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Abstract—We present a novel motion smoothing algorithm
for hand-held cameras with application to video stabilizaton.
Video stabilization seeks to remove unwanted frame-to-frame
jitter due to camera shake. For video stabilization, we use a
pure 3D rotation motion model with known camera projection
parameters. The 3D camera rotation can be reliably tracked
a gyroscope as commonly found on a smart phone or tablet. In
this paper we directly smooth the sequence of camera rotatio
matrices for the video frames by exploiting the Riemannian
geometry on a manifold. Our contributions are (1) formulation
of motion smoothing as a geodesic-convex constrained regson
problem on a non-linear manifold based on geodesic distance
(2) computation of gradient and Hessian of the objective fuo-
tion using Riemannian geometry for gradient-related manibld
optimization, and (3) generalization of the two-metric prgection
algorithm in Euclidean space to manifolds to solve the propsed
manifold optimization problem efficiently. The geodesic-istance-
based smoothness metric better exploits the manifold straare of
sequences of rotation matrices. The geodesic-convex caaahts
effectively guarantee that no black borders intrude into the
stabilized frames. The proposed manifold optimization algrithm
can find the global optimal solution in only a few iterations.
Experimental results show that video stabilization based
our motion smoothing algorithm outperforms state-of-theart
methods by generating videos with less jitter and without bdck
borders.

Index Terms—Video stabilization, manifold optimization, spe-
cial orthogonal group, gradient projection, geodesic corexity.

I. INTRODUCTION

models, 3D motion models can more accurately reflect the
real camera perspective projection, and thus give more real
istic motion smoothing and avoid image distortion in frame
synthesis. We ignore 3D translation of the camera because
(1) the unwanted jitter in videos are primarily caused by
camera rotation, and (2) frame synthesis with 3D camera
translation would need the depth value at every pixel, wisch
very difficult to obtain accurately. To estimate the 3D camer
rotation we use a gyroscope that is available in many smart
phones and tablets. Current gyroscopes in smart phones have
very high precision and can return more reliable 3D camera
rotation estimates compared to the estimates obtained from
visual features in the video sequence, especially wherether
are many moving objects in the scene or it is difficult to track
feature points due to motion blur or illumination changes.

Under a 3D rotational model, camera motion for a video
can be considered as a sequence of 3D rotation matrices. We
formulate motion smoothing as a regression problem with a
regularization term indicating the smoothness of the secgie
of rotation matrices. Unlike traditional approaches, wpleit
the manifold structure of the sequence of rotation matrices
The formulated problem is based on geodesic distance on the
Riemannian manifold.

Due to the change of camera poses introduced by video
stabilization, the stabilized frames can be only synttezsipr
portions of the scene that are visible in the original frames
Therefore, we have to crop the resulting video with a large
enough cropping size to keep most of the content of the

Hand-held video cameras, such as in smart phones &jhinal video sequence while at the same time guaranteeing

tablets, conveniently capture interesting or memorable M@at no black borders intrude into the stabilized video feam
ments anywhere and anytime due to their portability. Videqg this paper, we introduce a geodesic-convex constraititen
shot with hand-held cameras, however, often suffer fromanifold to approximate such requirement so that the entire
frame-to-frame jitter due to camera shake compared to 8idg@otion smoothing problem is kept geodesic-convex on the
shot with complex lens systems and camera stabilizers sichhgynifold.
steadicams anq tripods. Video sta_blllzatlon aims at rem®vi - previous methods have only exploited the properties on the
the unwanted jitter to generate visually stable and pleasgfanifold of the individual 3D rotation matri$O(3) (Special
steps [2]: (1) camera motion estimation, (2) camera motiQRotion locally through low-pass filtering. Considering the
smoothing and (3) frame synthesis. In this paper we focus gRijre set of sequences of rotation matrices as a Riemannian
the second step. o manifold allows us to model the motion smoothing problem
Our video stabilization algorithm is based on a 3D rotaﬂon@bba"y with proper constraints and solve it optimally.
camera motion model for a calibrated camera with a knownTg sglve the formulated constrained smoothing problem
intrinsic matrix. Compared to 2D affine or projective motion the manifold, we compute the gradient and Hessian of
the objective function using Riemannian geometry, and then
neering, The University of Texas at Austin, Austin, TX, 78 1SA (e-mail: extend t_he tWO'me_mC projection algorithm 'n_ EUCI'de_aaw_
cjia@utexas.edu; bevans@ece.utexas.edu). to non-linear manifolds. The proposed manifold optimizati
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our previous work [1]. imental results show that our motion smoothing method out-
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performs state-of-the-art methods by generating moreestabeal-time methods such as Kalman filtering [17]. 3D rotation
videos with less distortion. smoothing has been implemented locally by low-pass filterin

This paper is organized as follows: Section Il reviewbased on either Euclidean distance [9] or geodesic distance
previous video stabilization algorithms and related oan on the manifoldSO(3) [7], [12]. Motion smoothing has also
tion background. Section Il formulates motion smoothirsy ébeen performed directly on the feature trajectories withou
a regression problem on the sequence of rotation matrieeglicitly estimating the parametric camera motion [18R]
using geodesic distance. Section IV adds hard geodesieronThese methods are actually also based on 2D motion models.
constraints to the optimization problem to guarantee thatThe manifold structure of 3D rotation has been extensively
no black border will be present in the stabilized videostudied in computer graphics. It has been shown that a linear
Section V presents the computation of gradient and Hessiaterpolation on the geodesic between two different poses
of the objective function using Riemannian geometry and thgives a very smooth and natural animation of rigid body [20].
generalizes two-metric projection algorithm in Euclidspace Such interpolation is equivalent to constructing a cunat th
to non-linear manifolds. Section VI shows the convergerfce minimizes the sum of geodesic distances between every pair o
the proposed algorithms and compares the proposed motamhjacent knots. This fact motivates our formulation of ceane
smoothing method against state-of-the-art algorithmsti®@® motion smoothing on the manifold and the use of geodesic
VIl concludes the paper. We have publicly released the Matistance as the smoothness metric.
lab code for video stabilization using the proposed motion Although SO(3) has additional applications in computer
smoothing algorithm [3]. vision, medical imaging and robotics, the sequence of 3D
rotation matrices was hardly investigated as a whole. Ir} [21
discrete regression is first applied on the sequence ofiwotat
matrices with conjugate gradient descent algorithm pregos

Camera motion has been commonly modeled using 2B solve the formulated problem. In this paper we also diyect
affine or projective approaches [2], [4], [5]. Using full 3Dexploit the manifold structure of sequences of rotationrives
models including both rotation and translation for calibth so that we can formulate 3D rotation smoothing as a regnessio
cameras was first proposed in [6] and further discussed in [Btoblem. Compared to [21], we further compute the Hessian
In both papers complicated approximations are used in fraithe objective function using Riemannian geometry so that
synthesis to handle the problem of missing depth values. tife problem can be solved more efficiently using Newton’s
[8], [9] pure 3D rotational models with known intrinsic carae method on the manifold.
parameters were shown to generate high-quality resultewhi previous video stabilization methods usually stabilize th
only needing homography-based warping in frame synthesigdeo first without considering the cropping size of the tesu

Gyroscopes and other inertial measurement sensors hamél crop the stabilized video as a post-processing step [7],
been widely used in robotic localization problems togethg1r2]. Such methods cannot optimally smooth a video sequence
with visual measurements [10], [11]. However, they were ngjith a pre-fixed cropping size and usually have to sacrifice
used in video stabilization to replace the feature-basetibmo the smoothness. Rendering the unseen part of the frame
estimation until they became accurate enough and widel¢ing mosaicking and inpainting algorithms with the help
available in cell phones recently [9], [12]. Compared wiilie  of neighboring frames allows the original size of the video
era motion estimation using only visual measurements [13h be kept [2]. However, the rendered parts usually have
[14], estimation with inertial measurements is faster amdlen much lower image quality, especially for the videos with a
robust, especially for the cell phone cameras that use CM@$ of moving objects. The cropping size is first considered
image sensors. In these cameras different rows in the saggea hard constraint in motion smoothing step in [4]. In this
frame are captured sequentially from top to bottom. Whesaper we approximate this constraint with a geodesic-oonve
there is fast relative motion between the scene and the @megt on the manifold. Constrained optimization on Euclidean
the frames can be distorted because each row was captugglce has been extensively studied [22], but not on noasline
under a different 3D-to-2D projection. This kind of distort  manifolds. If the constraint set has some simple structure,
is known as rolling shutter effect [15] and can easily bréek t such as a Cartesian product of Euclidean balls, an efficient
multi-view geometry that are used for motion estimatiomfro two-metric projection algorithm can be used to solve the
visual measurements. Using the camera motion estimatéd vaptimization problem [23], [24]. The proposed constraiet s
the help of the inertial measurements [9], [12], [16], mdi in this paper is a Cartesian product of geodesic balls on
shutter effect can be effectively rectified so that each &anmanifold. We extend the two-metric projection algorithm in
looks as captured under a single camera pose. For the resggélidean space to general manifolds so the proposed nianifo
the paper, we assume that any possible rolling shuttertsffegptimization problem can be solved efficiently and optimall
are rectified before video stabilization is applied. Oumm®ed Table | summarizes motion smoothing methods in prior work
video stabilization methods would therefore work for caaser and in this paper for video stabilization.
with or without shutters.

Motion smoothing methods using 2D models are based
on Euclidean distance. 2D camera motion can be smoothed
using local methods such as Gaussian-kernel low-pasgifigter All of the 3 x 3 rotation matrices constitute the Special
[2], global methods such a4 -based regularization [4], andOrthogonal Grouf8O(3), in which any elemenR satisfies

II. RELATED WORK

IIl. SMOOTHNESS OF3D ROTATION SEQUENCE
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TABLE |
COMPARISON OF PRIOR WORK AND THIS PAPER ON MOTION SMOOTHING FOVIDEO STABILIZATION.
Paper Motion model Smoothing method Constrained by cropping size Global smoothing
2 2D Low-pass filtering no (full-frame with inpainting) no
9 3D (Euclidean) Low-pass filtering no no
7] [12] 3D (manifold) Low-pass filtering no no
4 2D Regression yes yes
18 2D (trajectories) Regression no no
19 2D (trajectories) Subspace low-pass filtering | no no
Proposed | 3D (manifold) Regression yes yes

the constraintRRT = I and detR) = 1. SO(3) can be proposed gradient-related optimization algorithms in riegt
also considered as an embedded Riemannian submanifold@dtion easy to implement.
Euclidean spac®® (represented a8 x 3 real matrices). A The goal of video stabilization is to remove the visible
natural extension of Euclidean distance in Euclidean spacejitter and make the camera motion trajectory change smyothl
the Riemannian manifol8O(3) is the geodesic distance  Given the manifold structure 80O(3), it is natural to define
the smoothness of a rotation matrix sequence as the sum of

dg(Ri; R;) = [[logm(R]R;)]| @) geodesic distances between adjacent rotation matricetheAt
where logni-) is the matrix logarithm operator andl- || is Same time, we need to guarantee that the smoothed camera
the Frobenius norm of a matrix. In fact, logR[R;) is a motion trajectory does not deviate from the original tr&geg
Skew-symmetric matrix representing a tangent vector in tF@) much. As a reSUlt, we formulate the video stabilization
tangent spacdr,SO(3) that indicates the non-normalizedProblem as

direction fromR,; to R; on SO(3). Usually we also write N N-1y
Iogm(R;Rj)_ aslogg, R; and call it the logarithmic mapping. nrlgp Z 5df}(Rl-, R) +a Z 5de(Rl-, Rit1), (5
Inversely, given any tangent vectgre Tg,SO(3), we can {Ri} i =1

defineexpg, & = R;expm(§), where exprty) is the matrix \ here (R 1 is the sequence of stabilized rotation matrices,
exponentlal operator. Herexpg, ¢ is called the e_zxponerltlal {Ri} is the original sequence of rotation matrices, is
mapping and is used to mgﬁi_along the direction def'”eF’ the weighting parameter controlling the smoothness of the
by £ on SO(3). The logarithmic mapping and exponentiaapijized trajectory. (5) is an extension of discrete edfitting
mapping together define a curve problem in Euclidean space with penalty on the first order
t €10,1] = (t) = expg, (t -logg, Rj) 7 2) difference. Note that a_Itho_ugh the objective function |ﬂ_\dﬁi
based on the geodesic distance between elemer8€©i(8),

which is known as the minimizing geodesic fraR; to R; it is defined on the rotation matrix sequence manifoits;.

on SO(3). The minimizing geodesic is a generalization of the

notion of “straight line” in Euclidean space to Riemannian IV. CONSTRAINED VIDEO STABILIZATION

manifolds, representing the shortest path between twotpoin L o . L

in the manifolds given a Riemannian metric. The length of the The _proposed objective funct|on_ n (5).'5 effective n
minimizing geodesic is defined in (1). smoothing the sequence of 3D rotation matrices. However, in

For each video sequence, we can obtain a sequence oft§5|af5t step of video stgbilization, the synth(_esized ﬁsamay.
rotation matrices corresponding to all of the frames from t ontain black borders since not every pixel in the syntteesiz

gyroscope readings or the estimation using matched feat fne 1S V_'S'ble_ In t_?ﬁ orlfglnal frarr]ne due to thhe chané:]; _Of
points. Next we consider the sequence of 3D rotation matric amera orientation. Therefore, we have to crop the syrtaesi

as a whole and exploit the properties of the Riemanni rames into a smaller size so that there are no black borders
manifold constituted by these sequences in the stabilized video. In other words, given a preferred

Assumex = [Ri, R Ru|" represents the sequenc@tab“ized size of the video, the video stabilization systaust
of 3D camera rotati’on f(7)r ar’1y video sequence witHrames. g_u:_;\ran_tee that_eyery pixel in th_e (_:ropped stabilize_d frames
Clearly all of the possible rotation matrix sequences with visible in the original frames. This is a hard constraint thas

elements constitute a manifoldM z with dimension3N. In to be con5|dereq In th_e camera motion _smoothlng aIgonthr_n.
fact we have Assume the intrinsic projection matrix of the camera is

given asK. Under pure rotational camera model, for any pixel
Mpr =S0(3) x SO(3) x ... x SO(3), (3)  [uij,vi;]T in the stabilized frame, its corresponding 2D pixel

. . location in the original framéi,;, #;;]7 can be computed as
a Cartesian product ofV SO(3) manifolds. Furthermore, d @i, Ui P

for any x € Mg, the tangent spac&xMpr at x can be o _ Uij

represented as {37] =g | KRR/ K™ |v;| |, (6)
1,72, N, (4) o 1

where{n;} are real skew-symmetric matrices. In other word¥/here the function

the tangent vectors and corresponding exponential (and log x

arithmic) mapping are still separable as the elements in gl ly = [;?ﬂ (7

the manifold of rotation matrix sequences. This makes the z
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is used to convert the homogeneous coordinates into in
mogeneous coordinates. Assume that the frame size in
original video isw x h, and the coordinates of the top lef
corner and bottom right corner of the cropped rectangleén 1
stabilized video ardc;,d], [c2,ds2], the hard constraint for
video stabilization can be represented as

0< 1}1-3- <w v [uw] st c1 Suij < e ®)
0<v;; <h Vij dy <y <da

The constraint (8) is very complex with respect to tF
rotation matrices that we want to compute and no algorithsns
far as we know are guaranteed to handle it efficiently (naie tl
for 2D affine or similarity motion models, this constrainjtist )
linear with respect to the variables). To overcome thisaliffy o
we replace the constraint in (8) with a simpler constrai '
defined on the manifold -

||1Og12~{7 RZHF < TQ,V’L', (9)

whererg is a fixed threshold depending on the relative size of
the cropped rectangle in the stabilized frames. The cadnstra
(9) just means that the geodesic distance between the akrigin
and stabilized camera orientations should be less than
ro is defined as the largest value to guarantee that for all
of the camera orientations satisfying the constraint (8%, tFig. 1. Approximation of inhomogeneous constraint (8) gdiomogeneous
constraint (8) is also satisfied. We know that any 3D rotatianstraint (9). The maximum allowable geodesic distanass different
matrix can be represented by a rotation axis and a rotati@ﬁ?“on_ axes are shown as blue points. The homogepeousa:gjeadistance

. . . constraint is shown as the sphere. The bottom three figums gte same as
angle, so constraint (9) can be also interpreted as thdaotat; . 1, figure from three perpendicular views.
angle of (R;)"R?** being no larger tham,. Constraint (9)
is homogeneous on every possible rotation axis and is glearl _ o
stricter than constraint (8). Fig. 1 shows that the consti@) geodesic convex anq tr_lus_global opnmallty can be guardntee
is a good approximation of the original constraint. by the proposed optimization algorithms.

In this example, the original frame size 70 x 480 and

the cropped rectangle is at the center of the frame witty. MOTION SMOOTHING VIA MANIFOLD OPTIMIZATION
size 540 x 360. For each possible rotation axis (denoted by For brevity, we usex € My to represent the rotation matrix
the tangent vectologg R, after normalization), we find the sequencgR;} and write the objective function to minimize
maximum geodesic distance that guarantees constrains (8]5) as f(x). In addition, we defindR; = A;x, whereA; is a
satisfied. In Fig. 1 the homogeneous constraint is shown g 3N matrix that is used to extra®®; from x. Similarly we
the sphere and the maximum allowable geodesic distance ¢ah mapR,; back to its corresponding location inas ATR,;.
each rotation axis (we uniformly sample 1000 rotation ai®s) The constrained motion smoothing can be finally formulated
shown as a blue point. We also show three perpendicular vieses
to better illustrate the difference between the two conssa min f(x), s.t.x € Q, (10)
From Fig. 1 we can observe that for most rotation axes x

the maximum allowable geodesic distance is close to tM&ieref) = €2; x Qy x --- x Qy is a Cartesian product of
homogeneous bound. geodesic balls. Each geodesic ball is defined as in (9):

The constraint (9) has two significant properties. First, it o . ) .
has a simple forr(n )— each rota?ion matripx iﬁ the sequence 4 = {R; € SO(3) : [ logg, Rullr < 70} (11)
is constrained in a geodesic ball. As a result, the constrain . o
set is a Cartesian product of geodesic balls. This propefly Unconstrained Optimization
guarantees that gradient projection algorithms can beuwtgdc  In this subsection we first ignore the constraint and only
efficiently, as shown in the next section. Second, the caimtr minimize the objective function in the entire manifaldl 5.
set is geodesic convex — given any two points in the set, thakie consider the constrained manifold optimization in thetne
is a minimizing geodesic contained within the set that joirsubsection.
those two points (The geodesic convexity of the constraint c  As we mentioned, we will directly solve the optimization
be easily proved by the triangular inequality of Riemannigoroblem using manifold optimization methods. In other vgrd
metrics). Geodesic convexity is a natural generalizatibn the optimization algorithms are based on the geometricstru
convexity in Euclidean space to Riemannian manifolds. & thure of the manifold, not its embedding Euclidean space. In
next section we will prove that the objective function (5aiso fact, the problem in (10) without the constraint is equinale
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to an unconstrained quadratic programming problem in Eu-Lemmal: The gradient of the functiok;(x) defined in
clidean space. In Euclidean space, such problems haveadelog&3) on manifoldM g can be represented as

form solution; however, on non-linear manifolds we have to T T
use iterative algorithms. gradh(x) = —A; log,x Aiv1x — Ajyylogy, 1 Aix (16)

Similar with Euclidean space, gradient-related iteratie Proof: Véx € TxMeg, define a geodesic curve(t) =
gorithms are widely used in optimization on manifolds [25EXPx(t¢x), then from the definition of differential map we
The gradient-related algorithms for unconstrained ogtation  Nave dhi (+(t))
problem on the manifold\ g can be summarized as follows: Dh;(x)[¢x] = ar a7
For any elemenk in the manifold of rotation matrix sequence t=0
Mgp, given any tangent vectaf, € TxMp, we can move NOw consider a family of geodesics
x alo_ng the direction defined by, using the exponential c(s,t) =expy, i (s1oga,, ) Aiv(t)). (18)
mapping expéx. Note that given the separability property
of the tangent vectors the exponential mapping can also lBgnote st de(s,t)
implemented separately for different rotation matriceghie { ¢s,6) = ae® (19)
sequence. I is a descent direction related to the gradient of s,t) = g

the objective function ak, then we have the gradient-relatedhccording to the definition of exponential mapping we have
algorithm on the manifold\i . In fact, similar convergence ¢/(s,t) = log,,, ) 4:7(t) and is independent of. Then
results of gradient-related algorithms has been extended f we have

Euclidean space to any manifold [25]. The gradient-relatedin;(v(t))

algorithms can be classified according to the choice of the ™ g~ &a(’gfmw(t) Ary(1),108 4, 4 A (1))
descent directions. Popular gradient-related algoritimziside d, , ,
steepest gradient descent, conjugate gradient descewt, Ne = &<C (s,8),¢'(s,8)
ton’s method, etc. d . ,
In this paper we investigate steepest gradient descent and = (g cs:t).c(s1)
Newton’s method, which needs the computation of gradient I d
and Hessian of the objective function. = / <$C(S t),c(s,t))ds

- /d<<st> (s, )ds

B. Gradient Computation

In manifold, the gradient of a function is defined as follows: = (&(1,1),c'(1,1)) = (&(0,1),€(0, 1))
Definition 1. For any real-valued functionf : M — R = (A (t),1084,, ) Aiv(t)) —
defined on manifoldM, the gradient grafi{x) is a vector (Air17 (t),Jog4, o) Ay (D). (20)

field that satisfies . . .
Note that the tangent vectors in 8fl  also has its Cartesian

(gradf (x), &x)x = Df (%) [€x], Véx € TeM, (12) productstructure, so we dengle= A;&x and§;+1 = Ait16x-
From the definition of exponential mapping we hay¢t) =
where(-, -)x on the left-hand side of (12) is any inner product,. Therefore, we have

in the tangent spacé, M that induces a Riemannian metric, dh, (v(1))

Df(x)[-] on the right-hand side of (12) is the differential map —ar = (& = &i+1, 1084, 4 (0) 4:7(0))
of f atx. =0
To compute the gradient we first rewrite the objective = (&~ &i1sl0ga, i Aix)
function as = (&, —Allogy  Aip1x —
Al loga, x Aix). (21)
X) = Zgi(x) +a Z hi(x), (13)  According to the definition of gradient we have now proved
Lemma 1. ]
where g;(x) = %dﬁ(fii, R;) and h;(x) = %dg(Ri, Rii1). Now we have deri_ved the gradientgf(x) andh;(x). Using
Note thatR; = A,x in our notation. linearity of the gradient, we can obtain
If we considerid?(R., R;) as a function oR,;, it has been gradf (x) = —AI(IogAlxﬁl +1log 4, Aox)—
proved [26] that N—1
1 - _ Z AiT(logAix R; +logy,, Aipix +logy,, Aio1x)— (22)
gradidg(Ri, Rl) = _logRiRi' (14) i=2

A-IJ;/' (logANx Ry + 1OgANx AN,1X).
Equation (22) clearly shows the decomposition of giad
grady;(x) = —AiTIogAixf{i (15) into NV skew symmetric matrices corresponding to ftieota-
tion matrices inx. Given the direction, we can use exponential
We propose the following lemma to compute the gradief{apping to updatex in each iteration for steepest gradient
of h;(x): descent algorithm.

Given the separability feature of, we can further obtain
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C. Hessian Computation E™ defined forT4,xSO(3). In other words, the orthonormal

In Euclidean space the convergence rate of steepest gradiS Of xMr can be represented by subgroups and each
descent is strongly affected by the eigenvalues of the BHiessPUPgroup corresponds to one particular rotation matrbhen t

matrix of the objective function Hegéx). This property also €ntire sequence. We propose the following proposition:
holds for non-linear manifolds [25]. In fact we can check Proposition1: Given the decomposed objective functions

that the Hessian matrix of the given objective function ks il d€fined in (13) and an orthonormal basisTfMpr in form

conditioned (the largest eigenvalue is much larger than tRE{Ei'}, we have

smallest eigenvalue). Theref_ore, the steepest gradiestede {Hesg;i(x)(Egﬂ E™) = Hesgg (Aix)(E", E™)

method converges only sublinearly. n m oo .
Newton’s method has been proved to converge locally Hesgi(x)(Ej JE) = 0,0f j#iork # i

quadraticglly to the thimal squti_on for both Euclid(_aaraep ~ [Hesshi(x)(E", E™) = Hes$a, , x(Ax)(E", E™)

and non-linear manifolds. Especially for general Riemanni " - n m

manifolds, the framework of Newton’s method was first pro- Hessh; (x) (7, Ef) = Hes®a,x(Aiax)(E", E™)

posed in [27], [28] with a proof of quadratic convergence. § Hessu(x)(E, Efy) = —Hes$a,, x(Aix)(E", E™)
Newton’s method needs calculating the Hessian Ifess Hes$,; (x)(E}, , E") = —Hes$ha,x (A 1x)(E", E™)

In manifolds the Hessian is defined as following: Hesshi(x)(E}l, Em) =0,if j#di,i+10rk#d,4i+1
Definition 2: For any real-valued functiorf : M — R (27)

defined on a Riemannian manifoltt with Levi-Civita Con- The computations on the right-hand sides of (26) and (27)

nectionsy, the Hessian Heggx) is mapping from7xM to have been defined in Lemma 2.

(26)

T« M satisfying Proposition 1 can be easily proved using the Cartesian
B product structure ofM r and the definitions of gradient and
Hessf (x)[6x] = Ve gradf (x). (23) Hessian. Using Proposition 1 and linearity of the Hessian we

Note that the Levi-Civita Connectiorye, gradf(x) is a kind can obtain 8V x 3N matrix representatiof/ of Hessf (x)
of affine connection that measures in the change in gsad for a given orthonormal basigt}' }. To compute the direction
when x changes infinitesimally in the direction @f [29]. N Newton's method, we first computegradf(x) and then

The Hessian is also usually defined as an symmetric operdi@present it as a vecter under the orthonormal basis=}" }.
on two tangent vectors as Then we just need to solve the linear systém « = v and

the direction is represented by the vectounder the same
Hesy (x) (éx, 1x) = (Hess (x)[éx], nx) = (Hess (x)[nx],&x)  basis.
(24) Given any gradient-related update direction we use the
To calculate the Hessian on manifolds is a very difficulirmijo rule [31] to select the step size.
task. We start to derive the Hessian of the proposed obgctiv
function from the following lemma in [30]. . N
Lemmaz2: Consider the geodesic distance functiorl:l)' Constrz_;uned Opt|m|zat|_on o )
poP) = %dﬁ(P,Q), where P,Q € SO(3). In_ Euclidean space, if the optlmlza.tlon.problem is con-
let r = d,(P,Q) be the geodesic distance. LefStrained, th(_a update with the descent_dwecthn may bedmitsi
v(t) : [0,r] — SO(3) denote the unit speed geodesithe constraint set. When the. constraint set is convex and the
connectingQ to P. Vép,np € TpSO(3), we have the update direction is the gradient, an option is to project the
Hessian operator update onto the constraint set in each iteration. This isvkno
as gradient projection algorithm [22] and it only works fast
@ /2) (&5,m8), (25) when the constraint set has simple form so the projectiqn ste
is easy to implement, such as box constraints. The limitatio
where || and L signs denote parallel and perpendicular olf this algorithm is that the update direction can only be the
thogonal components of the tangent vector with respect goadient of the objective function. If the update directisra
4(r). Here%(r) € TpSO(3) is the parallel translation of scaled version of the gradient, such as in Newton's method,
¥(0) = logg P along the geodesic fror@ to P. the projection step on the convex set should also be based on
Given Lemma 2 and any orthonormal bagi&™},—123 the same scaling of the original metric. This will make the
of TpSO(3) we can compute the matrix representation girojection step very hard to implement even if the constrain
the Hessian operator by computing its result on every pair &t has a very simple form.
basis tangent vectors. Lemma 2 gives us a way to compute thén [23], [32] the authors proposed a new version of scaled
Hessian matrix when the objective function is the geodedgicadient projection method called “two-metric projection
distance defined or8O(3). In our proposed problem we method”, which can use the scaled gradient as update directi
need to find the Hessian fag;(x) and h;(x), which are while keep the projection step based on the original metric.
defined on the manifoldU r of rotation matrix sequences.The most important step in two-metric projection method is
Note that due to the separability feature (Cartesian prioduc decompose the gradient in a pair of dual cones determined
structure) of the tangent vectors 8fl z, we can always find by the constraint set and only scale one component. When the
_____ ~ of Ty Mg, where gradientis scaled by the Hessian (similar to Newton’s mgtho
only A,E! is non-zero and it is equal to the basis vectdt has been proved that the two-metric projection method can

Hessq(P)(¢p, ) = (b, nb) +
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converge to a stationary point globally and has superlinddnd of Cartesian product form. For any € €2, define the
convergence rate locally around the stationary point. Arele active index sef (x) = {i : ||x; — ¢;|| = 70}, then clearly we
summary of the general form of two-metric projection methoklave each component of the normal covfeat x as

and its modification can be found in [24], [33]. In this paper
we will first apply the two-metric projection algorithm on
Euclidean space with the constraint set being a Cartesian

i¢I(x)
i€ I(x) (30)

- J{o},
N = {{vl cvi = AMx; —¢), A >0},

product of Euclidean balls. Then we will extend the algonith +1ap, we can get each component of the dual cbifeas

into optimization in manifold with the constraint set beiag
Cartesian product of geodesic balls. To our knowledge this i
the first time that the two-metric projection method is exlieah

to solve a constrained manifold optimization problem.

E. Two-metric method in Euclidean space

i¢I(x) (31)

i€ I(x)

* RK,
N = {{Vi s (vi,x; —¢;) <0},

If we define a second active index set as

I(x) = {i:i e I(x),and/(gradf (x)):,x; — ¢;) < 0}, (32)

First we review the algorithm prototype proposed in [23hen we can get each component of the projection of the

for generalized constrained optimization problem on a egnvgradient on to the normal con¥ as

set in Euclidean space:

w6

0, i¢I(x)

(28) (VN)z = {—3/\/ ((gradf (x))i,x;—c;) (Xi . Ci), i e j(x) (33)

[Ixi—ci[]?

where f is any smooth real function on Euclidean space arkinally each component of the s&t and its linear hull[T]
Q2 is any nonempty closed convex set in Euclidean space. Téan be represented as

Two-metric Algorithm in Euclidean space (Algorithm 1) is

described below. R¥, i ¢ 1(x) .
Ti={vi: (vi,xi —¢;) <0}, i€l(x),i¢I(x) (34)
Algorithm 1 Two-metric Algorithm in Euclidean Space {vi:vi L (xi—c)}, ic f(x)
1 INPUT: x%,k =0 K o
2: repeat 7] = {R ; i¢ {(x) (35)
3. Compute gragl(x") {vi:vi L(x;—¢;)}, 1€l(x)
4 v = sy Py (—gradi(x")) . Now we construct the linear maf;. Assume the Hessian
5 vr = P7STPy- (—gradf (x)) matrix of the objective function ak is H. Without loss of
3 Ba;{gf;ﬁl Pt + akv) generalits;; t?; hrelabel?ntg the_coordinha:ﬁs?ff ncicessalry, we
(o is the step size chosen by the Armijo Rule) assume that there exists an indesuch that/(x) = {g-+1, ¢+
P R 2,...,N}. We diagonalize the Hessian matrix with respect to
: — I(x) as
9:  where: . o
10 N={y:VzeQ (y,z—x") <0} HZ[O I:|a (36)
(The normal cone at*)
11: N*={y*:Vy e N, (y*,y) <0} where H is the same as the part & corresponding ta ¢
(The dual cone of\) I(x), I is the identity matrix corresponding ti(x) (the last
122 T ={va}tnN* (N — q) components). We define the matrix representation of
13:  [T] = the closed linear hull of” the mapS as H1. It is easy to verify thatS; maps any
14: S+ = a bounded linear map frofy] into [T] point in 7 into 7 itself. Thus we can get each component of
15: sy = a scalar v as

16: until Convergence

— (I gradf (x));. ig I
—P7 (H gradf(x));, i€ I(x),i¢ I(

x)
x)

P..(-) in the algorithm means the projection of a point onto (vr)i =

: —(gradf (x)); + L@l <) (x, ),
a set. To accelerate convergence the linear fiapcan be

[Ixi—ec;[]?

chosen based on the inverse of the Hessian of the objective iel(x)
function. Next we show how this algorithm work when th?f h _ 1 then finall (37)
convex constraint se® is a Cartesian ball of Euclidean balls: W€ CN00S€sy = then finally we can get
. _
9291X92X...XQN791‘:{X1‘ : ||XZ‘—Ci|| S’I’Q}, (29) _(H Agradf(x))i’ Z¢I(X) N
v; = —Pr(H 'gradf(x));, i€I(x),i¢ I(x) (38)
where{c;} are the centers of each Euclidean ball apds —(gradf(x));, i c f(x)

the constant radius of these balls. We also assume that each

Euclidean ball is with dimensiof . We can find that only for the indices not in the active bgt)
According to the Cartesian product structurefpfwe can the gradient is scaled by the inverse of the Hessian to get the

also decompose the seté, A, T in Algorithm 1 into such update direction. In extreme case that the active set isyalwa
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empty (the boundary of the constraint set is never reacheitigquality of Riemannian metrics. Here we will focus on the
this algorithms turns into regular Newton’s method. Notatth proof of the geodesic convexity of the objective function in
due to the Cartesian product structure all the computati¢tld). From the property that a linear combination of geadesi
except the inverse of the Hessian matrix can be performeonvex functions is still geodesic convex, it is sufficieat t

independently for each component. prove the functiongj;(x) and h;(x) are geodesic convex. It
has been shown that the geodesic distance fungiipiP) =
F. Scaled Gradient Projection on Manifold 3d2(P,Q) is geodesic convex with respect B inside a

(geodesic ball centered & with radius less thanr/2v/A,
where A is the upper bound of the sectional curvature of the
rgpnifold thatP and Q lie in [26]. For manifoldSO(3) the
sectional curvature id/4 everywhere. So the radius of the
odesic ball centered €} should be less tham/2. Consider

Now we generalize the two-metric projection algorithm t
manifolds. The convex constraint s& now becomes the
Cartesian of geodesic balls defined in (9). The centers
these balls are the original camera rotation matri¢Bs}.
Based on the discussion in the previous subsection we peop%g . . )
the Manifold Two-metric Algorithm for Constrained Motion as a rotation matrix for a certain frame and ¥eas the

: - : rotation matrix of its adjacent framé is well guaranteed
S th Algorithm 2) below t Ive th bl 10), o _ ’ . :
moothing (Algorithm 2) below to solve the problem in ( )to be inside the geodesic ball centeredtwith radiusz/2

since the change of rotation between two consecutive frames
Algorithm 2 Manifold Two-metric Algorithm for Constrained iS very small. IfQ is the original rotation matrix for a certain

Motion Smoothing frame andP is the new rotat?on matrix in the stabilized_ vit_jeo
1. INPUT: A fixed orthonormal basi§ 7 }n—1.2.3:-1...v for the same frame, theR is still guaranteed to be inside
of TuMp, X0, k =0 ’ e the geodesic ball centered @ with radius«/2 given the

proposed constraint (11).

It has been shown that a function is geodesic convex
if and only if the matrix representation of its Hessian is
positive semi-definite (PSD) [34]. We have mentioned that th
function PR, (A;x) is geodesic convex with respect t;x.

5. Find active sef(x*) = {i : ||logg, Aix*|| = 1o} So the matrix representation of its Hessian maH9<|§ PSD.

6 Find active set Acco_rdlng to Proposition 1 the matrix representation of the
M) = {i: i € I(x), <(gradf(x’“))i,1ogﬁi Axh) < Hessian ofg;(x) can be represented as
0} 0

7. DiagonalizeH to H with respect tol (x*) as in (36)

8: Compute the vector representation of the update

2: repeat

3:  Compute grad(x*) and its representation vectarin
the fixed basis

4:  Compute the representation matrik of Hessf (x*) in
the fixed basis

direction as Hy (40)
9:
~(H i, i I) 0
vi={ —Pr(H 'u);, iel(x),i¢I(x) (39) (H, locates atthe coordinates corresponding to frayrend
—u;, iel(x) is cl_early also PSD. _ .
o Since we have also mentioned that the function
Compute the update.d|rect|onh € TyrMp based on da.x(Ais1x) is geodesic convex with respect tb;,1x, its
Its VeCtOZ r?presentatlm . Hessian matrix representatidfy, is PSD. From Lemma 2 the
10: Up;cd_ateX = Pq(exp,r d) ) Hessian matrix representation of the functipm,  ,x(A4;x) is
(a” is the step size chosen by the Armijo Rule) also Hj. Thus according to Proposition 1 the Hessian matrix
1 k=k+1 representation of,;(x) is
12 where: _ -
13 Ti = {& € Ty SO(3) : (&, logg, AixF) < 0},i € 0
I(x),i ¢ 1(x) :
14: until Convergence -
g Hh Hh (41)
—H, Hp
G. Geodesic-convexity of Motion Smoothing L 0]

In this subsection we will show that the proposed problethis not hard to show that this matrix is also PSD.
in (10) is geodesic convex on the manifald . Geodesic-  Therefore, we have show that the functigiix) andh;(x)
convexity is a natural generalization of convexity in Euin (13) are geodesic convex, which means the objective
clidean space to manifolds. Similar with Euclidean spackinction f(x) is geodesic convex. Given the property that the
for geodesic-convex optimization problems, local minimism proposed two-metric scaled gradient projection algorittan
also global minimum [34]. We mentioned in Section IV thahlways converge to a stationary point, the global optimalit
the constraint set is geodesic convex according to triamguthe proposed algorithm is guaranteed.
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H. Choice of Regularization Parameter 1000 e

As we mentioned, the original objective function (5) ¢ g 4 —x— Steepest gradient descent
sists of two different terms: data-fitting term and the regt g
ization term. The parameter controls the relative weights « g e0o
the two different terms. The data-fitting term was origipi 5
introduced into the unconstrained video stabilizationbferm % e <
to guarantee that the smoothed camera motion trajectory & o0 T— .
not deviate from the original trajectory too much. Howe' ° A a—
we can find that such requirement is redundant if the ° s 4 5 6 7 8 o 1
constraint (9) is added. Therefore, the optimal choicexc, iteration

should be mfmlty n Or(_j_er to re_aCh the g_rea_lteSt d_egree % 2. Convergence of two gradient-related algorithms uoconstrained
smoothness in the stabilized trajectory. This is equivalen motion smoothing: Newton's method and steepest gradiesttemé. For these
dropping the data-fitting tenﬁ:N 1 gi(x). algorithms, we compute the gradient and Hessian of the tigetunction
i= 4 ; .
However, such setting is impractical since the propos&gh? Riemannian geometry.
algorithm relies on inverting the matrix representation ¢~

900

Hesg(x). According to the discussion in Section V-G, the = —— Gradient projection o
Hessian matrix representation BF,"" h;(x) can be written > &~ Two-metric scaled gradient projection
as S
[ H, —H, ] g
—H, 2H, -H, 2
—H, 2H, 8
H = ) . (42 £
. 300 L L = = = = = = = =
2Hh _Hh 0 1 2 3 4 iter;tion 6 7 8 9 10
—H, Hp

. . ~ Fig. 3. Convergence of two algorithms for constrained mosmoothing:
Recall thatH is a3N x 3N matrix given an orthonormal basiSmanifold gradient projection and the manifold two-metricaled gradient

of Ty M r. From the fact that each x 3 matrix block Hj, is projection (proposed).
PSD, we can decompose it &5, = 0,70,. As a result, we

—_oT i _
can decompos# asH = 676, where® is a3(N —1) x 3N In Fig. 3 we compare the convergence rate of gradient

matrix and projection method and the proposed scaled gradient project
On —Oy method in solving the constrained motion smoothing problem
©n —6n The test video sequence is the same as in Fig. 2. The original
©= : (43) frame size is720 x 480 and the guaranteed cropped size is
o, -0, 540 x 360. The radiusrg is found as0.11. We can observe

that proposed two-metric scaled gradient projection nutho
Clearly the matrixt/ does not have full rank and thus is noyccessfully converges in only 4 iterations. Note that the
invertible. Therefore, in practice we leave the data-fiftierm  gifference in the final convergence values of the objective
in the objective function and set to a very large number to fynction between Fig. 2 and Fig. 3 is caused by the constraint

avoid the numerical problem of matrix inversion. in (9). Each iteration of the proposed method takes 3.58s on
the same machine as in Section V-C, while the gradient pro-
VI. EXPERIMENTAL RESULTS jection method takes 18.66s per iteration. The reason gmadi

We first compare the convergence rate of different algprojection method takes such longer time in each iteratgon i
rithms in solving the formulated smoothing problem on ththat it needs multiple tries to find the proper (descent) siep
sequences of rotation matrices. Fig. 2 is an example showi#gjng the Armijo step size selection method. For the progose
the convergence rate of steepest gradient descent metlod method usuallyl is the proper step size (no more tries are
Newton's method in solving the unconstrained formulatgteeded) because the gradient has been scaled by the Hessian
problem. In the experiment we try to smooth a sequence @f the objective function.

478 3D rotation matrices (478 frames) with= 1000, which Fig. 4 shows another example comparing the convergence
were taken at a frame rate of 30 Hz. Figure 2 shows the valuese of gradient projection method and the proposed scaled
of the objective function inl0 iterations. Newton's method gradient projection method. In this example there are 761
successfully converges in just iterations. Each iteration frames in the test video sequence. The proposed two-metric
of the Newton's method takes 2.93s on a 2.3GHz Intel &caled gradient projection method successfully convenges
processor machine with MATLAB implementation (withoubnly 5 iterations. In Fig. 5 we additionally run the proposed
parallel processing). From Fig. 2 we can observe that thg@o-metric projection method on a video with 163 frames and
scaling of gradient using Hessian matrix can significantishow the running time of each iteration for all of the threst te
accelerate the convergence, which motivates us to do the sasitleos with respect to their numbers of frames. We can olbserv
thing in solving the constrained problem. that the running time of each iteration increases lineaiith w
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Fig. 6. Comparison of the original and the smoothed camestioa using
the proposed two-metric scaled gradient projection metlandconstrained
smoothing on the manifold of rotation matrices.
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YouTube video editor i$40 x 360 so we use the same size in
200 300 400 500 600 700 so  our method. In all of the experiments we fix the smoothness
number of frames parameter in our approach as= 1000 and find very little

Fig. 5. Running time of each iteration for the proposed nwgitwo-metric  difference in the results with higher value of
projection algorithm. First, we test the video stabilization algorithms on a video
shot by a walking forward person. We use feature trajeciorie

the increase in the number of frames, thanks to the spaf§eshown in Fig. 7 as a visualization of the changing frames.
structure of the Hessian matrix as shown in Proposition 1. We detect Harris corner points in a certain frame (no. 270 in
A comparison between the original camera rotation and thég- 7) and track them for ten frames. The feature trajeetori
smoothed camera rotation is shown in Fig. 6. In this figur@re plotted as black curves on top of the starting frame (the
the camera rotation corresponding to each frame in the vidégmes themselves are plotted using alpha channel 0.5 (more
sequence is shown in form of Tait-Bryan angles (a simildfansparent) to make the curves clearer). For a stabiliggbv
representation as Euler angles). Note that, however, otiomo the trajectories should be very short since the camera yalw
smoothing is performed naturally on the manifaldy, instead facing forward in spite of jitter caused by camera shake. The
of the Euclidean space of rotation angle representation. 2D ¢1 regularization method [4] can smooth and shorten the
Then we use the proposed constrained motion smoothifigjectories compared to the original video, but the fematur
method in video stabilization. In the experiments we trytes s POINts are still moving up and down. Our algorithm can keep
bilize the video sequences captured by Google Nexus S snflift feature points very steady and the trajectories become
phone. While recording videos, we also captured the readi:?most invisible (just black dots) in the results. Note the
(with timestamps) from the 3-axis gyroscope inside the phorfl€tect and track the feature points independently in theethr
The camera has been calibrated so the camera intrinsicxmayifi€0s so the location and number of the feature points can
K is known. We also assume that the gyroscope and the vid&sdifferent.
have been synchronized so that we can obtain the camera podéext we take a test on a video shot while panning the
(3D rotation) simply from the gyroscope readings. In pgti camera. Video stabilization should only remove the unwante
the calibration and synchronization can be executed usiag fitter while keeping the panning motion of the camera. In.Fig
method provided in [9]. 8 we do the same test as in Fig. 7, except that the featurespoint
We use the proposed constrained motion smoothing mett@j@ tracked in twenty consecutive frames instead of terh Bot
in video stabilization and compare our method with theethods successfully smooth the trajectories of the featur
YouTube video editor. The video stabilization in YouTubg@oints. However, the trajectories in the stabilizationutesf
video editor is based on the approach proposed in [4], whif# is not as straight as those in the result of the proposed
estimates the 2D similarity camera motion (with homograpiiyethod. This comparison, together with the comparisongn Fi
refinement) from frame to frame and usésregularization 7, show that the proposed method can not only better remove
to smooth the estimated camera path. This method is onehégh frequency unwanted jitter but also better smooth ting lo
the state-of-the-art video stabilization algorithms anayrbe term motion of the camera.
the only one that explicitly considers the constraints flaick The stabilization results are best viewed in video form.
borders in motion smoothing. We compared the algorithms &hease see the online video examples of our paper [3]. The
videos with original siz&20 x 480. The cropping size used inresults of YouTube video editor have been compressed so

running time of each iteration (seconds)

B
1S}
S
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(a) Original video (b) YouTube video editor [4] (c) Proposed method

Fig. 7. Stabilization comparison for a video shot by a walkiorward person. Features are tracked from frame 270 toefr280. The feature trajectories
are plotted as black curves on frame 270.

(a) Original video (b) YouTube video editor [4] (c) Proposed method

Fig. 8. Stabilization comparison for a video shot while pagrthe camera. Features are tracked from frame 650 to fratbeTe feature tracks are plotted
as black curves on frame 650.

please ignore these compression artifacts in comparisen. B 1 Pl )
sides compression, please note that there is some non-rigid L}
wobble in the results of YouTube video editor. This is not > /2
caused by compression but the inaccuracy of the 2D motion
model used in [4]. The 3D rotational model in our video
stabilization accurately reflect the real camera motiorhsoet
is no such non-rigid distortion. In the two video examples
features are easy to track since there is very little motion b
in the frames. However, when the videos are shot in low light
condition the visual-based motion estimation used in [4] wi
fail sometimes while 3D rotational video stabilization ngi
gyroscopes is not affected.

As we mentioned in Section Il, other 3D rotational vide@ig. 9. Extrapolation is used to fill the undefined areas {blaerders) on
stabilization algorithms [9], [12] are based on local loasp the left and top of the frame [12].
filtering of the rotation sequence and thus are not able to

guarantee that there will be no black borders. Many fram fobally formulate motion smoothing as a regression proble
in the stabilized video still have black borders even thougysed on geodesic distance. Furthermore, we force thécsolut
adaptive filtering with different window size could be agli {5 jie on a Cartesian product of geodesic balls so that every
to decrease their area. In [12], the authors proposed t0 el in the stabilized frame is visible in the original fram
extrapolation to fill the black borders. Extrapolation caa by, directly solve the formulated problem on manifold by
implemented very fast but the image quality is severefeneralizing the existing two-metric projection algomitrin

sacrificed, as shown in Fig. 9. Euclidean space. The 3D camera rotation for each frame is
obtained reliably using gyroscopes that are equipped in mos
VII. CONCLUSIONS smart phones and tablets, no matter whether there is motion

In this paper we propose a novel video stabilization methdidur or abrupt illumination change in the videos. We have
using a 3D rotational camera motion model. We exploit thdemonstrated in experiments that our algorithm is very fast
manifold structure of not only the 3D rotation matrices, buand can generate better video stabilization results thete-st
also the sequences of 3D rotation matrices. This allows usaBthe-art methods.
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