
IEEE TRANSACTIONS ON SIGNAL PROCESSING 1

Constrained 3D Rotation Smoothing via Global
Manifold Regression for Video Stabilization

Chao Jia,Student Member, IEEE, and Brian L. Evans,Fellow, IEEE

Abstract—We present a novel motion smoothing algorithm
for hand-held cameras with application to video stabilization.
Video stabilization seeks to remove unwanted frame-to-frame
jitter due to camera shake. For video stabilization, we use a
pure 3D rotation motion model with known camera projection
parameters. The 3D camera rotation can be reliably tracked by
a gyroscope as commonly found on a smart phone or tablet. In
this paper we directly smooth the sequence of camera rotation
matrices for the video frames by exploiting the Riemannian
geometry on a manifold. Our contributions are (1) formulation
of motion smoothing as a geodesic-convex constrained regression
problem on a non-linear manifold based on geodesic distance,
(2) computation of gradient and Hessian of the objective func-
tion using Riemannian geometry for gradient-related manifold
optimization, and (3) generalization of the two-metric projection
algorithm in Euclidean space to manifolds to solve the proposed
manifold optimization problem efficiently. The geodesic-distance-
based smoothness metric better exploits the manifold structure of
sequences of rotation matrices. The geodesic-convex constraints
effectively guarantee that no black borders intrude into the
stabilized frames. The proposed manifold optimization algorithm
can find the global optimal solution in only a few iterations.
Experimental results show that video stabilization based on
our motion smoothing algorithm outperforms state-of-the-art
methods by generating videos with less jitter and without black
borders.

Index Terms—Video stabilization, manifold optimization, spe-
cial orthogonal group, gradient projection, geodesic convexity.

I. I NTRODUCTION

Hand-held video cameras, such as in smart phones and
tablets, conveniently capture interesting or memorable mo-
ments anywhere and anytime due to their portability. Videos
shot with hand-held cameras, however, often suffer from
frame-to-frame jitter due to camera shake compared to videos
shot with complex lens systems and camera stabilizers such as
steadicams and tripods. Video stabilization aims at removing
the unwanted jitter to generate visually stable and pleasant
videos. Generally video stabilization consists of three major
steps [2]: (1) camera motion estimation, (2) camera motion
smoothing and (3) frame synthesis. In this paper we focus on
the second step.

Our video stabilization algorithm is based on a 3D rotational
camera motion model for a calibrated camera with a known
intrinsic matrix. Compared to 2D affine or projective motion
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models, 3D motion models can more accurately reflect the
real camera perspective projection, and thus give more real-
istic motion smoothing and avoid image distortion in frame
synthesis. We ignore 3D translation of the camera because
(1) the unwanted jitter in videos are primarily caused by
camera rotation, and (2) frame synthesis with 3D camera
translation would need the depth value at every pixel, whichis
very difficult to obtain accurately. To estimate the 3D camera
rotation we use a gyroscope that is available in many smart
phones and tablets. Current gyroscopes in smart phones have
very high precision and can return more reliable 3D camera
rotation estimates compared to the estimates obtained from
visual features in the video sequence, especially when there
are many moving objects in the scene or it is difficult to track
feature points due to motion blur or illumination changes.

Under a 3D rotational model, camera motion for a video
can be considered as a sequence of 3D rotation matrices. We
formulate motion smoothing as a regression problem with a
regularization term indicating the smoothness of the sequence
of rotation matrices. Unlike traditional approaches, we exploit
the manifold structure of the sequence of rotation matrices.
The formulated problem is based on geodesic distance on the
Riemannian manifold.

Due to the change of camera poses introduced by video
stabilization, the stabilized frames can be only synthesized for
portions of the scene that are visible in the original frames.
Therefore, we have to crop the resulting video with a large
enough cropping size to keep most of the content of the
original video sequence while at the same time guaranteeing
that no black borders intrude into the stabilized video frames.
In this paper, we introduce a geodesic-convex constraint onthe
manifold to approximate such requirement so that the entire
motion smoothing problem is kept geodesic-convex on the
manifold.

Previous methods have only exploited the properties on the
manifold of the individual 3D rotation matrixSO(3) (Special
Orthogonal Group), so they can only smooth the camera
motion locally through low-pass filtering. Considering the
entire set of sequences of rotation matrices as a Riemannian
manifold allows us to model the motion smoothing problem
globally with proper constraints and solve it optimally.

To solve the formulated constrained smoothing problem
on the manifold, we compute the gradient and Hessian of
the objective function using Riemannian geometry, and then
extend the two-metric projection algorithm in Euclidean space
to non-linear manifolds. The proposed manifold optimization
algorithm has much better convergence property than normal
non-linear optimization algorithms in Euclidean space. Exper-
imental results show that our motion smoothing method out-
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performs state-of-the-art methods by generating more stable
videos with less distortion.

This paper is organized as follows: Section II reviews
previous video stabilization algorithms and related optimiza-
tion background. Section III formulates motion smoothing as
a regression problem on the sequence of rotation matrices
using geodesic distance. Section IV adds hard geodesic-convex
constraints to the optimization problem to guarantee that
no black border will be present in the stabilized videos.
Section V presents the computation of gradient and Hessian
of the objective function using Riemannian geometry and then
generalizes two-metric projection algorithm in Euclideanspace
to non-linear manifolds. Section VI shows the convergence of
the proposed algorithms and compares the proposed motion
smoothing method against state-of-the-art algorithms. Section
VII concludes the paper. We have publicly released the Mat-
lab code for video stabilization using the proposed motion
smoothing algorithm [3].

II. RELATED WORK

Camera motion has been commonly modeled using 2D
affine or projective approaches [2], [4], [5]. Using full 3D
models including both rotation and translation for calibrated
cameras was first proposed in [6] and further discussed in [7].
In both papers complicated approximations are used in frame
synthesis to handle the problem of missing depth values. In
[8], [9] pure 3D rotational models with known intrinsic camera
parameters were shown to generate high-quality results while
only needing homography-based warping in frame synthesis.

Gyroscopes and other inertial measurement sensors have
been widely used in robotic localization problems together
with visual measurements [10], [11]. However, they were not
used in video stabilization to replace the feature-based motion
estimation until they became accurate enough and widely
available in cell phones recently [9], [12]. Compared with cam-
era motion estimation using only visual measurements [13],
[14], estimation with inertial measurements is faster and more
robust, especially for the cell phone cameras that use CMOS
image sensors. In these cameras different rows in the same
frame are captured sequentially from top to bottom. When
there is fast relative motion between the scene and the camera,
the frames can be distorted because each row was captured
under a different 3D-to-2D projection. This kind of distortion
is known as rolling shutter effect [15] and can easily break the
multi-view geometry that are used for motion estimation from
visual measurements. Using the camera motion estimated with
the help of the inertial measurements [9], [12], [16], rolling
shutter effect can be effectively rectified so that each frame
looks as captured under a single camera pose. For the rest of
the paper, we assume that any possible rolling shutter effects
are rectified before video stabilization is applied. Our proposed
video stabilization methods would therefore work for cameras
with or without shutters.

Motion smoothing methods using 2D models are based
on Euclidean distance. 2D camera motion can be smoothed
using local methods such as Gaussian-kernel low-pass filtering
[2], global methods such asℓ1-based regularization [4], and

real-time methods such as Kalman filtering [17]. 3D rotation
smoothing has been implemented locally by low-pass filtering
based on either Euclidean distance [9] or geodesic distance
on the manifoldSO(3) [7], [12]. Motion smoothing has also
been performed directly on the feature trajectories without
explicitly estimating the parametric camera motion [18], [19].
These methods are actually also based on 2D motion models.

The manifold structure of 3D rotation has been extensively
studied in computer graphics. It has been shown that a linear
interpolation on the geodesic between two different poses
gives a very smooth and natural animation of rigid body [20].
Such interpolation is equivalent to constructing a curve that
minimizes the sum of geodesic distances between every pair of
adjacent knots. This fact motivates our formulation of camera
motion smoothing on the manifold and the use of geodesic
distance as the smoothness metric.

Although SO(3) has additional applications in computer
vision, medical imaging and robotics, the sequence of 3D
rotation matrices was hardly investigated as a whole. In [21]
discrete regression is first applied on the sequence of rotation
matrices with conjugate gradient descent algorithm proposed
to solve the formulated problem. In this paper we also directly
exploit the manifold structure of sequences of rotation matrices
so that we can formulate 3D rotation smoothing as a regression
problem. Compared to [21], we further compute the Hessian
of the objective function using Riemannian geometry so that
the problem can be solved more efficiently using Newton’s
method on the manifold.

Previous video stabilization methods usually stabilize the
video first without considering the cropping size of the result
and crop the stabilized video as a post-processing step [7],
[12]. Such methods cannot optimally smooth a video sequence
with a pre-fixed cropping size and usually have to sacrifice
the smoothness. Rendering the unseen part of the frame
using mosaicking and inpainting algorithms with the help
of neighboring frames allows the original size of the video
to be kept [2]. However, the rendered parts usually have
much lower image quality, especially for the videos with a
lot of moving objects. The cropping size is first considered
as a hard constraint in motion smoothing step in [4]. In this
paper we approximate this constraint with a geodesic-convex
set on the manifold. Constrained optimization on Euclidean
space has been extensively studied [22], but not on non-linear
manifolds. If the constraint set has some simple structure,
such as a Cartesian product of Euclidean balls, an efficient
two-metric projection algorithm can be used to solve the
optimization problem [23], [24]. The proposed constraint set
in this paper is a Cartesian product of geodesic balls on
manifold. We extend the two-metric projection algorithm in
Euclidean space to general manifolds so the proposed manifold
optimization problem can be solved efficiently and optimally.
Table I summarizes motion smoothing methods in prior work
and in this paper for video stabilization.

III. SMOOTHNESS OF3D ROTATION SEQUENCE

All of the 3 × 3 rotation matrices constitute the Special
Orthogonal GroupSO(3), in which any elementR satisfies
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TABLE I
COMPARISON OF PRIOR WORK AND THIS PAPER ON MOTION SMOOTHING FOR VIDEO STABILIZATION .

Paper Motion model Smoothing method Constrained by cropping size Global smoothing
[2] 2D Low-pass filtering no (full-frame with inpainting) no
[9] 3D (Euclidean) Low-pass filtering no no
[7] [12] 3D (manifold) Low-pass filtering no no
[4] 2D Regression yes yes
[18] 2D (trajectories) Regression no no
[19] 2D (trajectories) Subspace low-pass filtering no no

Proposed 3D (manifold) Regression yes yes

the constraintsRRT = I and det(R) = 1. SO(3) can be
also considered as an embedded Riemannian submanifold of
Euclidean spaceR9 (represented as3 × 3 real matrices). A
natural extension of Euclidean distance in Euclidean spaceto
the Riemannian manifoldSO(3) is the geodesic distance

dg(Ri,Rj) = ||logm(RT
iRj)||F , (1)

where logm(·) is the matrix logarithm operator and|| · ||F is
the Frobenius norm of a matrix. In fact, logm(RT

iRj) is a
skew-symmetric matrix representing a tangent vector in the
tangent spaceTRi

SO(3) that indicates the non-normalized
direction fromRi to Rj on SO(3). Usually we also write
logm(R′

iRj) aslogRi
Rj and call it the logarithmic mapping.

Inversely, given any tangent vectorξ ∈ TRi
SO(3), we can

define expRi
ξ = Riexpm(ξ), where expm(·) is the matrix

exponential operator. Here,expRi
ξ is called the exponential

mapping and is used to moveRi along the direction defined
by ξ on SO(3). The logarithmic mapping and exponential
mapping together define a curve

t ∈ [0, 1] 7→ γ(t) = expRi

(

t · logRi
Rj

)

, (2)

which is known as the minimizing geodesic fromRi to Rj

onSO(3). The minimizing geodesic is a generalization of the
notion of “straight line” in Euclidean space to Riemannian
manifolds, representing the shortest path between two points
in the manifolds given a Riemannian metric. The length of the
minimizing geodesic is defined in (1).

For each video sequence, we can obtain a sequence of 3D
rotation matrices corresponding to all of the frames from the
gyroscope readings or the estimation using matched feature
points. Next we consider the sequence of 3D rotation matrices
as a whole and exploit the properties of the Riemannian
manifold constituted by these sequences.

Assumex = [R1,R2, . . . ,RN ]T represents the sequence
of 3D camera rotation for any video sequence withN frames.
Clearly all of the possible rotation matrix sequences withN
elements constitute a manifoldMR with dimension3N . In
fact, we have

MR = SO(3)× SO(3)× . . .× SO(3), (3)

a Cartesian product ofN SO(3) manifolds. Furthermore,
for any x ∈ MR, the tangent spaceTxMR at x can be
represented as

[η1, η2, . . . , ηN ]T, (4)

where{ηi} are real skew-symmetric matrices. In other words,
the tangent vectors and corresponding exponential (and log-
arithmic) mapping are still separable as the elements in
the manifold of rotation matrix sequences. This makes the

proposed gradient-related optimization algorithms in thenext
section easy to implement.

The goal of video stabilization is to remove the visible
jitter and make the camera motion trajectory change smoothly.
Given the manifold structure ofSO(3), it is natural to define
the smoothness of a rotation matrix sequence as the sum of
geodesic distances between adjacent rotation matrices. Atthe
same time, we need to guarantee that the smoothed camera
motion trajectory does not deviate from the original trajectory
too much. As a result, we formulate the video stabilization
problem as

min
{Ri}

N
∑

i=1

1

2
d2g(R̃i,Ri) + α

N−1
∑

i=1

1

2
d2g(Ri,Ri+1), (5)

where {Ri} is the sequence of stabilized rotation matrices,
{R̃i} is the original sequence of rotation matrices,α is
the weighting parameter controlling the smoothness of the
stabilized trajectory. (5) is an extension of discrete curve fitting
problem in Euclidean space with penalty on the first order
difference. Note that although the objective function is derived
based on the geodesic distance between elements inSO(3),
it is defined on the rotation matrix sequence manifoldMR.

IV. CONSTRAINED VIDEO STABILIZATION

The proposed objective function in (5) is effective in
smoothing the sequence of 3D rotation matrices. However, in
the last step of video stabilization, the synthesized frames may
contain black borders since not every pixel in the synthesized
frame is visible in the original frame due to the change of
camera orientation. Therefore, we have to crop the synthesized
frames into a smaller size so that there are no black borders
in the stabilized video. In other words, given a preferred
stabilized size of the video, the video stabilization system must
guarantee that every pixel in the cropped stabilized framesis
visible in the original frames. This is a hard constraint that has
to be considered in the camera motion smoothing algorithm.

Assume the intrinsic projection matrix of the camera is
given asK. Under pure rotational camera model, for any pixel
[uij , vij ]

T in the stabilized framei, its corresponding 2D pixel
location in the original frame[ũij , ṽij ]

T can be computed as

[

ũij

ṽij

]

= g



KR̃iRi
TK−1





uij

vij
1







 , (6)

where the function

g









x
y
z







 =

[

x/z
y/z

]

(7)
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is used to convert the homogeneous coordinates into inho-
mogeneous coordinates. Assume that the frame size in the
original video isw × h, and the coordinates of the top left
corner and bottom right corner of the cropped rectangle in the
stabilized video are[c1, d1], [c2, d2], the hard constraint for
video stabilization can be represented as

{

0 ≤ ũij ≤ w

0 ≤ ṽij ≤ h
, ∀

[

uij

vij

]

s.t.

{

c1 ≤ uij ≤ c2

d1 ≤ vij ≤ d2
(8)

The constraint (8) is very complex with respect to the
rotation matrices that we want to compute and no algorithms as
far as we know are guaranteed to handle it efficiently (note that
for 2D affine or similarity motion models, this constraint isjust
linear with respect to the variables). To overcome this difficulty
we replace the constraint in (8) with a simpler constraint
defined on the manifold

|| logR̃i
Ri||F ≤ r0, ∀i, (9)

wherer0 is a fixed threshold depending on the relative size of
the cropped rectangle in the stabilized frames. The constraint
(9) just means that the geodesic distance between the original
and stabilized camera orientations should be less thanr0.
r0 is defined as the largest value to guarantee that for all
of the camera orientations satisfying the constraint (9), the
constraint (8) is also satisfied. We know that any 3D rotation
matrix can be represented by a rotation axis and a rotation
angle, so constraint (9) can be also interpreted as the rotation
angle of (R̃i)

TRnew
i being no larger thanr0. Constraint (9)

is homogeneous on every possible rotation axis and is clearly
stricter than constraint (8). Fig. 1 shows that the constraint (9)
is a good approximation of the original constraint.

In this example, the original frame size is720 × 480 and
the cropped rectangle is at the center of the frame with
size 540 × 360. For each possible rotation axis (denoted by
the tangent vectorlogR̃i

Ri after normalization), we find the
maximum geodesic distance that guarantees constraint (8) is
satisfied. In Fig. 1 the homogeneous constraint is shown as
the sphere and the maximum allowable geodesic distance for
each rotation axis (we uniformly sample 1000 rotation axes)is
shown as a blue point. We also show three perpendicular views
to better illustrate the difference between the two constraints.
From Fig. 1 we can observe that for most rotation axes
the maximum allowable geodesic distance is close to the
homogeneous bound.

The constraint (9) has two significant properties. First, it
has a simple form – each rotation matrix in the sequence
is constrained in a geodesic ball. As a result, the constraint
set is a Cartesian product of geodesic balls. This property
guarantees that gradient projection algorithms can be executed
efficiently, as shown in the next section. Second, the constraint
set is geodesic convex – given any two points in the set, there
is a minimizing geodesic contained within the set that joins
those two points (The geodesic convexity of the constraint can
be easily proved by the triangular inequality of Riemannian
metrics). Geodesic convexity is a natural generalization of
convexity in Euclidean space to Riemannian manifolds. In the
next section we will prove that the objective function (5) isalso
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Fig. 1. Approximation of inhomogeneous constraint (8) using homogeneous
constraint (9). The maximum allowable geodesic distances for different
rotation axes are shown as blue points. The homogeneous geodesic distance
constraint is shown as the sphere. The bottom three figures show the same as
the top figure from three perpendicular views.

geodesic convex and thus global optimality can be guaranteed
by the proposed optimization algorithms.

V. M OTION SMOOTHING VIA MANIFOLD OPTIMIZATION

For brevity, we usex ∈ MR to represent the rotation matrix
sequence{Ri} and write the objective function to minimize
(5) asf(x). In addition, we defineRi = Aix, whereAi is a
3×3N matrix that is used to extractRi from x. Similarly we
can mapRi back to its corresponding location inx asAT

iRi.
The constrained motion smoothing can be finally formulated

as
min
x

f(x), s.t. x ∈ Ω, (10)

whereΩ = Ω1 × Ω2 × · · · × ΩN is a Cartesian product of
geodesic balls. Each geodesic ball is defined as in (9):

Ωi = {Ri ∈ SO(3) : || logR̃i
Ri||F ≤ r0}. (11)

A. Unconstrained Optimization

In this subsection we first ignore the constraint and only
minimize the objective function in the entire manifoldMR.
We consider the constrained manifold optimization in the next
subsection.

As we mentioned, we will directly solve the optimization
problem using manifold optimization methods. In other words,
the optimization algorithms are based on the geometric struc-
ture of the manifold, not its embedding Euclidean space. In
fact, the problem in (10) without the constraint is equivalent
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to an unconstrained quadratic programming problem in Eu-
clidean space. In Euclidean space, such problems have closed-
form solution; however, on non-linear manifolds we have to
use iterative algorithms.

Similar with Euclidean space, gradient-related iterativeal-
gorithms are widely used in optimization on manifolds [25].
The gradient-related algorithms for unconstrained optimization
problem on the manifoldMR can be summarized as follows:
For any elementx in the manifold of rotation matrix sequence
MR, given any tangent vectorξx ∈ TxMR, we can move
x along the direction defined byξx using the exponential
mapping expxξx. Note that given the separability property
of the tangent vectors the exponential mapping can also be
implemented separately for different rotation matrices inthe
sequence. Ifξx is a descent direction related to the gradient of
the objective function atx, then we have the gradient-related
algorithm on the manifoldMR. In fact, similar convergence
results of gradient-related algorithms has been extended from
Euclidean space to any manifold [25]. The gradient-related
algorithms can be classified according to the choice of the
descent directions. Popular gradient-related algorithmsinclude
steepest gradient descent, conjugate gradient descent, New-
ton’s method, etc.

In this paper we investigate steepest gradient descent and
Newton’s method, which needs the computation of gradient
and Hessian of the objective function.

B. Gradient Computation

In manifold, the gradient of a function is defined as follows:
Definition 1: For any real-valued functionf : M → R

defined on manifoldM, the gradient gradf(x) is a vector
field that satisfies

〈gradf(x), ξx〉x = Df(x)[ξx], ∀ξx ∈ TxM, (12)

where〈·, ·〉x on the left-hand side of (12) is any inner product
in the tangent spaceTxM that induces a Riemannian metric,
Df(x)[·] on the right-hand side of (12) is the differential map
of f at x.

To compute the gradient we first rewrite the objective
function as

f(x) =

N
∑

i=1

gi(x) + α

N−1
∑

i=1

hi(x), (13)

where gi(x) = 1
2d

2
g(R̃i,Ri) and hi(x) = 1

2d
2
g(Ri,Ri+1).

Note thatRi = Aix in our notation.
If we consider12d

2
g(R̃i,Ri) as a function ofRi, it has been

proved [26] that

grad
1

2
d2g(R̃i,Ri) = −logRi

R̃i. (14)

Given the separability feature ofx, we can further obtain

gradgi(x) = −AT
i logAix

R̃i (15)

We propose the following lemma to compute the gradient
of hi(x):

Lemma1: The gradient of the functionhi(x) defined in
(13) on manifoldMR can be represented as

gradhi(x) = −AT
i logAix

Ai+1x−AT
i+1 logAi+1x

Aix (16)

Proof: ∀ξx ∈ TxMR, define a geodesic curveγ(t) =
expx(tξx), then from the definition of differential map we
have

Dhi(x)[ξx] =
dhi(γ(t))

dt

∣

∣

∣

∣

t=0

. (17)

Now consider a family of geodesics

c(s, t) = expAi+1γ(t)(s logAi+1γ(t) Aiγ(t)). (18)

Denote
{

c′(s, t) = dc(s,t)
ds

ċ(s, t) = dc(s,t)
dt .

(19)

According to the definition of exponential mapping we have
c′(s, t) = logAi+1γ(t)Aiγ(t) and is independent ofs. Then
we have

dhi(γ(t))

dt
=

d
dt
〈logAi+1γ(t)Aiγ(t), logAi+1γ(t)Aiγ(t)〉

=
d
dt
〈c′(s, t), c′(s, t)〉

= 〈 d
ds

ċ(s, t), c′(s, t)〉

=

∫ 1

0

〈 d
ds

ċ(s, t), c′(s, t)〉ds

=

∫ 1

0

d
ds

〈ċ(s, t), c′(s, t)〉ds

= 〈ċ(1, t), c′(1, t)〉 − 〈ċ(0, t), c′(0, t)〉
= 〈Aiγ

′(t), logAi+1γ(t)Aiγ(t)〉 −
〈Ai+1γ

′(t), logAi+1γ(t)Aiγ(t)〉. (20)

Note that the tangent vectors in ofMR also has its Cartesian
product structure, so we denoteξi = Aiξx andξi+1 = Ai+1ξx.
From the definition of exponential mapping we haveγ′(t) =
ξx. Therefore, we have

dhi(γ(t))

dt

∣

∣

∣

∣

t=0

= 〈ξi − ξi+1, logAi+1γ(0) Aiγ(0)〉

= 〈ξi − ξi+1, logAi+1x
Aix〉

= 〈ξx,−AT
i logAix

Ai+1x−
AT

i+1 logAi+1x
Aix〉. (21)

According to the definition of gradient we have now proved
Lemma 1.

Now we have derived the gradient ofgi(x) andhi(x). Using
linearity of the gradient, we can obtain

gradf(x) = −AT
1(logA1x

R̃1 + logA1x
A2x)−

N−1
∑

i=2

AT
i (logAix

R̃i + logAix
Ai+1x+ logAix

Ai−1x)−

AT
N (logANx R̃N + logANx AN−1x).

(22)

Equation (22) clearly shows the decomposition of gradf(x)
into N skew symmetric matrices corresponding to theN rota-
tion matrices inx. Given the direction, we can use exponential
mapping to updatex in each iteration for steepest gradient
descent algorithm.
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C. Hessian Computation

In Euclidean space the convergence rate of steepest gradient
descent is strongly affected by the eigenvalues of the Hessian
matrix of the objective function Hessf(x). This property also
holds for non-linear manifolds [25]. In fact we can check
that the Hessian matrix of the given objective function is ill-
conditioned (the largest eigenvalue is much larger than the
smallest eigenvalue). Therefore, the steepest gradient descent
method converges only sublinearly.

Newton’s method has been proved to converge locally
quadratically to the optimal solution for both Euclidean space
and non-linear manifolds. Especially for general Riemannian
manifolds, the framework of Newton’s method was first pro-
posed in [27], [28] with a proof of quadratic convergence.

Newton’s method needs calculating the Hessian Hessf(x).
In manifolds the Hessian is defined as following:

Definition 2: For any real-valued functionf : M → R

defined on a Riemannian manifoldM with Levi-Civita Con-
nection▽, the Hessian Hessf(x) is mapping fromTxM to
TxM satisfying

Hessf(x)[ξx] = ▽ξxgradf(x). (23)

Note that the Levi-Civita Connection▽ξxgradf(x) is a kind
of affine connection that measures in the change in gradf(x)
when x changes infinitesimally in the direction ofξx [29].
The Hessian is also usually defined as an symmetric operator
on two tangent vectors as

Hessf(x)(ξx, ηx) = 〈Hessf(x)[ξx], ηx〉 = 〈Hessf(x)[ηx], ξx〉
(24)

To calculate the Hessian on manifolds is a very difficult
task. We start to derive the Hessian of the proposed objective
function from the following lemma in [30].

Lemma2: Consider the geodesic distance function
φQ(P) = 1

2d
2
g(P,Q), where P,Q ∈ SO(3).

Let r = dg(P,Q) be the geodesic distance. Let
γ(t) : [0, r] → SO(3) denote the unit speed geodesic
connectingQ to P. ∀ξP, ηP ∈ TPSO(3), we have the
Hessian operator

HessφQ(P)(ξP, ηP) = 〈ξ‖P, η
‖
P〉+

r

tan(r/2)
〈ξ⊥P , η⊥P〉, (25)

where ‖ and ⊥ signs denote parallel and perpendicular or-
thogonal components of the tangent vector with respect to
γ̇(r). Here γ̇(r) ∈ TPSO(3) is the parallel translation of
γ̇(0) = logQP along the geodesic fromQ to P.

Given Lemma 2 and any orthonormal basis{En}n=1,2,3

of TPSO(3) we can compute the matrix representation of
the Hessian operator by computing its result on every pair of
basis tangent vectors. Lemma 2 gives us a way to compute the
Hessian matrix when the objective function is the geodesic
distance defined onSO(3). In our proposed problem we
need to find the Hessian forgi(x) and hi(x), which are
defined on the manifoldMR of rotation matrix sequences.
Note that due to the separability feature (Cartesian product
structure) of the tangent vectors ofMR, we can always find
an orthonormal basis{En

i }n=1,2,3;i=1,...,N of TxMR, where
only AiE

n
i is non-zero and it is equal to the basis vector

En defined forTAixSO(3). In other words, the orthonormal
basis ofTxMR can be represented byN subgroups and each
subgroup corresponds to one particular rotation matrix in the
entire sequence. We propose the following proposition:

Proposition1: Given the decomposed objective functions
defined in (13) and an orthonormal basis ofTxMR in form
of {En

i }, we have
{

Hessgi(x)(En
i , E

m
i ) = HessφR̃i

(Aix)(E
n, Em)

Hessgi(x)(En
j , E

m
k ) = 0, if j 6= i or k 6= i

(26)































Hesshi(x)(E
n
i , E

m
i ) = HessφAi+1x(Aix)(E

n, Em)

Hesshi(x)(E
n
i+1, E

m
i+1) = HessφAix(Ai+1x)(E

n, Em)

Hesshi(x)(E
n
i , E

m
i+1) = −HessφAi+1x(Aix)(E

n, Em)

Hesshi(x)(E
n
i+1, E

m
i ) = −HessφAix(Ai+1x)(E

n, Em)

Hesshi(x)(E
n
j , E

m
k ) = 0, if j 6= i, i+ 1 or k 6= i, i+ 1

(27)
The computations on the right-hand sides of (26) and (27)
have been defined in Lemma 2.

Proposition 1 can be easily proved using the Cartesian
product structure ofMR and the definitions of gradient and
Hessian. Using Proposition 1 and linearity of the Hessian we
can obtain a3N × 3N matrix representationH of Hessf(x)
for a given orthonormal basis{En

i }. To compute the direction
in Newton’s method, we first compute−gradf(x) and then
represent it as a vectorv under the orthonormal basis{En

i }.
Then we just need to solve the linear systemH · u = v and
the direction is represented by the vectoru under the same
basis.

Given any gradient-related update direction we use the
Armijo rule [31] to select the step size.

D. Constrained Optimization

In Euclidean space, if the optimization problem is con-
strained, the update with the descent direction may be outside
the constraint set. When the constraint set is convex and the
update direction is the gradient, an option is to project the
update onto the constraint set in each iteration. This is known
as gradient projection algorithm [22] and it only works fast
when the constraint set has simple form so the projection step
is easy to implement, such as box constraints. The limitation
of this algorithm is that the update direction can only be the
gradient of the objective function. If the update directionis a
scaled version of the gradient, such as in Newton’s method,
the projection step on the convex set should also be based on
the same scaling of the original metric. This will make the
projection step very hard to implement even if the constraint
set has a very simple form.

In [23], [32] the authors proposed a new version of scaled
gradient projection method called “two-metric projection
method”, which can use the scaled gradient as update direction
while keep the projection step based on the original metric.
The most important step in two-metric projection method is
to decompose the gradient in a pair of dual cones determined
by the constraint set and only scale one component. When the
gradient is scaled by the Hessian (similar to Newton’s method),
it has been proved that the two-metric projection method can
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converge to a stationary point globally and has superlinear
convergence rate locally around the stationary point. A clearer
summary of the general form of two-metric projection method
and its modification can be found in [24], [33]. In this paper
we will first apply the two-metric projection algorithm on
Euclidean space with the constraint set being a Cartesian
product of Euclidean balls. Then we will extend the algorithm
into optimization in manifold with the constraint set beinga
Cartesian product of geodesic balls. To our knowledge this is
the first time that the two-metric projection method is extended
to solve a constrained manifold optimization problem.

E. Two-metric method in Euclidean space

First we review the algorithm prototype proposed in [23]
for generalized constrained optimization problem on a convex
set in Euclidean space:

min
x∈Ω

f(x), (28)

wheref is any smooth real function on Euclidean space and
Ω is any nonempty closed convex set in Euclidean space. The
Two-metric Algorithm in Euclidean space (Algorithm 1) is
described below.

Algorithm 1 Two-metric Algorithm in Euclidean Space

1: INPUT: x0, k = 0
2: repeat
3: Compute gradf(xk)
4: vN = sNPN (−gradf(xk))
5: vT = PT ST PN∗(−gradf(xk))
6: v = vN + vT

7: Updatexk+1 = PΩ(x
k + αkv)

(αk is the step size chosen by the Armijo Rule)
8: k = k + 1
9: where:

10: N = {y : ∀z ∈ Ω, 〈y, z− xk〉 ≤ 0}
(The normal cone atxk)

11: N ∗ = {y∗ : ∀y ∈ N , 〈y∗,y〉 ≤ 0}
(The dual cone ofN )

12: T = {vN }⊥ ∩ N ∗

13: [T ] = the closed linear hull ofT
14: ST = a bounded linear map from[T ] into [T ]
15: sN = a scalar
16: until Convergence

P∗(·) in the algorithm means the projection of a point onto
a set. To accelerate convergence the linear mapST can be
chosen based on the inverse of the Hessian of the objective
function. Next we show how this algorithm work when the
convex constraint setΩ is a Cartesian ball of Euclidean balls:

Ω = Ω1 ×Ω2 × . . .×ΩN ,Ωi = {xi : ||xi − ci|| ≤ r0}, (29)

where{ci} are the centers of each Euclidean ball andr0 is
the constant radius of these balls. We also assume that each
Euclidean ball is with dimensionK.

According to the Cartesian product structure ofΩ, we can
also decompose the setsN ,N ∗, T in Algorithm 1 into such

kind of Cartesian product form. For anyx ∈ Ω, define the
active index setI(x) = {i : ||xi − ci|| = r0}, then clearly we
have each component of the normal coneN at x as

Ni =

{

{0}, i /∈ I(x)

{vi : vi = λ(xi − ci), λ ≥ 0}, i ∈ I(x)
(30)

Then we can get each component of the dual coneN ∗ as

N ∗
i =

{

R
K , i /∈ I(x)

{vi : 〈vi,xi − ci〉 ≤ 0}, i ∈ I(x)
(31)

If we define a second active index set as

Î(x) = {i : i ∈ I(x), and〈(gradf(x))i,xi − ci〉 < 0}, (32)

then we can get each component of the projection of the
gradient on to the normal coneN as

(vN )i =

{

0, i /∈ Î(x)

−sN
〈(gradf(x))i,xi−ci〉

||xi−ci||2
(xi − ci), i ∈ Î(x)

(33)

Finally each component of the setT and its linear hull[T ]
can be represented as

Ti =











R
K , i /∈ I(x)

{vi : 〈vi,xi − ci〉 ≤ 0}, i ∈ I(x), i /∈ Î(x)

{vi : vi ⊥ (xi − ci)}, i ∈ Î(x)

(34)

[T ]i =

{

R
K , i /∈ Î(x)

{vi : vi ⊥ (xi − ci)}, i ∈ Î(x)
(35)

Now we construct the linear mapST . Assume the Hessian
matrix of the objective function atx is H . Without loss of
generality, by relabeling the coordinates ofx if necessary, we
assume that there exists an indexq such that̂I(x) = {q+1, q+
2, . . . , N}. We diagonalize the Hessian matrix with respect to
Î(x) as

Ĥ =

[

H̃ 0

0 I

]

, (36)

whereH̃ is the same as the part ofH corresponding toi /∈
Î(x), I is the identity matrix corresponding tôI(x) (the last
(N − q) components). We define the matrix representation of
the mapST as Ĥ−1. It is easy to verify thatST maps any
point in T into T itself. Thus we can get each component of
vT as

(vT )i =



















−(Ĥ−1gradf(x))i, i /∈ I(x)

−PTi
(Ĥ−1gradf(x))i, i ∈ I(x), i /∈ Î(x)

−(gradf(x))i +
〈(gradf(x))i,xi−ci〉

||xi−ci||2
(xi − ci),

i ∈ Î(x)
(37)

If we choosesN = 1 then finally we can get

vi =











−(Ĥ−1gradf(x))i, i /∈ I(x)

−PTi
(Ĥ−1gradf(x))i, i ∈ I(x), i /∈ Î(x)

−(gradf(x))i, i ∈ Î(x)

(38)

We can find that only for the indices not in the active setÎ(x)
the gradient is scaled by the inverse of the Hessian to get the
update direction. In extreme case that the active set is always
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empty (the boundary of the constraint set is never reached),
this algorithms turns into regular Newton’s method. Note that
due to the Cartesian product structure all the computation
except the inverse of the Hessian matrix can be performed
independently for each component.

F. Scaled Gradient Projection on Manifold

Now we generalize the two-metric projection algorithm to
manifolds. The convex constraint setΩ now becomes the
Cartesian of geodesic balls defined in (9). The centers of
these balls are the original camera rotation matrices{R̃i}.
Based on the discussion in the previous subsection we propose
the Manifold Two-metric Algorithm for Constrained Motion
Smoothing (Algorithm 2) below to solve the problem in (10).

Algorithm 2 Manifold Two-metric Algorithm for Constrained
Motion Smoothing

1: INPUT: A fixed orthonormal basis{En
i }n=1,2,3;i=1,...,N

of TxMR, x0, k = 0
2: repeat
3: Compute gradf(xk) and its representation vectoru in

the fixed basis
4: Compute the representation matrixH of Hessf(xk) in

the fixed basis
5: Find active setI(xk) = {i : || logR̃i

Aix
k|| = r0}

6: Find active set
Î(xk) = {i : i ∈ I(x), 〈(gradf(xk))i, logR̃i

Aix
k〉 <

0}
7: DiagonalizeH to Ĥ with respect toÎ(xk) as in (36)
8: Compute the vector representationv of the update

direction as
9:

vi =











−(Ĥ−1u)i, i /∈ I(x)

−PTi
(Ĥ−1u)i, i ∈ I(x), i /∈ Î(x)

−ui, i ∈ Î(x)

(39)

Compute the update directiond ∈ TxkMR based on
its vector representationv

10: Updatexk+1 = PΩ(expxk αkd)
(αk is the step size chosen by the Armijo Rule)

11: k = k + 1
12: where:
13: Ti = {ξi ∈ TAixkSO(3) : 〈ξi, logR̃i

Aix
k〉 ≤ 0}, i ∈

I(x), i /∈ Î(x)
14: until Convergence

G. Geodesic-convexity of Motion Smoothing

In this subsection we will show that the proposed problem
in (10) is geodesic convex on the manifoldMR. Geodesic-
convexity is a natural generalization of convexity in Eu-
clidean space to manifolds. Similar with Euclidean space,
for geodesic-convex optimization problems, local minimumis
also global minimum [34]. We mentioned in Section IV that
the constraint set is geodesic convex according to triangular

inequality of Riemannian metrics. Here we will focus on the
proof of the geodesic convexity of the objective function in
(13). From the property that a linear combination of geodesic
convex functions is still geodesic convex, it is sufficient to
prove the functionsgi(x) andhi(x) are geodesic convex. It
has been shown that the geodesic distance functionφQ(P) =
1
2d

2
g(P,Q) is geodesic convex with respect toP inside a

geodesic ball centered atQ with radius less thanπ/2
√
∆,

where∆ is the upper bound of the sectional curvature of the
manifold thatP andQ lie in [26]. For manifoldSO(3) the
sectional curvature is1/4 everywhere. So the radius of the
geodesic ball centered atQ should be less thanπ/2. Consider
P as a rotation matrix for a certain frame and theQ as the
rotation matrix of its adjacent frame,P is well guaranteed
to be inside the geodesic ball centered atQ with radiusπ/2
since the change of rotation between two consecutive frames
is very small. IfQ is the original rotation matrix for a certain
frame andP is the new rotation matrix in the stabilized video
for the same frame, thenP is still guaranteed to be inside
the geodesic ball centered atQ with radius π/2 given the
proposed constraint (11).

It has been shown that a function is geodesic convex
if and only if the matrix representation of its Hessian is
positive semi-definite (PSD) [34]. We have mentioned that the
function φR̃i

(Aix) is geodesic convex with respect toAix.
So the matrix representation of its Hessian matrixHg is PSD.
According to Proposition 1 the matrix representation of the
Hessian ofgi(x) can be represented as

















0

. . .
Hg

. . .
0

















(40)

(Hg locates at the coordinates corresponding to framei) and
is clearly also PSD.

Since we have also mentioned that the function
φAix(Ai+1x) is geodesic convex with respect toAi+1x, its
Hessian matrix representationHh is PSD. From Lemma 2 the
Hessian matrix representation of the functionφAi+1x(Aix) is
alsoHh. Thus according to Proposition 1 the Hessian matrix
representation ofhi(x) is





















0

. . .
Hh −Hh

−Hh Hh

. . .
0





















. (41)

It is not hard to show that this matrix is also PSD.
Therefore, we have show that the functiongi(x) andhi(x)

in (13) are geodesic convex, which means the objective
functionf(x) is geodesic convex. Given the property that the
proposed two-metric scaled gradient projection algorithmcan
always converge to a stationary point, the global optimality of
the proposed algorithm is guaranteed.
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H. Choice of Regularization Parameter

As we mentioned, the original objective function (5) con-
sists of two different terms: data-fitting term and the regular-
ization term. The parameterα controls the relative weights of
the two different terms. The data-fitting term was originally
introduced into the unconstrained video stabilization problem
to guarantee that the smoothed camera motion trajectory does
not deviate from the original trajectory too much. However,
we can find that such requirement is redundant if the hard
constraint (9) is added. Therefore, the optimal choice ofα
should be infinity in order to reach the greatest degree of
smoothness in the stabilized trajectory. This is equivalent to
dropping the data-fitting term

∑N
i=1 gi(x).

However, such setting is impractical since the proposed
algorithm relies on inverting the matrix representation of
Hessf(x). According to the discussion in Section V-G, the
Hessian matrix representation of

∑N−1
i=1 hi(x) can be written

as

H =



















Hh −Hh

−Hh 2Hh −Hh

−Hh 2Hh

. . .
2Hh −Hh

−Hh Hh



















. (42)

Recall thatH is a3N×3N matrix given an orthonormal basis
of TxMR. From the fact that each3× 3 matrix blockHh is
PSD, we can decompose it asHh = Θh

TΘh. As a result, we
can decomposeH asH = ΘTΘ, whereΘ is a3(N−1)×3N
matrix and

Θ =











Θh −Θh

Θh −Θh

. . .
Θh −Θh











. (43)

Clearly the matrixH does not have full rank and thus is not
invertible. Therefore, in practice we leave the data-fitting term
in the objective function and setα to a very large number to
avoid the numerical problem of matrix inversion.

VI. EXPERIMENTAL RESULTS

We first compare the convergence rate of different algo-
rithms in solving the formulated smoothing problem on the
sequences of rotation matrices. Fig. 2 is an example showing
the convergence rate of steepest gradient descent method and
Newton’s method in solving the unconstrained formulated
problem. In the experiment we try to smooth a sequence of
478 3D rotation matrices (478 frames) withα = 1000, which
were taken at a frame rate of 30 Hz. Figure 2 shows the values
of the objective function in10 iterations. Newton’s method
successfully converges in just2 iterations. Each iteration
of the Newton’s method takes 2.93s on a 2.3GHz Intel i5
processor machine with MATLAB implementation (without
parallel processing). From Fig. 2 we can observe that the
scaling of gradient using Hessian matrix can significantly
accelerate the convergence, which motivates us to do the same
thing in solving the constrained problem.
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Fig. 2. Convergence of two gradient-related algorithms forunconstrained
motion smoothing: Newton’s method and steepest gradient descent. For these
algorithms, we compute the gradient and Hessian of the objective function
using Riemannian geometry.
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Fig. 3. Convergence of two algorithms for constrained motion smoothing:
manifold gradient projection and the manifold two-metric scaled gradient
projection (proposed).

In Fig. 3 we compare the convergence rate of gradient
projection method and the proposed scaled gradient projection
method in solving the constrained motion smoothing problem.
The test video sequence is the same as in Fig. 2. The original
frame size is720 × 480 and the guaranteed cropped size is
540 × 360. The radiusr0 is found as0.11. We can observe
that proposed two-metric scaled gradient projection method
successfully converges in only 4 iterations. Note that the
difference in the final convergence values of the objective
function between Fig. 2 and Fig. 3 is caused by the constraint
in (9). Each iteration of the proposed method takes 3.58s on
the same machine as in Section V-C, while the gradient pro-
jection method takes 18.66s per iteration. The reason gradient
projection method takes such longer time in each iteration is
that it needs multiple tries to find the proper (descent) stepsize
using the Armijo step size selection method. For the proposed
method usually1 is the proper step size (no more tries are
needed) because the gradient has been scaled by the Hessian
of the objective function.

Fig. 4 shows another example comparing the convergence
rate of gradient projection method and the proposed scaled
gradient projection method. In this example there are 761
frames in the test video sequence. The proposed two-metric
scaled gradient projection method successfully convergesin
only 5 iterations. In Fig. 5 we additionally run the proposed
two-metric projection method on a video with 163 frames and
show the running time of each iteration for all of the three test
videos with respect to their numbers of frames. We can observe
that the running time of each iteration increases linearly with
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Fig. 4. Convergence of two algorithms for constrained motion smoothing:
gradient projection and the manifold two-metric scaled gradient projection
(proposed).
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Fig. 5. Running time of each iteration for the proposed manifold two-metric
projection algorithm.

the increase in the number of frames, thanks to the sparse
structure of the Hessian matrix as shown in Proposition 1.

A comparison between the original camera rotation and the
smoothed camera rotation is shown in Fig. 6. In this figure,
the camera rotation corresponding to each frame in the video
sequence is shown in form of Tait-Bryan angles (a similar
representation as Euler angles). Note that, however, our motion
smoothing is performed naturally on the manifoldMR instead
of the Euclidean space of rotation angle representation.

Then we use the proposed constrained motion smoothing
method in video stabilization. In the experiments we try to sta-
bilize the video sequences captured by Google Nexus S smart
phone. While recording videos, we also captured the readings
(with timestamps) from the 3-axis gyroscope inside the phone.
The camera has been calibrated so the camera intrinsic matrix
K is known. We also assume that the gyroscope and the videos
have been synchronized so that we can obtain the camera pose
(3D rotation) simply from the gyroscope readings. In practice,
the calibration and synchronization can be executed using the
method provided in [9].

We use the proposed constrained motion smoothing method
in video stabilization and compare our method with the
YouTube video editor. The video stabilization in YouTube
video editor is based on the approach proposed in [4], which
estimates the 2D similarity camera motion (with homography
refinement) from frame to frame and usesℓ1 regularization
to smooth the estimated camera path. This method is one of
the state-of-the-art video stabilization algorithms and may be
the only one that explicitly considers the constraints for black
borders in motion smoothing. We compared the algorithms on
videos with original size720×480. The cropping size used in

0 50 100 150 200 250 300 350 400 450 500
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

frame index

R
ot

at
io

n 
an

gl
e 

(r
ad

s)

 

 

Original pitch

Original roll

Original yaw

Smoothed pitch

Smoothed roll

Smoothed yaw

Fig. 6. Comparison of the original and the smoothed camera rotation using
the proposed two-metric scaled gradient projection methodfor constrained
smoothing on the manifold of rotation matrices.

YouTube video editor is540×360 so we use the same size in
our method. In all of the experiments we fix the smoothness
parameter in our approach asα = 1000 and find very little
difference in the results with higher value ofα.

First, we test the video stabilization algorithms on a video
shot by a walking forward person. We use feature trajectories
as shown in Fig. 7 as a visualization of the changing frames.
We detect Harris corner points in a certain frame (no. 270 in
Fig. 7) and track them for ten frames. The feature trajectories
are plotted as black curves on top of the starting frame (the
frames themselves are plotted using alpha channel 0.5 (more
transparent) to make the curves clearer). For a stabilized video
the trajectories should be very short since the camera is always
facing forward in spite of jitter caused by camera shake. The
2D ℓ1 regularization method [4] can smooth and shorten the
trajectories compared to the original video, but the feature
points are still moving up and down. Our algorithm can keep
the feature points very steady and the trajectories become
almost invisible (just black dots) in the results. Note thatwe
detect and track the feature points independently in the three
videos so the location and number of the feature points can
be different.

Next we take a test on a video shot while panning the
camera. Video stabilization should only remove the unwanted
jitter while keeping the panning motion of the camera. In Fig.
8 we do the same test as in Fig. 7, except that the feature points
are tracked in twenty consecutive frames instead of ten. Both
methods successfully smooth the trajectories of the feature
points. However, the trajectories in the stabilization result of
[4] is not as straight as those in the result of the proposed
method. This comparison, together with the comparison in Fig.
7, show that the proposed method can not only better remove
high frequency unwanted jitter but also better smooth the long
term motion of the camera.

The stabilization results are best viewed in video form.
Please see the online video examples of our paper [3]. The
results of YouTube video editor have been compressed so
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(a) Original video (b) YouTube video editor [4] (c) Proposed method

Fig. 7. Stabilization comparison for a video shot by a walking forward person. Features are tracked from frame 270 to frame 280. The feature trajectories
are plotted as black curves on frame 270.

(a) Original video (b) YouTube video editor [4] (c) Proposed method

Fig. 8. Stabilization comparison for a video shot while panning the camera. Features are tracked from frame 650 to frame 670. The feature tracks are plotted
as black curves on frame 650.

please ignore these compression artifacts in comparison. Be-
sides compression, please note that there is some non-rigid
wobble in the results of YouTube video editor. This is not
caused by compression but the inaccuracy of the 2D motion
model used in [4]. The 3D rotational model in our video
stabilization accurately reflect the real camera motion so there
is no such non-rigid distortion. In the two video examples
features are easy to track since there is very little motion blur
in the frames. However, when the videos are shot in low light
condition the visual-based motion estimation used in [4] will
fail sometimes while 3D rotational video stabilization using
gyroscopes is not affected.

As we mentioned in Section II, other 3D rotational video
stabilization algorithms [9], [12] are based on local low-pass
filtering of the rotation sequence and thus are not able to
guarantee that there will be no black borders. Many frames
in the stabilized video still have black borders even though
adaptive filtering with different window size could be applied
to decrease their area. In [12], the authors proposed to use
extrapolation to fill the black borders. Extrapolation can be
implemented very fast but the image quality is severely
sacrificed, as shown in Fig. 9.

VII. C ONCLUSIONS

In this paper we propose a novel video stabilization method
using a 3D rotational camera motion model. We exploit the
manifold structure of not only the 3D rotation matrices, but
also the sequences of 3D rotation matrices. This allows us to

Fig. 9. Extrapolation is used to fill the undefined areas (black borders) on
the left and top of the frame [12].

globally formulate motion smoothing as a regression problem
based on geodesic distance. Furthermore, we force the solution
to lie on a Cartesian product of geodesic balls so that every
pixel in the stabilized frame is visible in the original frame.
We directly solve the formulated problem on manifold by
generalizing the existing two-metric projection algorithm in
Euclidean space. The 3D camera rotation for each frame is
obtained reliably using gyroscopes that are equipped in most
smart phones and tablets, no matter whether there is motion
blur or abrupt illumination change in the videos. We have
demonstrated in experiments that our algorithm is very fast
and can generate better video stabilization results than state-
of-the-art methods.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 12

ACKNOWLEDGMENT

The authors would like to thank Dr. Hamid Sheikh at Texas
Instruments for introducing us to open research problems in
video rectification and stabilization of cell phone cameras.

REFERENCES

[1] C. Jia and B. L. Evans, “3D rotational video stabilization using manifold
optimization,” in Proc. IEEE Intl. Conf. Acoustics, Speech, and Signal
Processing, May 2013.

[2] Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H.-Y. Shum, “Full-
frame video stabilization with motion inpainting,”IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 28, Jul. 2006.

[3] C. Jia and B. L. Evans, “Video demonstrations for constrained 3D rota-
tion smoothing via global manifold regression for video stabilization,”
http://users.ece.utexas.edu/∼bevans/papers/2015/stabilization/.

[4] M. Grundmann, V. Kwatra, and I. Essa, “Auto-directed video stabi-
lization with robust L1 optimal camera paths,” inProc. IEEE Conf.
Computer Vision and Pattern Recognition, Jun. 2011.

[5] Y.-F. Hsu, C.-C. Chou, and M.-Y. Shih, “Moving camera video stabi-
lization using homography consistency,” inProc. IEEE Intl. Conf. Image
Processing, Sep. 2012.

[6] C. Buehler, M. Bosse, and L. McMillan, “Non-metric image-based
rendering for video stabilization,” inProc. IEEE Conf. Computer Vision
and Pattern Recognition, Dec. 2001, pp. 609–614.

[7] F. Liu, M. Gleicher, H. Jin, and A. Agarwala, “Content-preserving warps
for 3D video stabilization,”ACM Trans. Graphics, vol. 28, no. 3, 2009.

[8] C. Morimoto and R. Chellappa, “Fast 3D stabilization andmosaic
construction,” inProc. IEEE Conf. Computer Vision and Pattern Recog-
nition, Jun. 1997.

[9] A. Karpenko, D. Jacobs, J. Baek, and M. Levoy, “Digital video sta-
bilization and rolling shutter correction using gyroscopes,” Stanford
University, Tech. Rep., Mar. 2011.

[10] S.-H. Jung and C. Taylor, “Camera trajectory estimation using inertial
sensor measurements and structure from motion results,” inProc. IEEE
Conf. Computer Vision and Pattern Recognition, vol. 2, Dec. 2001, pp.
732–737.

[11] D. Strelow and S. Singh, “Online motion estimation fromimage and
inerital measurements,” inProc. Workshop Interation of Vision and
Inertial Sensors, Jun. 2003.
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