camera

inertial calibration has also been implemented recentlhe X, Uy — Cy
framework of SLAM or navigation [23] together with the Y| =A|uy—cyl. )
estimation of inertial sensor biases. However, to the bést o Z. o

our knowledge all of the previous work assumes that the _ _ _
camera itself has been calibrated; i.e., the camera pimject Based on (2), we further model the radial lens distortion of
parameters are known. Moreover, rolling shutter effect w&g@mera using two distortion coefficients as

not taken |r!to account in the fusion of inertial qnd visual X, (1 + 5172 + kor®) (ug — c4)

sensors until very recently [24], [25], [26]. The timestamp Yo | =2 | (14 ke 4 _ 3
. . c - 1r +H27’ )(uy Cy) 9 ( )

delay between camera and inertial sensors was always adsume 7 f

as known except for the recent work in [27] which estimates ¢

the timestamp delay online. where

(4)

The SLAM framework for online calibration of camera and Uy — Cp \ Uy — Cy 2
inertial sensors involves estimation of camera transiasind + :
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Fig. 1: Rows are captured sequentially in rolling shuttdrig- 2: The epipolar constraint on a pair of features in two
cameras. Each block represents the exposure time of arcerf4gwpoints.
row.

viewpoints. By the epipolar constraint all vectofisx Rf/

In rolling shutter cameras, rows in each frame are expos@te perpendicular to the relative translation vedtoand thus
sequentially from top to bottom [8], [30], as shown in Fig. 1are coplanar{( is the normal vector of such plane). Such
In Fig. 1 each block represents the exposure of a certain réQplanarity can be expressed by the determinant oBtke3
The exposure duration of each row (represented by the len§itrix composed by any threfe x Rf] vectors being zero
of each plock) depe_nds on the lighting conditic_)ns. In this det[(f, x RE)|(f2 x REY)|(Fs x REL)] = 0. @
paper we ignore possible image blur and assume instantaneou
exposure. Thus, the exposure moment of each row can T#s coplanarity was introduced in [15] and does not depend
approximated as the left end of each block in Fig. 1. For am the camera translation at all. Another desirable prypsft
image pixelu = [u,,u,|T in framei, the exposure time can (7) is that it is still valid in the extreme case of zero tratisin
be represented déu, i) = tﬁtﬂ#, wheret; is the timestamp since all vectord; x Rf! will become zero.
for framei andh is the total number of rows in each frame.

Heret, is the readout time for each frame, which is usuall
about60% — 90% of the time interval between frames.

There exists a constant delaybetween the recorded times- In rolling shutter cameras, however, the viewpoint is not
tamps of gyroscope and videos. Thus using the timestampggfdue for the features captured in the same frame. Here we
gyroscopes as reference, the exposure time of pixelframe Propose a generalized coplanarity constraint for rollingtser

B. Coplanarity constraint in rolling shutter cameras

i should be modified as cameras. N _ _
, Uy First note that both the traditional epipolar constraint (6
t(u,i) =t; +ta+ L‘rﬁ- (5) and the coplanarity constraint (7) are expressed in terms of

To use the avroscope readinas we also need to kaow one of the two viewpoints. In fact, this frame of reference
gy P 9 9OV -an be chosen arbitrarily. Once the reference is fixed, we

the relative orientation of the camera in the gyroscope éram : . .
. : . ) can represent the camera orientation corresponding to any
of reference (represented in unit quaternion). Finallg, ibhas

. .~ feature (determined by its exposure moment for rolling tghut
of the gyroscopéd, needs to be considered. Therefore, in the ( A y P 9
) o : Cameras) in this reference. For the matched features betwee
online calibration we need to estimate the paramefers,, . . .
any two consecutive frames in rolling shutter cameras, we
Cy, K1, K2, tr, tq, by andqc.

propose the following constraint

IV. COPLANARITY CONSTRAINT FOR CAMERA ROTATION  det[(Rqf; x R f])[(Rof2 x R5f)|(Rsfs x R5f5)] = 0. (8)

Our calibration and synchronization rely on the const&injjote that in (8)R/, means the camera orientation correspond-

applied to camera rotations. ing to featurel in the second frame, and not the transpose of
R,. Constraint (8) does not exactly hold in general cases but
A. Coplanarity constraint in global shutter cameras only under the assumption that the relative camera traoskat

First let us consider a global shutter camera in which all gretvyeen the exposure moments for all pair of matched featu.re
[ein the same direction. The readout time of two consegutiv

the pixels in the same frame are captured at the same ti . 66 for 30 f i di h sh
Assume the normalized 3D coordinate vectors of a cert irr"f‘r_nes is at most 66ms (for ps videos) and in such short

feature in two viewpoints (frames) afeandf/ (note that by period of time the camera translation can be well approxchat

(3) we cannot recover the absolute scale but only the dinectiPY @ constant direction. _NOt? that Su‘?h approx_imation isemor
of the 3D feature vector). The well-known epipolar constrai general than the approximation used in [25] which assumees th
[16] is linear velocity (both direction and magnitude) of the camer

/ _ is constant. The constraint is illustrated by Fig. 3. In Rg.
(f; x Rf]) -t =0, (6) : ;
the first three (from left to right) frames of axes correspond
whereR andt are the relative rotation and translation betweeto the three features detected in the current frame. The last
the two viewpoints. The epipolar constraint means that thieree frames of axes correspond to the three matched feature
vectorsf;, Rf/ andt are coplanar, as shown in Fig. 2. Nowin the next frame. The different orientations of the framés o
assume that three or more features are observed in these &awes show the changes in camera rotation while the feattges a



IEEE TRANSACTIONS ON IMAGE PROCESSING 4

angular velocities
A

(.U-I 0)2 UJ3 0)4 UJ5 0)6 UJ7

...... ¢ ‘ i i i i i L

Y
current frame * next frame

\

Fig. 3: Coplanarity constraint in rolling shutter camerake Fig. 4: Timing relationship between the gyroscope readings
cross products of all pairs of matched features are perpendind the video frames.
ular to the camera translation vector.

The relative camera orientation between the reference time

exposed. The camera translation is approximated as thedlasid the exposure moment of a certain feature can then be
ray. The three pairs of matched features are representedepressed by the angular velocities

green, blue, and orange arrows, respectively. By the paxpos M

coplanarity constraint in rolling shutter cameras, thessro R; = H O(w, Atl), (20)
products of all pairs of matched features are perpendicular n=1

to the camera translation vector. where M is the total number of angular velocities involved

To make the constraint (8) more accurate we further apaly computing the relative orientation (M=7 for the example
such constraint only to groups of features that are not vesfiown in Fig. 4) and\t/, is the time duration that the angular
far from each other in their y-axis coordinates. Based on (®¢locity w,, is used in the integration (assuming constant
the exposure moments of features are close to each othesrifular velocity between readings). Note that not all of the
their y-axis coordinates are close. Assuming featdied], M angular velocities have non-zerst!, values. For example,
fy, f5, f3, f3 are selected in this way. Then the exposurgssume the timestamp of each angular velagityis 7,,. Then
moment difference among features in the same frame is muyeh the feature in the next frame (right green diamond) in
smaller compared to the exposure moment difference betwegg. 4, only At}, Ati and At§ are non-zero and they can be
features in adjacent frames: (33ms). In this way, the cameracomputed as
translation vectors for the three pairs of features ndiurave

almost the same direction. Constraint (8) is less dependent Aty =75 = (Tneat + ta)
on the constant-direction assumption in camera translatio Aty =716 — 75 ) (11)
between two consecutive frames. Aty = (Tept +ta + ) — 16

We use the coplanarity constraint (8) as implicit measure- )
P y (8) P ereT,... is the framestamp of the next fram@¥c..: +¢4)

ment to estimate all the parameters in an EKF. The way ds to th t for th le di q d
represent the camera orientation corresponding to eatirgea “°" ©>PONAs 10 the Moment Tor the purpie diamon )u?}ﬂ

using the parameters and gyroscope readings is shown in thé'€ ¥-axis coordinate of the featurles: + ta + tr5+)
next section. corresponds to the moment for the green diamond).

Each sub-relative rotation matrix can be computed by expo-
nentiating the skew symmetric matrix formed by the product
of angular velocity and its duration:

V. EKF-BASED ONLINE CALIBRATION AND
SYNCHRONIZATION

The online calibration and synchronization is based on an O(wnAt},) = exp(skew(w,)At,), (12)

extended Kalman filter. Our EKF evolves when every videgnere
frame is captured, as in [24]. The state vector is defined as

O _wzn wyn
x = [f cz ¢y K1 K2ty tg bg qE]T. (9) skew(w,) = | w., 0 —Wg,, | - (13)
—Wy, Wz, 0

The gyroscope in cellphones usually has a higher samplieg ra
than the video frame rate. Moreover, timestamps of gyrascop At!, is determined by the exposure moments fpfand
readings and the video frames are not aligned. We show héwcomputed using (5), and thus depends on the estimation
to compute the relative rotation corresponding to eachotiede variablest, andt,. The true angular velocities are represented
feature using gyroscope readings as following as

Wy =wn+by+ngy,, (14)

A. Computation of relative rotation where w,, is the gyroscope readingy, is the gyroscope
Fig. 4 illustrates the timing relationship between the gyias (to be estimated), and,, ~ N(0;0¢) is the Gaussian

roscope readings and the video frames. Assume a pairditributed gyroscope measurement noise.

matched feature§ andf! are detected as at moments denoted In this way, the relative camera orientation corresponding

by green diamonds and the reference time is fixed as tteeany feature detected in the current and next frame can be

timestamp of the next frame (shown as the purple diamondkpressed by the angular velocities.
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B. State dynamics where{w,,} are the gyroscope readings during the exposure
All the parameters appeared in Section Il excptare time of two consecutive frameéu, } are the 2D coordinates of
constant so they are just copied in state dynamics all of the observed featuregn,,, } and{v, } are the gyroscope
measurement noise and feature observation noise, resggcti
f(k+1) = f(k) as shown in (14) and (18). Please note in the measurement
cx(k+1) =ci(k) equations the measurement noise appears implicitly as non-
cy(k+1) = ¢, (k) additiye noise. _ _ _
ka(k+1) = ma (k) While _the typ|c§1I_ formulation of the_ EKF _mvolves_ the
(15) assumption of additive measurement noise, this assumistion
ra(k +1) = ra(k) not necessary for EKF implementation. For the general form
tr(k+1) =t.(k) of observation
ta(k +1) =tq(k) zr, = h(xg, Vi) (20)
Ae(k +1) = qe(k). with Gaussian noise, ~ N(0,Ry), the innovation covari-
We model the dynamics df, by a random-walk process ~ ance is computed as
b,(k +1) = b, (k) +m,(k), (16) Sk = HyPy 1 Hj, + ViR V], (21)
where the random walk stem(k) is Gaussian distributed whereH,, = % fapo s’ Vi = S—’; Rapos” The rest steps are
with zero mean and varianes,. the same as EKF with additive measurement noise. For details
please see [31].
C. State measurements In our case, the measurement noisg consists of the

After features are matched between the current frame ah{©Scope measurement noise and the feature observation
the next frame, we pickedV groups of features with threeN0IS€. Its covarianc&; is a constant matrix. o
features in each group (without overlap). As mentioned i Se_ 1 he state update is performed right after state prediction.
tion IV-B, to make the coplanarity constraint more accurat&nly one round of state prediction and update is needed once
the selection of groups of features are not completely randg® NéW frame is read and all features are tracked.

The three features in the same group should have close y-axis
coordinates but relatively far away x-axis coordinates. D. Extended Kalman filter computation

In this way we can obtainV measurements from the |3 EKF state vector estimate is predicted using dynamic
coplanarity constraint shown in Section V. Fpr instante tequations and then updated using measurement equations.
measurement formed by features 1,2 and 3 is Prediction and Update rely on the Jacobian matrices of the
0 = det[(Refy x R)f])|(Raof x RLE)|(Rafs x R4E)]. (17) dynamic and measurement equations with respect to the state

_ ) _ vector and the system noise. The linear dynamic equations
The 3D feature location$; are computed by inverting the (15) and (16) lead to very simple Jacobian matrices (identit
camera projection (3) as matrix). The Jacobian matrices of the measurement eqation

(1+ 5172 + kor®) (g, + va, — co(k)) can also be computed analytically in closed-form. We show
fi = q.(k) ® = | (14 k12 + ko) (uy, + vy, — ¢, (k))|, the derivations in Appendix A.
Pi F(k) The camera-to-gyroscope orientation is represented Ry uni

8) quaternionq.. Traditional extended Kalman filter cannot
whereq.(k) ® () means rotating a vector using 3D rotatiorguarantee unit norm of the quaternion after estimate update
defined byq.(k), and ¢; is a normalization factor to make Therefore we use a minimal 3-element representai#rior
the result have unit norm. Besides normalization, there dte estimate error of. as in [32]. The true value ofj. can
two differences between (3) and (18): (a) we take the featuve represented as
detection errow,,,v,, ~ N(0;0¢) into account, and (b) the de = 09 @ qe, (22)
3D feature is represented in the gyroscope coordinatereystvevhereA is the estimate and
by multiplying the relative rotation estimatg.(k) at stagek. e

The relative rotation matriR,; is computed according to o — 50/2
(10). In this way, the right hand side of (17) can be expressed 4= 1 /1= [160/2|]5]
as a function of the state variables.

All of the N coplanarity constraints generat&s implicit
measurements at a stageaccording to (17)

(23)

With such error representation we can update the estimate in
multiplicative way and guarantee the unit norm of the estéma
For more details please see [32].
0 = 21(k) = hi(x(k),{wn}, {ui}, {ngn}, {vi}), In practice EKF update is executed every other frame
0 = 25(k) = ha(x(k), {@n}, {w;}, {ngn}, {v:i}), (or less often to reduce complexity). The reason is that the
) ‘ measurement equation (17) involve features detected finam t
: consecutive frames. If EKF is updated every frame then the
0 =z2n(k) = hn(x(k), {@n}, {wi}, {ngn}, {vi}), features in each frame are used twice, which causes caorelat
(19) between feature detection errors and the state estimai. On
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can augment the state vector to track the feature detectwimulated by random walk. All of these values come from
errors. However, such augmentation will further incredse tthe parameters of a real cellphone camera. The ground truth
computational burden, while updating state estimate evemnotion of camera is fixed with a randomly generated sequence
other frame can easily avoid such correlation without augf angular velocities and linear velocities. The anguldoeity
menting the state vector. and linear velocity sampling rate is set as 100 Hz. With the
ground truth motion and camera/gyroscope parameters, we
artificially generate a video with 250 frames at frame rate

o 30fps. Note that each video frame is not a real image but a
The state vector needs to be initialized carefully to ma'%‘?)arse 2D point cloud.

the EKF work properly. We initialize the principal point *, 40 trial of Monte Carlo simulation we generate Gaus-

coordinatesc,, ¢, to be the center of the frame. The focalj,, random gyroscope measurement noise and feature detec-

length is initialized using the horizontal view angle pm®tl i, errors according to the variances shown in Section V-E.
by the smart phone operating system. If the operation Syst@Mis ay, we can artificially add the noise and simulate

of the smartphone does not provide the value of horizoni@ly 4 roscope readings and feature detections. Then we run

viev_v angle, SOG filters can be u_se_d With several initial 9BESEKFE calibration in each trial, with state estimate initzai

as in [18]. The readout time, is initialized as 0.0275 MS 5 40mly withings range around the ground truth values (note
which is about 82.5% of the entire interval between frameg, ¢ this initialization method is different from that in Gien

The coordinate system of the gyroscope is defined reIatlve\qu’ which is used for cellphone experiments). In state tmda
the screen of the phone in its default orientation in all Andir we use only 150 virtual features (50 measurements) picked
phones. Thus we can obtain the initial guesgotlepending ¢.0 the feature pool.

_0r_1_thether we are” using the front r?rbrear carr;_era.ETmsWe run 50 Monte Carlo trials to compare the proposed
initial guess is usually accurate enough, but our calibrats  ,,jine estimation with the online estimation proposed in

necessary since the camera is sometimes not perfectl;edliggur earlier work [1]. The proposed estimation differs from

with the screen of the phpne. The initial values of all otheﬁ] primarily in lens distortion modeling, Jacobian mags
parametei(rst(l and]ﬁg) arr]e Just set las ? in the | | computation ([1] computed them numerically) and selection
To make sure t_at t € t.rue. value fies n _t Intervals ¢ faatures ([1] selected the features completely randomly
of the initial Gaussian distributions, we initialize theustlard | w0+ considering the y-axis coordinate distance). e al
deviation ofcg, ¢y, f, ¢, 856.67 pixels, 6.67 pixels, 20 pixels, compare the online calibration with a batch optimization

and 0.00167 s, respectivelyt; is initialized as a sum of |, h0 o) of the frames. The batch optimization is solved via
Gaussian distribution because of the highly non-lineawity Levenberg-Marquardt algorithm [33]

the measurements with respect #p The set of Gaussian

distributions are initialized uniformly in the range @f30ms. parameter estimation before calibration and after caiitma

The stanqrz;\]rd dev'(‘;’lt'%nd()f _ea_ch elfemhentbg_l IS lnltlal|zedf (with 250 frames). The estimation error of the gyroscope bia
as0.006. The standard deviation of the estimate errorgf |, g ot shown since it is time-varying. The estimation error

is initialized as 0.5 degrees along each axis. The stand%rfﬂq is converted to a single angle (computed as fhe
qulgtlon of the radial distortion paramgter_:s and «2 is norm of the minimal 3-element error representation). We find
initialized as0.1. We set the standard deviation of gyroscop at batch optimization performs the best. The proposed-EKF

measurement noise f"md feature detection error as 0.008 ra dsed calibration method is also able to successfully egeve
and 1 pixels, resp_ect!vely. The_standard deV|at|0_n of gyops to the ground truth value. With the modifications proposed
me_asuremer_lt NOISE 1S determlr_led from _Computlng the readmgthis paper, we can achieve a better calibration compared
variance .whll_e.t_he. ce_llphone is put still. Due to the_suquth [1]. Please note that although batch optimization give
of-Gaussian initialization ots, we start from a SOG filter he closest estimate, the EKF-based online calibration can
b.Ut ?t q_uickly converge _to a single EKF using pruning o e implemented in r’eal time and enable immediate use of
distributions with low weights [18]. gyroscope in vision applications. More importantly, oelin
calibration is able to deal with time-varying parametets;hs

E. State initialization

Table | shows the root mean square (RMS) error of the

VI. EXPERIMENTAL RESULTS as varyingf due to zoom and varying; due to clock drift.
In this section we test the proposed algorithm with both In Fig. 5 we show the estimation error along EKF-based cal-
Monte Carlo simulation and cellphone experiments. ibration in one trial, with blue lines representing the mstiion

error and red lines representing th8.7% (30) uncertainty

bounds. For the relative orientatioff. we only show the

estimation error after converting to a single angle as itetab
In the Monte Carlo simulation we randomly locate 1009 From Fig. 5 we can observe that the proposed method is

3D feature points distributed in rangé € [—30,30] meters, gple to accurately estimate the parameters.

Y € [-20,20] meters,Z < [30,60] meters, respectively. The

ground truth value of the parameters are sef as690 pixels, )

¢, = 355 pixels, ¢, = 220 pixels, x; = 0.111, ky = —0.303, B. Cellphone experiments

tr =0.02s,t4 =0.028,q. = [%, _\%70’0]T respectively.  In our cellphone experiments, we use a Google Nexus
b, is initialized as[—0.008,0.002,0.017]" rads/s and then S Android smartphone that is equipped with a three-axis

A. Monte Carlo simulation
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TABLE |: RMS error of 50 Monte Carlo simulation trials.

RMS error
state variable| before batch online [1]
calibration optimization | estimation
T (pixels) 17.3 0.910 2.28 3.70
cq (pixels) 8.26 0.645 2.55 3.45
¢y (pixels) 6.55 0.576 0.96 2.40
t; (Ms) 1.8 0.031 0.078 0.15 . .
tq (Ms) 17.1 0.027 0.041 0.089 Running sequence Panning sequence
qc (degrees) 8389 8836 8.%362 0./285
K1 . .0014 .004 N/A .
s 0076 0.0026 0.0060 N/A Fig. 6: Examples of frames extracted from the test sequences
TABLE II: Absolute estimation error for the running sequenc
20 - Absolute estimation error
of, c, (pixels) 200, ¢, (pixels) state variable[ before calibration | after online calibration
o o e f (pixels) 26.5 4.16
0 —— — 0 — co (pixels) 5.2 2.32
oM o cy (pixels) 13.57 1.50
-20 / 20} t, (mMs) 3.72 0.21
0 0 tq (Ms) 13.2 0.14
100 ZOOhameSGIOO 400 500 0 100 ZODframe:OO 500 K1 0 . 1 l 1 O . 0 12
K2 0.303 0.045
60 6
40 \\ f (pixels) 4 t (ms)
200\ _ 20
_22 — : r’/; roughly examine the accuracy of the proposed algorithm. _We
ol . test the performance of the proposed method on various video
60 5 sequences and show the results on two typical sequences: one
100 200 300 400 500 0 100 200 300 400 500 . . . .
frames frames shot while running forward and the other shot while panning
60 04 the camera in front of a building. Fig. 6 shows two frames
40 ty (M) o2 K extracted from the two test sequendes
L . . .
22 | S The running sequence (with 250 frames) is used to test
20 — the performance of the algorithm under arbitrary camera
-0 h motion, including very high frequency shake and non-zero
B translation. The absolute estimation errors before anelr aft
online calibration and synchronization are shown in Tahle |
o4 . o8 ] We can observe that the proposed method is able to estimate
Al 2 c H i H
o2 0s the parameters that are close to offline separate calibratio
e In the second test video sequence (with 241 frames) we
o 02 simply pan the camera in front of a building. This video isdise
to test the algorithm under (almost) zero camera translatio

100 200 300 400 500 0 100 200 300 400 500
frames frames

(pure rotation). The estimation errors are shown in Table. |

The proposed algorithm works equally well compared to the

Fig. 5: Estimation error over time in one Monte Carlo Simumnning sequence.

lation trial. To better display the difference before and after synchro-
nization of the timestamps between video frames and gyro-
scope readings, we show the rates of 2D translation of pixels

gyroscope. We capture the videos and the gyroscope readigggpared to the gyroscope data as in [11]. If we ignore the

from the cellphone and run the proposed online calibratiwh arg|ling shutter effect and the camera rotation around zaxi

synchronization in MATLAB. The feature points are trackeghe average rate of pixel translation can be approximated as
using KLT tracker. We divide the frame into 4 equally sized

bins and perform outlier rejection locally within each bip b Uy (t) & f - wy(t +ta)
computing a homography transformation using RANSAC [34], Uy(t)— = f - wa(t +ta),
as in [35]. We estimate the ground truth of camera projectio

parameters (with lens distortion) using the offline cameld ;rewm_(t)_rahnd wy(t) are alngulalr vglocmes around X'%X'S b
calibration method in [6]. The ground truth of timestamfi‘n y-axis. These two angular velocity sequences can be ob-

delayt, is obtained by offline calibration in [12]. The grounotamecj discretely from the gyroscope readings (after ayithie

truth of rolling shutter readout time,. is obtained by batch gyroscope bias and transformed &y). The pixel translation

optimization under pure rotational camera motion as in _[11r]ate on the left hand side of (24) is approximated by finite

The estimated values are not guaranteed to be equal t0 th€pe yigeos can be found at http:/users.ece.utexas:&ewans/papers/
ground truth values so we only use them as a reference2tas/autocalibration/.

(24)
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TABLE Ill: Absolute estimation error for the panning se-
qguence.

Before calibration & synchronization
T

——video datal
—<—gyro data

Absolute estimation error 1 |
state variable] before calibration | after online calibration < |
T (pixels) 265 357 L , , |
¢z (pixels) 5.2 1.04 ime(s)
¢y (pixels) 13.57 2.29 R
tr (Ms) 3.72 0.056 3
ty (Ms) 21.7 0.33 <
K1 0.111 0.014 |
K2 0.303 0.055

15
time(s)

Before calibration & synchronization
T

1000

NS Fig. 8: Vertical pixel translation raté, (¢) (red) and— f-w, (t+
v tq) (blue) for the running sequence.

°

~1000)

~2000)

rate of x-translation (pixels/s)

Y
. , . | | Before calibration & synchronization
T T

15
time(s)

After calibration & synchronization
2000

1000

o

rate of x-translat
L

~1000)

time(s)

~2000

rate of x-translation (pixels/s)

L L L | L - | After calibration & synchronization

15
time(s)

pixels/s)

Fig. 7: Horizontal pixel translation rate, (¢) (red) andf -
wy(t +t4) (blue) for the running sequence.

rate of x-translation
!

15
time(s)

differences between consecutive frames. In Fig. 7 and FigF%_ 9: Horizontal pixel translation rate,(t) (red) andf -
we show the pixel translation rates and the angular veésiti | (t +ta) (blue) for the panning sequence.

(right hand side of (24)) for the running sequence. We oty pl Y

a 3-second duration sequence in order to make the difference

look more obvious. We can observe that after calibration afgl brocessor. In our simulation, we had run the algorithm on
synchronization, the curve from video data and gyro dagnaligyery other pair of adjacent frames. However, we can run the
much better, which indicates the effectiveness of the Befo ¢jipration less often than using every other pair of adjace

algorithm. _ _ frames, which allows a scaling back of the calculations teme
In Fig. 9 and Fig. 10 we show the same comparison foL | .time constraints.

the panning sequence. Again, the pixel translations coetput
from the video and gyroscope readings align very well after

the proposed online calibration and synchronization. VII. CONCLUSIONS
In this paper we propose an online calibration and syn-
C. Rolling shutter artifact rectification after calibratio chronization algorithm for cellphones that is able to esti-

We apply the proposed online calibration and synchronizg‘-ate not onI_y the camera proje_ction _parameters, but also the
tion algorithm in rectifying the rolling shutter artifaat video 9YfOSCOP€ bias, the relative orientation between the camer
sequences. After calibration and synchronization the cam@nd 9yroscope, and the delay between the timestamps of
rotation can be directly obtained from gyroscope readifigs. 1€ W0 sensors. The proposed algorithm is based on the
rolling shutter artifact is rectified by warping each row et 9€neralization of the coplanarity constraint of the crossp
frame so that all of the rows are captured at the same momHftS ©f matched features in a rolling shutter camera model.
(we fix this moment as the starting time of each frame). Fig. 111 Proposed algorithm can also be naturally extended to
and Fig. 12 show that the gyroscope readings can effectiv@i)gl()bal shutter camera model by forcing the readout time

correct the rolling shutter artifact after sensor calitmrat for ea}ch framet,. to be zero. Monte Carlo simulation and
experiments run on real data collected from cellphones show

) that the proposed algorithm can successfully estimatefall o
D. Run time the needed parameters with different kinds of motion of the
The current running speed of the proposed algorithm ircellphones. This online calibration and synchronizatidn o
plemented in MATLAB (where feature detection and trackingplling shutter camera and gyroscope make it more convénien
are implemented using mex functions of an OpenCV impléer high quality video recording, gyro-aided feature triack
mentation [36]) is 20.95 fps on a laptop with 2.3GHz Intehnd visual-inertial navigation.
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Fig. 11: Rolling shutter artifact rectification for the ring sequence using the gyroscope readings after sensbratedn and
synchronization. Top: five consecutive frames with rollgtgutter artifact. Bottom: the rectified frames.

Fig. 12: Rolling shutter artifact rectification for the pamg sequence using the gyroscope readings after sensbrataln and
synchronization. Top: five consecutive frames with rollgtgutter artifact. Bottom: the rectified frames.

Betors cabraion & ynchoization Then we have

hj(X, V) = det[(a1 X b1)|(a2 X b2)|(a3 X b3>] (25)

th 3 é)hj Oa; th Ob; é)hj
T Can be computed ds’;_, 522 52 + 55 G- 5y can be

rate of y-translation (pixels/s)
h

B

8

8
T

limlés(s) %h j Ob Ob
After calibration & synchronization ShOW hOW to ComPUt C bjl ! a_xl and a_vl ) .
7T Based on the definition of matrix determinant we have
g 200 ah] T
LI b [(az x ba) x (a3 x bs3)] skewa, ), (26)
1

where skew) is defined as in (13).
To simplify the representation, we define

Fig. 10: Vertical pixel translation rate,(t) (red) and—f - (14 k1r? + ,{27«4)(%1 +0l, — )
w,(t 4+ tq) (blue) for the panning sequence. di= | (1 + 2+ K2r4)(u;ﬂ +ul, —cy) (27)
_ 1
APPENDIX A ande; = mdl. Note that here
DERIVATION OF JACOBIAN MATRICES > 5
U, U — Co uy, + vy, — ¢y

In this appendix we derive how Jacobian matrices of " = ¥ + [ - (28)
the measurement equation can be computed analytically. As
shown in (19), the measurement equatigi can be decom- N this way, we have
posed into several independent componeits()} for each b, = R/ (q. ® e1) (29)
single coglananty constraint. Therefore, we only neecdhimns
% and %, wherev contains both gyroscope measuremerccording to (17) and (18). The rotation mati, is not
noise and feature detection noise. affected by the camera intrinsic parameters. So we have

Each single measurement equatfoii) can be represented ob de, Ob,

L =Rflqe © (

in form of (17). Leta, denoteR,f; and letb; denoteR/f/. Jc. 2d, o, )]s (30)

computed in the same way. Without loss of generality, we only
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where The feature detection noider;} appears in (27). Also note

2 thatb; is only affected by’ andv’ . As a result we have
(co—u vl ) y yUml Y1
—(2r1 + 4&27“2)7' 24— — (14 k12 4+ m2r4) ’

? - (211 + 4K TQ) (Cfiugl 77‘1;1 )(u;1 7”;1 761’) _1_
Cy 1 2 2 o
0 s =Rilac® (55 |0))]
(31) L0 (41)
Similarly we can obtair2br, 201 Ibi gng 9bi 0
) ) a_cy aj 3/’61 8:{2_ )
As mentioned in Section V-D, we use a minimal 3-element 86131 =R/[q. ® (g)% 1]
error representatiotid for q. and have Yv1 ! 0
0b, S
550 — —R/skew(q. ® e1). (32)  Inthis way, the derivativé2 can be computed analytically.

For more details about the minimal 3-element error represen
tation please see [32].

Recall that the rotation matriR)} can be computed as in
(10)
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M
1= ] ©wnAty). (33)
n=1

Different from (10), (33) only contains angular velocitiegh  [1]
non-zeroAt, . Similar to (11) which shows how to compute

At,, for the example shown in Fig. 4, we have 2]

At :TQ—(T+td)
Atn:Tn+1_Tn7n:27"' 7M_1
Aty = (T-i—td-‘rtru%)—TM

[4]
whereT is the framestamp for the frame in which the feature
[u] %I]T appears. Please note thgtandt, only affect the [g

T’
-1
!

value of At; and Atyy.
By defining T,

O(wmAt,y,) and ,

(6]

TIY_, 1 ©(wmAty)(ge © e1), we have
by =T,0(wpAty) Ve, Yn=1,--- | M. (35) [7
It is not difficult to show that o
O _ ok 36 .
dat, ~ Lnskewm)wn. (36) g
Therefore, we can compu: and 5>+ as 0]
%—?j = —FMSkeV\(’W\,[)wM + I‘lskem(yl)wl (37)
%‘;1 = —uzl F]\,{SkeV\(’W\,[)wM. (11
Given (14) we can comput%‘g—; as [12]
b, <~ dby
oo _ [13]
by, ngl Owy,’ (38)
where b [14]
1 —_
2o, At, T skew(yy,). (39)

[15]
So far we have derived the derivati@é{i analytically as in
(30), (31), (32), (37) and (38). Next we compute the denati [16]
of by with respect to the measurement noise.
The gyroscope measurement noiae,,, } appears in (33)
through (14). As a result we have
Ob;  0by
Ongy, T dwy,

[17]

(18]

= —At, ', skew(y,). (40)
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