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Abstract— Measuring digital picture quality, as perceived by
human observers, is increasingly important in many applica-
tions in which humans are the ultimate consumers of visual
information. Standard dynamic range (SDR) images provide
8 b/color/pixel. High dynamic range (HDR) images, usually cre-
ated from multiple exposures of the same scene, can provide 16 or
32 b/color/pixel, but need to be tonemapped to SDR for display
on standard monitors. Multiexposure fusion (MEF) techniques
bypass HDR creation by fusing an exposure stack directly to SDR
images to achieve aesthetically pleasing luminance and color dis-
tributions. Many HDR and MEF databases have a relatively small
number of images and human opinion scores, obtained under
stringently controlled conditions, thereby limiting realistic view-
ing. Moreover, many of these databases are intended to compare
tone-mapping algorithms, rather than being specialized for devel-
oping and comparing image quality assessment models. To over-
come these challenges, we conducted a massively crowdsourced
online subjective study. The primary contributions described in
this paper are: 1) the new ESPL-LIVE HDR Image Database
that we created containing diverse images obtained by tone-
mapping operators and MEF algorithms, with and without post-
processing; 2) a large-scale subjective study that we conducted
using a crowdsourced platform to gather more than 300 000 opin-
ion scores on 1811 images from over 5000 unique observers; and
3) a detailed study of the correlation performance of the state-of-
the-art no-reference image quality assessment algorithms against
human opinion scores of these images. The database is available
at http://signal.ece.utexas.edu/%7Edebarati/HDRDatabase.zip.

Index Terms— Image quality assessment, high dynamic range,
subjective study, crowdsourcing.

I. INTRODUCTION

THERE has been significant growth in the acquisition,
processing and transmission of pictures and videos in

recent years. While most pictures are still Standard Dynamic
Range (SDR) images represented by 8 bits/color/pixel
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obtained by taking photographs at a fixed exposure, there
is a growing interest in the acquisition/creation and display
of high dynamic range images and other types of pictures
created by multiple exposure fusion. These images allow for
more pleasing representation and better use of the available
luminance and color ranges in real scenes, ranging from
direct sunlight to faint starlight [1]. Several video-on-demand
services can stream and home HDR monitors can display
HDR content, while smart phones and digital SLR cameras
can create aesthetically pleasing images by fusing a multiply-
exposed stack of images.

HDR images, commonly represented by 16 or 32 bits/color/
pixel, typically are obtained by blending a stack of SDR
images at varying exposure levels, thereby allowing a range
of intensity levels on the order of 10,000 to 1. HDR rendering
also finds use in computer graphics, where lighting calcula-
tions are performed over a wider dynamic range. This results in
better contrast variation thereby leading to a higher degree of
detail preservation. However, in order to visualize these images
on standard display devices designed for SDR images, they
must be tonemapped to SDR [2]. In addition to tone-mapped
SDR images, images are also created by multi-exposure
fusion, where a stack of SDR images taken at varying exposure
levels are fused to create an SDR image that is more visually
informative than the input images. This bypasses the interme-
diate step of creating an HDR irradiance map. HDR images
may also be post-processed (color saturation, color tempera-
ture, detail enhancement, etc.) for aesthetic purposes.

Subjective quality evaluation of images produced by
TMO or MEF algorithms is of considerable interest given the
ongoing rollout of HDR products and standards. A subjective
study using human observers is the most reliable way, although
this process is time consuming and expensive. However it
provides the necessary ground-truth data to benchmark objec-
tive image quality assessment (IQA) algorithms that automate
the process of visual quality assessment. Some of the earliest
psychophysical experiements on HDR images were carried out
in [3]–[10]. Many existing HDR IQA databases suffer from
the limitations of a relatively small number of images and
human subjective scores. The subjective scores have typically
been obtained by experiments conducted under stringently
controlled conditions. In addition, most of these studies either
asked the subjects to rank multiple versions of the same HDR
scene created using different processing algorithms, or used
a two-alternative forced choice method of subjective eval-
uation. These approaches severely restrict the number of
source images that can be considered, the type of processing
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algorithms examined and the number of subjects participating
in the experiments. Moreover, many of these studies have
been directed towards comparing the results of optimized tone-
mapping algorithms, rather than for creating and comparing
IQA models to access tone-mapped HDR images.

Krasula et al. [11] showed that scores assigned by human
subjects to different tone-mapped images may differ, based
on whether the source HDR images were also shown to
them. Ashikhmin and Goyal found significant differences
between rank-based evaluations of different TMOs, depending
on whether the subjects were also shown the corresponding
real physical scenes. In real-world scenarios, viewers of tone-
mapped HDR content do not view or have access to a reference
image. In such situations, no-reference (blind) IQA models are
required. However, to be able to design blind IQA models,
it is necessary to have data from large-scale subjective studies,
ideally without showing the subjects reference HDR images.
Here, our aim is to design a subjective study that mimics
realistic viewing conditions, whereby human subjects provide
absolute ratings of HDR processed images on a Single Stim-
ulus Continuous Quality Scale (SSCQS) instead of forcing
them to rank images that were output by different algorithms.
No reference images are introduced in our experiments.

Unlike subjective data collected in a strictly controlled
laboratory setting, the subjective data should reflect the
visual quality perceived by consumers using diverse display
devices under varying viewing conditions. Similar studies
are needed that study the subjective quality of tone-mapped
HDR videos [13], [14].

Automatic objective IQA models may be classified as
full-reference (FR) or as no-reference (NR).1 FR-IQA algo-
rithms designed for tonemapping applications [1], [15], [16]
compare a tonemapped SDR image with a corresponding
HDR irradiance map. However, in many applications the
reference 32-bit irradiance map is not available for compari-
son (such as the huge traffic of HDR-processed pictures shared
on social media or on photo-sharing platforms, like Picasa).
Hence, FR evaluation of these images is not a practical goal.
Again if multi-exposure fusion (MEF) of an exposure stack is
used, it is impractical to compare the processed output with a
“reference,” since among the multiple images in the exposure
stack, there is no single identifiable “reference.” Hence we
focus here on the important NR-IQA aspect of HDR, recog-
nizing that there are likewise many HDR applications where
FR-IQA might be useful.

NR-IQA is practical in many applications. Some of the
most successful NR-IQA algorithms for SDR images have
been developed using Natural Scene Statistics models [17].
NSS models are based on the observation that pristine
real-world optical images obey certain statistical principles
(‘naturalness’) that are violated by the presence of distor-
tions (‘unnaturalness’). NR-IQA algorithms extract NSS fea-
tures, then usually train a kernel function to map the features
to ground-truth human subjective scores using a supervised
learning framework. It is important that these algorithms are

1Setting aside reduced-reference models here, which also require a
reference.

trained on a large number of HDR-processed images that are
sufficiently representative of photos captured and processed
in practice. It is also important to collect a large number of
subjective evaluations per image to accommodate variations
of perceived quality among human observers on each image.

Present legacy HDR databases are limited in the following
ways. First, the small number of images considered may not
represent the diversity of HDR images captured in practice.
Second, a small number of human subject scores may not
adequately capture the variability of user perception in a large
population of human subjects. Third, most HDR-processed
images in these databases have been annotated by a rank
relative to other images instead of being given a raw quality
score, thereby making it difficult to map the extracted statis-
tical features to quantifiable human judgments.

In order to address these limitations, we conducted a large-
scale crowdsourced subjective study on a large corpus of
HDR-processed images to obtain a very large number of
subjective opinion scores. Following are the contributions of
the paper:

1) We created the new ESPL-LIVE HDR Image Data-
base, comprising 1,811 HDR-processed images created
from 605 high quality source HDR scenes. The images
were obtained using eleven HDR processing algo-
rithms involving both tonemapping and multi-exposure
fusion. We also considered post-processing artifacts of
HDR image creation, which typically occur in commer-
cial HDR systems.

2) We conducted subjective experiments on more than
5,000 observers using Amazon’s online crowdsourcing
platform, Mechanical Turk.

3) We studied variations in the perceived quality of the
images with respect to different viewing conditions,
demographics, and user familiarity with HDR image
processing.

4) We analyzed the performance of several state-of-the-art
NR-IQA algorithms (usually studied in the context of
SDR images afflicted by commonly occuring artifacts
such as blur, additive noise, compression and so on) on
the ESPL-LIVE HDR Image Database.

Thus we have designed an IQA database containing a set
of images to be evaluated by a pool of human observers. The
tone-mapping, multi-exposure or post-processing parameters
were not fine tuned to make the images appear aesthetically
pleasing; instead we designed a set of images that span
the quality spectrum. We do not propose any modification
to the compared algorithms to make them correlate better
with human perception, although this is an interesting line of
inquiry. Indeed, the provided ground truth human subjective
scores may be used by future researchers to design HDR-
processing algorithms that correlate more highly with human
perception.

The remainder of the paper is organized as follows.
Section II outlines related previous work on subjective image
quality evaluation of HDR images. Details of the source
HDR images used and the different processing algorithms
deployed are described in Section III. Section IV explains
the subjective study setup: a small-scale laboratory sub-
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jective study (to obtain ‘gold standard’ ratings), and the
large-scale crowdsourced subjective study. The raw quality
scores obtained from the subjects is analyzed in Section V.
Section VI evaluates the performance of several state-of-the-art
objective NR-IQA algorithms on the new ESPL-LIVE HDR
Image Database and discusses the results. The limitations
of the current study have been discussed in Section VII.
Section VIII concludes the paper.

II. RELATED WORK

Existing HDR IQA databases have been used to study
two typical HDR processing methods: tonemapping and
multi-exposure fusion. Yeganeh and Wang [1] carried out
a subjective study using 15 reference natural HDR images
and 8 tone-mapped SDR images generated using differ-
ent algorithms. The SDR images were quality ranked from
1 (best) to 8 (worst) by 209 subjects. Ma et al. [18] conducted
a subjective experiment using 17 reference HDR images
and 8 images created using different multi-exposure fusion
algorithms. A total of 25 subjects participated in their study.

HDR compression artifacts were subjectively evaluated
in [19]–[22]. Narwaria et al. [19] and Hanhart et al. [20]
used still HDR images and distorted versions of them obtained
by a combination of different TMOs and JPEG compression
at different bit rates. Hanhart et al. [21] conducted a subjec-
tive experiment using 240 images obtained by tonemapping
20 HDR images with a display adaptive tone-mapping algo-
rithm and compressing them using different profiles of the
JPEG XT [23] compression algorithm. Liu et al. [24] consid-
ered 192 images created from 6 source HDR images impaired
by four types of distortions (JPEG/JPEG2K compression,
white noise, and Gaussian blur) assessed by 25 participants.

Crowdsourcing for IQA is relatively new. Analyses of the
best practices for using crowdsourcing as a method of large
scale collection of data may be found in [25] and [26].
One of the earliest crowdsourced subjective experiments [27]
gathered ratings from 40 subjects on 116 JPEG compressed
SDR images. Ghadiyaram and Bovik [28] developed the
LIVE In the Wild Image Quality Challenge Database com-
prising 1,162 images containing diverse, authentic, real world
distortions assessed by more than 8,100 unique subjects.
Crowdsourcing of HDR images was used in [20] and [29]
to evaluate privacy and compression artifacts in HDR images,
respectively. To the best of our knowledge, crowdsourcing has
not been used before to conduct subjective quality evaluation
of HDR-processed images such as tone-mapping and multi-
exposure fusion artifacts at a large scale.

III. ESPL-LIVE HDR DATABASE

This section describes the types of source images,
the method of capturing them and the processing algorithms
used to generate the processed HDR images in the ESPL-LIVE
HDR Database.

A. Source Content

The source images in the new database are real-world
HDR scenes of nature, lakes, snow, forests, cities, man-made
structures, historical architectures etc. The images were shot

Fig. 1. Sample images from the ESPL-LIVE HDR Image Quality Database.
The images include pictures taken during day and night under different
illumination conditions. Both indoor and outdoor photos are included, along
with scenes containing both natural and man-made objects.

both during the day and the night and include both indoor and
outdoor scenes. Figure 1 shows some sample images from
the new database. The high dynamic range images used in the
database were obtained by combining photographs of the same
scene shot at multiple exposures using a modern digital SLR
camera. The auto-bracketing feature of modern SLR cameras
allows multiple photos of the same scene to be captured at
several exposure settings with one depression of the shutter
release. The new database contains 518 daytime photos and
87 night-time photos. In addition, 444 of the images were
taken outdoors while 161 of them are indoor pictures.

A total of 106 images were obtained from the HDR Pho-
tographic Survey [30]. These images were captured with a
Nikon D2x using a selection of lenses. Most of the images
were obtained with a Nikon 17-55mm f/2.8 ED-IF AF-S DX
Zoom-Nikkor lens. The D2x is a professional digital SLR
with a 12.4 Megapixel CMOS sensor. The auto-bracketing
function allowed for nine exposures to be made at one stop
increments in exposure time at a fixed aperture. Capturing
them at 5 frames/s allowed nine-exposure HDR sequences
covering a nine-stop exposure range to be made in less than
two seconds given sufficient light, a feature that is helpful
for subjects that might tend to move. These images have a
resolution of 4288 × 2848.

The rest of the images were captured using a Canon
Rebel T5 and Nikon D5300 digital SLR camera, with an
18 Megapixel CMOS sensor. An 18-55mm standard zoom
lens was used. The auto-bracketing function allowed three
exposures to be captured on each scene. The exact range
of exposures varied from scene to scene depending on the
subject and the available lighting conditions. Under low light
conditions, a tripod was used to prevent inadvertent camera
shakes. These images have a resolution of 5184 × 3456. All
images were saved in raw electronic format (NEF for Nikon
and CR2 for Canon cameras).

In order to minimize the degree of ghosting artifacts arising
from moving objects, care was taken to ensure that no high
motion objects were present in the scenes. Photomatix was
used to process the multiply-exposed stack of images obtained
from the DSLRs, to obtain floating point irradiance maps
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Fig. 2. Scatter plots of (a) Spatial Information vs. Colorfulness and (b) Dynamic Range vs. Image Key for the source images in the ESPL-LIVE HDR
Database. Red lines indicate the convex hull of the points in the scatter plot, which illustrates the range of scene complexities.

stored in OpenEXR format. Since it is a copyrighted software,
we do not have access to the algorithm used to create the
OpenEXR files. Correction for small amounts of intra-frame
motion (caused by minor movements in a scene) is a common
technique in HDR image processing, so that setting was
turned on.

B. Source Complexity

The source complexity of the image database was evaluated
using four measures: spatial information [31], which gives
an indication of the richness of the edge distribution in the
image; colorfulness [31], which quantifies color saturation;
pixel-based dynamic range [32]; and image key [32], which
indicates the average image brightness. These quantities are
computed on the full-resolution images obtained from the
DSLRs. Since for HDR images the scenes are captured at
multiple exposures, the scene complexity was determined from
the middle exposure image. Figure 2 shows scatter plots
between the measured spatial information and colorfulness and
that between the dynamic range and image key of the source
scenes. As may be observed, the database contains a wide and
rich range of scene content according to these measures.

C. HDR Processing Algorithms

Legacy subjective image quality assessment databases usu-
ally divide images into distortion categories (such as “Blur”,
“JPEG Compression”, and “Color Saturation”). However, our
new database makes no such attempt, although the TMO/MEF
algorithms are indeed regarded as sources of distortion.
Indeed, it is practically infeasible to superimpose such artificial
classification schemes onto realistic HDR images. Depending
on the scene and the type of processing algorithm considered,
the image could be impaired by a complex interplay of mul-
tiple luminance, structural or chromatic artifacts that are hard
to categorize. Furthermore, many commercial HDR processing
programs postprocess images to modify the local contrast and
color saturation, thereby creating a wider perceptual gamut.

Prior to fusing the exposure stack, the bracketed photos need
to be registered to correct small misalignments due to camera
movement between the shots. Even if the camera is held
fixed (as with a tripod), the scene may contain moving objects.
Since the merging process assumes that the pixels in the
bracketed stack are aligned perfectly, the moving objects may

Fig. 3. Bar chart showing the number of images in the database created
by each of the different HDR algorithms. ’TMO’, ’MEF’, and ’Effects’
denote Tone-Mapping Operators, Multi-Exposure Fusion Algorithms and Post
Processing respectively.

result in ghosting or blurring artifacts, depending on whether
the amount of motion is high or low (respectively) [33].
If the trailing ‘ghosts’ of the moving objects are not removed,
viewers may be annoyed by the artifacts. Hence, in this
section, we outline the HDR algorithms the we used to create
images instead of discretely defining distortion categories.
Figure 3 shows the distribution of the algorithms considered in
our database. In order to show the difference between the type
of artifacts that arise from using HDR processing algorithms
and other commonly occurring artifacts, we show the same
source scene processed by two TMO operators along with a
JPEG compressed version of it in Fig. 4.

Most of the algorithms were obtained from the HDR Tool-
box [41] implemented in MATLAB. The remaining source
code was provided by the authors of the algorithms. Instead of
generating the best-quality HDR-processed images, they were
generated in such a way that they span the entire quality scale
so as to present the subjects with a wide range of stimulus.
The final images displayed to the subjects had resolutions
of 960 × 540 for landscape orientation and 304 × 540 for
portrait orientation (both downsampled from the original reso-
lution using imresize in MATLAB using bicubic interpolation).
This was done to ensure that the images fit comfortably
within smaller displays and so that the subjects would not
encounter delays when loading the images over low bandwidth
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Fig. 4. Image of the same scene tone-mapped and JPEG compressed. (a) Method 1 (Durand TMO [34]) and (b) Method 2 (Fattal TMO [35]) show
two different TMO and a JPEG compressed image is shown in (c) . Tone-mapping operators primarily manipulate the contrast of the scene whereas JPEG
compression leads to annoying blockiness artifact.

TABLE I

TABLE OF THE NUMBER OF IMAGES IN THE DATABASE CREATED BY
EACH HDR ALGORITHM. ‘TMO’, ‘MEF’, AND ‘EFFECTS’ DENOTE

TONE-MAPPING OPERATORS, MULTI-EXPOSURE FUSION

ALGORITHMS AND POST PROCESSING RESPECTIVELY

internet connections. Figure 3 and Table I show the number
of images in the database created by each of the different
HDR algorithms. In total, 1,811 images were used in the
subjective experiment. The following sections briefly describe
the algorithms used to generate the images in the new database.

1) Images Generated by Tone Mapping Operators: The
process of generating well-exposed SDR scenes involves esti-
mating the scene radiance map, followed by tone-mapping it
to the displayable gamut of the SDR displays. Some of the
earliest algorithms for estimating the radiance map of a natural
scene in the HDR format were proposed in [42]–[44] using
photographs taken with conventional digital cameras. Given
multiple photographs of the same scene taken at different
degrees of exposures, the algorithms first recover the camera
response function (up to a scale factor) and use it to fuse
multiply exposed images into a single HDR radiance map
whose pixel values are proportional to the true radiance values
of the scene. It is presumed that each scene is static and that
the associated series of images were captured by deliberately
changing the exposure in quick succession so that lighting
changes can be safely ignored.

Once the radiance map is obtained, it is tonemapped to a
lower gamut (8 bit/color/pixel) of the SDR display. These
algorithms try to replicate the local-adaptation behavior of
the human visual system. The human eye adapts to the vast
range of real-world illuminations by changing its sensitivity
to be responsive at different illumination levels in a highly

localized fashion, thereby making it possible to see details in
both bright and dark regions [45]. Tone-mapping algorithms
compute either a spatially varying transfer function or shrink
image gradients to fit within the available dynamic range [46].

On every scene, the raw exposure stack was registered
and combined into a 32-bit floating point irradiance map (in
OpenEXR format) using Photomatix software with mini-
mal processing. Apart from capturing photographs of the
same scene at multiple exposures, some OpenEXR images
were also obtained from [47]. The tonemapped images were
created by using four representative TMOs proposed by
Durand and Dorsey [34], Fattal et al. [35], Reinhard et al. [36],
and Larson et al. [37]. The resulting image was downsampled
to resolution 960×540 for landscape orientation and 304×540
for portrait images.

2) Images Generated by Multi-Exposure Fusion: The brack-
eted stack of images, after being downsampled to the display
resolution, was first registered using a SIFT based image
alignment method [41], and then the aligned images were
cropped so that every pixel was visible in every image of
the stack, thus avoiding “black border” artifacts. The multiply
exposed images were then blended using a MEF algorithm,
which can broadly be expressed as [18]

Y (i) =
K∑

k=1

Wk(i)Xk(i) (1)

Here K is the number of bracketed images, Y is the fused
output image, and Xk(i) and Wk(i) indicate luminance or color
either in the spatial domain or coefficients in a transform
domain, and the weight at the i -th pixel in the k-th expo-
sure image, respectively. Wk is a relative spatial weight on
the images captured at different exposure levels based on
a measurement of perceptual information content. Different
MEF algorithms differ in the ways that the weights are
captured, but they all have an end goal of maintaining details in
both underexposed and overexposed regions. These methods
bypass the intermediate step of creating an HDR irradiance
map by instead creating an SDR image that can be directly
displayed on standard displays.

The five algorithms that we used to create multi-exposure
fused images are: local and global energy weighting meth-
ods, Raman’s method based on bilateral filtering [40], the
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TABLE II

TABLE SHOWING THE PARAMETERS USED FOR THE PHOTOMATIX
POST-PROCESSING EFFECTS: “SURREAL” AND “GRUNGE”

multi-exposure fusion method by Pece et al. [39] that also
deghosts and Paul et. al’s method [38] based on blending the
luminance component in the gradient domain. The methods
were chosen in order to cover a spectrum of representative
MEF algorithms based on a range of processing techniques
and computational complexity.

3) Post Processed Images: Many HDR images created by
professional and amateur photographers are post-processed
in order to convey different ‘feels’ of a scene. This can
drastically alter the final look of the image. We also included
post-processed HDR images in the database for subjective
evaluation, since these types of effects are not represented in
any existing HDR quality databases. In our implementation,
we first created an irradiance map using Photomatix and
tonemapped it using their default tone-mapping algorithm,
followed by post-processing using two commonly used effects:
“Surreal” and “Grunge” as determined by the choice of differ-
ent parameter settings on color saturation, color temperature
and detail contrast preservation. Here our goal was to provide
samples of post-processing artifacts that often arise among
the community of amateur and professional photographers.
We chose the Photomatix platform because of its popularity.
To constrain the number of images used in the crowdsourcing
platform to a reasonable value, we included only two types
of special effects. We provide the parameter values used to
achieve the “Surreal” and “Grunge” effects in Table II.

IV. SUBJECTIVE STUDY SETUP

Crowdsourced subjective image quality assessment studies
provide a wider range of challenges as compared to a tradi-
tional subjective study in a laboratory study, primarily due to
the lack of control over the precise experimental setup. To val-
idate the subjective results we obtained in the crowdsourced
study, we also conducted a separate small-scale controlled
laboratory subjective test using a small subset of the HDR
images (mentioned in the database link) as a control group to
obtain ‘gold standard’ subjective quality scores. This section
describes the setup of the laboratory and online subjective
experiments, the methods used to check the consistency of
ratings, and the techniques used to analyze the raw scores.
In addition, we also studied the dependency of the subjective
scores on various demographic factors such as age and gender
and various viewing parameters.

A. Laboratory Subjective Evaluation

We conducted a smaller, separate subjective study under
controlled conditions to serve as a validation of the

crowdsourced study. Fifteen graduate students comprised of
five women and ten men in the age group of roughly
20-30 years participated in the laboratory subjective study
conducted in the Department of Electrical and Computer Engi-
neering at The University of Texas at Austin in Spring 2016.
Most of the subjects did not have any prior experience of
participating in a visual subjective test. A single stimulus
testing procedure [48] was used. The subjects viewed a total
of 38 images of a range of qualities produced by a variety
of HDR algorithms. Each testing session entailed viewing
27 images and was preceded by a short training phase, where
the subject was shown 11 exemplar images. The training
phase was provided in order to familiarize a subject with
the experimental setup and hence, the scores entered by the
subject during this phase were not considered. On average,
each subject required roughly 15 minutes to complete the task.

The user interface for the study was designed on a PC
with NVIDIA Quadro NVS 285 GPU using the MATLAB
Psychology Toolbox [49] and the images were displayed on
a Dell 24-inch U2412M monitor. Each image was displayed
on the screen for 12 seconds. The subjects viewed the images
from about 2 - 2.25 times of the display height. The experiment
was carried out under normal office illumination conditions.
The ambient lighting was measured using a 200,000 Lux
Docooler Digital LCD Pocket Light Meter and was found to
be around 540 lux.

The screen resolution was set at 1920×1200 pixels, but the
images were displayed at their normal resolution (1920×1080)
without introducing any distortion by interpolation. The top
and bottom portions of the display were set to gray color.
At the end of each image’s display interval, a continuous
quality scale was displayed on the screen, where the default
initial location of the slider was at the center of the scale. The
scale was marked with five Likert adjectives: “Bad”, “Poor,”
“Fair,” “Good,” and “Excellent”. After the subject entered a
rating for an image, the location of the slider along the scale
was converted into an integer score lying between [0,100]. The
subject was allowed to take as much time as needed to decide
the score, but there was no provision for changing the score
once entered or viewing the image again once the rating bar
was presented. The next image was automatically displayed
once the score for the current image was recorded.

Regarding subject rejection, 3 of the 15 subjects were found
to be outliers following the standard ITU BT.500-13 recom-
mendation [48]; hence the mean opinion score (MOS) of
each image was calculated using the scores of the remaining
12 subjects. In order to account for variability among subjects,
the raw subjective scores were converted to Z-scores [50]
before calculating MOS. Based on the MOS scores, five
images were chosen as gold standard exemplars spanning the
quality scale.

B. Challenges to Crowdsourcing

There has recently been growing interest in using
online crowdsourcing platforms such as Amazon Mechanical
Turk (AMT) [51], Microworkers [52], and Crowdflower [53]
to collect large-scale human data from a diverse and distributed
global population. The registered ‘requesters’ advertise their
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tasks to registered ‘workers’ who can choose to provide their
inputs for data-collection in return for monetary compensation.
The following salient features should be kept in mind while
designing a crowdsourced subjective experiment:

• While the reach of these online platforms to a large num-
ber of potential subjects does help the requesters collect
a large number of image ratings in a much shorter time
than via standard laboratory experiments, the requesters
have limited control over the experimental setup, e.g.,
display devices used by workers, their distance from
the display, and illumination conditions in the workers’
viewing environment. Since these factors may have a
significant effect on the image ratings provided by the
users, information regarding these factors was collected
from the users at the end of each viewing session by
asking them to complete a short survey. We gathered
information from them on their familiarity with HDR
photography, the devices used to capture HDR content
and the softwares used to process HDR images. Further
details are in the next section.

• The time spent by a subject on a subjective experiment
via a crowdsourcing platform differs from a laboratory
experiment. In the latter setup, the goal is make the
subject evaluate each and every image in the dataset;
hence the study may last for a couple of hours which
may be broken into multiple shorter sessions to avoid
subject fatigue. However, in a crowdsourced setting, since
it is difficult to induce workers to participate in time-
consuming activities [54], the online tasks need to be
segmented into smaller chunks. Hence, each image in
the database was viewed and evaluated by a subset of
the participating workers.

C. Instructions, Training, and Testing

The subjects were instructed to focus on image quality
rather than image aesthetics. Care was taken to provide a
wide variety of images that they are likely to encounter in
real life. We relied on the human subjective judgments of
the experimenters to select the images. On AMT, requesters
present the tasks as Human Intelligence Tasks (HITs). The
workers are shown an instructions page explaining the details
of the study along with the monetary reimbursement offered.
If the worker is interested in participating, she has to click
the “Accept HIT” button to begin the actual task. At the end
of the task, the worker submits her results to the requester by
clicking on the “Submit Results” button.

1) Interface Used: Apart from the instructions, the workers
were also shown some representative images in the database
along with a screenshot of the interface to be used to rate the
images. Once the worker accepted the HIT, she was presented
with a rating interface, as shown in Figure 5, containing the
image to be evaluated and a slider below it. A single stimulus
quality evaluation [48] method was used in the experiment.
The subjects entered the ratings by dragging a horizontal slider
bar along a continuous scale marked at equal intervals “bad,”
“poor,” “fair,” “good,” and “excellent,” to aid the subject in
entering her judgment. Once she decides on the rating, she
changes the slider position accordingly. Upon pressing the

Fig. 5. Rating Screen for Amazon Mechanical Task HIT shown to the
subjects.

“Next Image” button, the position of the slider was converted
to an integer valued quality score between [1-100] and the
next image was presented. Unlike the laboratory experiments
where the subjects were shown each image for a fixed amount
of time, on the crowdsourced platform, the subjects could view
each image for as long as they desired.

2) Training and Testing Phase: Following a similar proce-
dure as the laboratory experiment, before the testing phase,
each participant was shown a set of 11 training images to
familiarize them with the user interface, to get a sense of the
range of image qualities and the types of processing artifacts
that they might encounter during the actual testing phase. The
training set of images was the same for all participants.

The testing phase experienced by each subject involved
viewing 49 images selected randomly from the corpus
of 1,811 images in the database, and presented in a randomized
order for each subject. The testing phase was followed by a
short survey. On average, the subjects required 9 minutes to
complete the task of evaluating a total of 60 images and they
were paid US$0.45 for their participation.

D. Subject Reliability and Rejection Strategies

Although AMT makes it possible to gather subjective
evaluations from a large number of subjects in a relatively
short period of time, stringent subject rejection strategies were
implemented in order to ensure high quality reliable ratings.
Following are the subject rejection methods that we used:

• Intrinsic metric: Only those workers on AMT having
AMT confidence values greater than 0.75 (on a [0,1]
scale) were allowed to participate in the study. Although
this number may not take into account the performance of
the subject on previous visual tasks, a higher confidence
number indicates a more reliable subject. To avoid bias,
we only allowed unique participants. Hence if the same
worker selected the task again, she was not allowed to
proceed beyond the instructions page.

• Using corrective lens: If any worker wore corrective
lenses in their day-to-day life, they were instructed to
wear them during the entire duration of the study. At the
end of the task, they were asked whether they normally
wore corrective lenses and whether they were wearing
them during the task. If a certain worker, who was
supposed to be wearing lenses, reported that she was not
using them during the study, her scores were rejected.
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Fig. 6. Scatter plot of the MOS scores of the five ‘gold standard’ images
obtained from the laboratory vs. the ones obtained from the crowdsourcing
experiment.

• Repeated images: From among the 49 test images,
5 were randomly chosen and presented twice to each
subject during the testing phase. If the difference between
the two scores provided by the worker to the same
image exceeded a certain threshold for at least 3 of the
5 repeated images, the scores from that worker were
rejected. During the initial phase of the study, the average
standard deviation of the scores obtained from about
400 workers was found to be 17 (rounding up to the
nearest integer). A value of 1.5 times the average stan-
dard deviation was used as the threshold for rejecting
subjects. This method eliminated inattentive or otherwise
disengaged subjects who were providing arbitrary scores
to the images.

• Gold standard images: As described earlier, 5 of the
remaining 44 images were chosen from the laboratory
subjective study. These images, referred to as “gold
standard” set were used to provide a control. The median
value of Pearson’s linear correlation coefficient (PLCC)
between the scores provided by each subject to these five
images in the crowdsourced study, and the corresponding
MOS calculated from the laboratory subjective test, after
applying non-linear regression was found to be 0.9465,2

the root-mean-square-error between the subject scores
and the ground truth MOS values was 5.4710, and the
PLCC without non-linear regression was 0.7514. This
high degree of agreement between the ground truth data
obtained from the laboratory settings and from the online
platform strongly suggests a high degree of reliability of
the scores obtained by crowdsourcing. Figure 6 shows the
scatter plot of the MOS scores of the five ‘gold standard’
images obtained from the laboratory vs. the ones obtained
from the crowdsourcing experiment.

E. Subject-Consistency Analysis

While a variety of measurements of intersubject agreement
are available [55], these generally cannot be applied here.

2Unless otherwise mentioned, all correlation values between the IQA algo-
rithm scores and/or human ground truth values were computed following
non-linear logistic regression as outlined in [50]. The logistic regression
helps measure the degree of monotonicity between the two sets of scores
when the relationship between them is non-linear or their scales differ.
Correlations measured after logistic regression might be higher than without,
if the relationship between the variables is not very linear.

Fig. 7. Distribution of number of ratings per image.

In our study, each subject was exposed to only a very small
percentage of the images in the database. Moreover, no two
subjects viewed the same set of images. Therefore, we utilized
the following methods to analyze the degree of consistency of
the scores obtained from the many subjects:

• Inter-subject consistency: For each image, the ratings
were randomly divided into two disjoint equal sized
subsets and MOS values were computed on each of
them. This procedure was repeated over 25 random
splits. The median Spearman’s Rank Order Correlation
Coefficient (SROCC) between the MOS between the
two sets was found to be 0.9700 ± 0.0013, while
the Pearson Linear Correlation Coefficient (PLCC) was
0.9721 ± 0.0011. The corresponding root-mean-square-
error was 2.3713.

• Consistency with ‘gold standard’ images: Pearson’s linear
correlation coefficient was measured between the indi-
vidual opinion scores and the MOS values of the gold
standard images. A median PLCC value of 0.8743 was
obtained over all subjects. The corresponding median
root-mean-square-error was found to be 7.7703.

The high values of these measures indicate good consistency
between the scores obtained from the subjects on each image.

V. ANALYSIS OF SUBJECTIVE SCORES

We gathered 327,720 ratings of picture quality from
5,462 unique participants. Of these, the scores from
388 subjects were eliminated following the rejection criterion
based on their performance on the “gold standard” images,
and/or for not following the instruction of wearing corrective
lenses when they were supposed to. The images were evaluated
by an average of 110 observers. Figure 7 plots the histogram
of the number of ratings per image.

The MOS was computed by averaging the Z-scores using
the method outlined in [56]. The range of MOS values spans
[16.941 - 68.502]. Figure 8 shows a histogram of the MOS
scores for every image obtained from the Z-scores. The
average standard deviation of all of the subjective scores was
found to be 21.131.

We also gathered demographic information about the sub-
jects, such as age and gender, as shown in Figure 9. Since
familiarity of the subjects with HDR photography might affect
the quality scores provided by them, the subjects were also
requested to provide information regarding the same. Figure 10
summarizes the levels of awareness of the subjects about HDR
photography, the type of optical devices used by them to
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Fig. 8. Histogram of MOS obtained from the human subjects. The range of
the MOS values spans [16.941 - 68.502].

capture HDR content (if they indeed knew about HDR), and
their familiarity with image processing software such as Adobe
Photoshop or Photomatix. This last question was included in
the survey because some of the images were created by adding
special post-processing effects following HDR fusion.

The subjects were instructed to work on the HIT only from
personal computers instead of smartphones or tablets. The
type of display devices used and the distance from the screen
can affect the visual quality of the image. The subjects also
provided information on these aspects. Figures 10(b) and (c),
respectively, show the types and distribution of displays used
by the subjects, and their estimated distances from the screen
while completing each HIT.

A. Variation of Subjective Scores With Number of Subjects

While the MOS scores that are used in our study were
computed on all of the subjects, we conducted the following
procedure to study the effects of subject count on MOS.
To do this, we randomly selected five images from the
database (these are shown in Fig. 11), each of which had
more than 100 subjective scores associated with it. We then
randomly sampled 20, 40, 60, 80 and 100 of the subject scores
of each image and recomputed the MOS again on each of
these reduced subsets. Figure 12 shows that these computed
MOS values remained relatively constant with respect to the
number of subjects viewing the images, although the standard
error increased noticeably below 40 subjects. The confidence
intervals were calculated based on the variation of the MOS
scores over the 25 trials, which gives a rough indication of
the number of subjective evaluations that are needed to obtain
reliable MOS scores (depending on the accuracy needed in an
application).

B. Variation of Subjective Scores

Here we summarize observations on how the perceptual
quality judgments of the subjects were affected by parameters
such as age, gender, display devices used when participating
in the subjective study, distance from the display, and their
familiarity with HDR image processing. Figure 11 shows
five representative images on which the effects of the above
mentioned factors on the subjective scores was studied. At a
confidence interval of 95%, one-way (Analysis of variance)
ANOVA test was performed in order to find out whether these
factors affect the MOS scores.

1) Age: Data from subjects who used a laptop during the
study and were sitting about 15 - 30 inches away from the

screen was used to isolate the effects of age on the perceived
quality of the images while holding other factors relatively
fixed. These display settings were selected because most of
the subjects participated in the experiment using their laptops
and reported to be sitting at about 15 - 30 inches away from the
screen, thereby providing us with sufficient number of samples
to study the effect of age on perceived quality. The individual
ratings on the images shown in Fig. 11 were grouped according
to three age categories: ‘20-30’, ‘30-40’ and ‘>40’ and the
MOS was computed for each group, as shown in Fig. 13.

2) Gender: Data from subjects between 20 - 30 years of
age, who used a laptop during the study and were sitting
about 15 - 30 inches away from the screen was used to
isolate the effects of gender on perceived quality of the images
while keeping the other factors relatively constant. These
display settings were selected for the same reasons as above.
The individual ratings on the images shown in Fig. 11 were
grouped according to their gender and the MOS was computed
for each group, as shown in Fig. 14.

3) HDR Awareness: One of the questions asked of the
subjects was whether they were familiar with HDR images.
Figure 10 shows the distribution of the answers of the subjects
to various HDR related questions. The individual ratings on the
images shown in Figure 11 were grouped according to whether
the users were familiar with HDR imaging. The MOS was
computed for each group, as shown in Fig. 15. We hypothesize
that since the subjects were not shown the original HDR
irradiance map on an HDR compatible display and were not
informed at the beginning of the experiment that they would
be evaluating HDR processed content, they judged the artifacts
more or less similarly.

4) Display Device Used: The subjects were asked to report
the type of display device they used to participate in this
study. The individual ratings on the images shown in Fig. 11
were grouped according to whether the users were using a
desktop or a laptop computer and the MOS was computed for
each group, as shown in Fig. 16. The type of display device
used by a subject may impact their perception of quality.
Studies of the effects on perceived quality of the type of
display, the screen resolution, and the interplay between the
display technology and the HDR processing algorithms used
are topics of interesting future study.

5) Distance From Display: The subjects were asked to
report how far they were sitting from the display while
participating in this study. The individual ratings on the images
shown in Fig. 11 were grouped according to three distances:
‘<15,’ ‘15-30,’ and ‘>30’ inches from the display and the MOS
was computed for each group, as shown in Fig. 17.

C. Discussion of HDR Processing Algorithms

In order to study the relationship between image quality
and the type of HDR processing algorithms, we divided
the images into three categories: high quality (having raw
scores above 70), medium quality (raw scores lying between
40 and 70) and low quality (raw scores less than 40). For
the high quality algorithms, most the images were found to
be processed by the TMOs outlined in [36] and [37] and
by MEF algorithms like [38] and [40]. A previous study
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Fig. 9. Demographics of the participating human subjects by (a) age (b) gender and display (c) different categories of display devices used by the workers
to participate in the study and (d) approximate distance in inches between the subject and the viewing screen.

Fig. 10. HDR awareness of the subjects (a) Number of subjects aware of HDR images (b) The types of devices they used to capture HDR content where
‘NA’ indicates subjects who are not familiar with HDR and (c) Number of subjects familiar with image processing software such as Photoshop or Photomatix.

Fig. 11. Sample images from HDR database used to illustrate the effect of increasing the number of participants on the calculated MOS. The caption of
each image gives the MOS values and the associated 95% confidence intervals. (a) MOS = 62.43 ± 2.04. (b) MOS = 52.90 ± 2.17. (c) MOS = 42.33 ± 2.77.
(d) MOS = 40.23 ± 2.42. (e) MOS = 31.07 ± 2.82.

by Drago et al. [5] showed that histogram adjustment based
methods produce high contrast images and preserves spatial
details relatively well. Ledda et al. [3] found that [36] performs
very well when the subjects were asked to rank the outputs
of different tone-mapping operators. For the medium quality
algorithms, all of the TMO and MEF algorithms were found
to perform about equally well. The TMO outlined in [34]
using bilateral filters was found to yield lower quality images.
This agrees with the results of many previous studies, such
as [3] and [12], that bilateral/trilateral filtering yields out-
puts less similar to real scenes. Thus we find that many of
the hypotheses developed in previous laboratory studies of

TMOs agree with the MOS collected in our crowdsourced
experiment.

VI. EVALUATION OF IQA ALGORITHMS

We also tested the performance of some of the state-of-the-
art NR-IQA algorithms on the new database to demonstrate
and study the usefulness of the database and the capabili-
ties and limitations of current models when evaluating HDR
processing artifacts. Table III outlines the features extracted
by the various NSS based NR-IQA algorithms evaluated on
the database. The algorithms HIGRADE-1 and HIGRADE-2
are two recently proposed gradient scene-statistics based
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Fig. 12. MOS plotted against the number of workers who viewed and rated
the images shown in Fig 11 along with the 95% confidence intervals.

Fig. 13. Individual Z-scores obtained from subjects of different ages who
rated the images shown in Fig 11. The letter below each column indicates
which image in Fig. 11 was rated. For each vertical column, the median
is the center of the central box, while the upper and lower edges of each
box represent the 25th and 75th percentiles, and the whiskers span the most
extreme non-outlier data points. P-values obtained from the one-way ANOVA
tests have been shown for each figure. Other than the image in Fig. 11(b),
the P-values indicate that there is no statistical evidence to reject the null
hypothesis that people from different age groups rated the images the same.

Fig. 14. Individual Z-scores obtained from subjects of different genders who
rated the images shown in Fig 11. The letter below each column indicates
which image in Fig. 11 was rated. For each vertical column, the median
is the center of the central box, while the upper and lower edges of each
box represent the 25th and 75th percentiles, and the whiskers span the most
extreme non-outlier data points. P-values obtained from the one-way ANOVA
tests have been shown for each figure. Other than the image in Fig. 11(b),
the P-values indicate that there is no statistical evidence to reject the null
hypothesis that people of different genders rated the images the same.

NR-IQA algorithms defined in the LAB color space [58].
HIGRADE-1 (L) and HIGRADE-2 (L) are versions of these
algorithms that only operate on the luminance channel (L).
Although there are no clear-cut distortion categories that can
be defined on this database, results are summarized individu-
ally for each class of HDR processing algorithms.

The performances of the algorithms were evaluated by
measuring correlations with subjective scores (after non-linear
regression). Once the features were extracted, a mapping was

Fig. 15. Individual Z-scores obtained from subjects familiar with or not
familiar with HDR imaging who rated the images shown in Fig 11. The letter
below each column indicates which image in Fig. 11 was rated. For each
vertical column, the median is the center of the central box, while the upper
and lower edges of each box represent the 25th and 75th percentiles, and the
whiskers span the most extreme non-outlier data points. P-values obtained
from the one-way ANOVA tests have been shown for each figure. The P-values
indicate that there is no statistical evidence to reject the null hypothesis that
people rated the images the same depending on their familiarity with HDR
images.

Fig. 16. Individual Z-scores obtained from subjects using different display
devices who rated the images shown in Fig 11. The letter below each
column indicates which image in Fig. 11 was rated. For each vertical column,
the median is the center of the central box, while the upper and lower edges of
each box represent the 25th and 75th percentiles, and the whiskers span the
most extreme non-outlier data points. P-values obtained from the one-way
ANOVA tests have been shown for each figure. The P-values indicate that
there is no statistical evidence to reject the null hypothesis that people rated
the images the same based on the type of their display devices.

Fig. 17. Individual Z-scores obtained from subjects viewing the images at
different distances (expressed in inches) who rated the images shown in Fig 11.
The letter below each column indicates which image in Fig. 11 was rated. For
each vertical column, the median is the center of the central box, while the
upper and lower edges of each box represent the 25th and 75th percentiles,
and the whiskers span the most extreme non-outlier data points. P-values
obtained from the one-way ANOVA tests have been shown for each figure.
The P-values indicate that there is no statistical evidence to reject the null
hypothesis that people rated the images the same based on their distance
from the display devices.

obtained from the feature space to the DMOS scores using a
regression method, which provides a measure of the perceptual
quality. We used a support vector machine regressor (SVR)
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TABLE III

LIST OF NR-IQA ALGORITHMS EVALUATED IN THIS STUDY

TABLE IV

MEDIAN SPEARMAN’S RANK ORDERED CORRELATION COEFFICIENT (SROCC) AND PEARSON’S LINEAR CORRELATION COEFFICIENT (PLCC)
BETWEEN THE ALGORITHM SCORES FOR VARIOUS IQA ALGORITHMS AND THE MOS SCORES ON THE ESPL-LIVE HDR DATABASE.

THE TABLE WAS SORTED IN DESCENDING ORDER OF SROCC OF THE ‘OVERALL CATEGORY’. THE BOLD

VALUES INDICATE THE BEST PERFORMING ALGORITHM

TABLE V

ROOT-MEAN-SQUARE ERROR (RMSE), REDUCED χ̃2 STATISTIC BETWEEN THE ALGORITHM SCORES AND THE MOS FOR VARIOUS NR-IQA
ALGORITHMS (AFTER LOGISTIC FUNCTION FITTING) AND OUTLIER RATIO (EXPRESSED IN PERCENTAGE) FOR EACH DISTORTION CATEGORY

ON THE ESPL-LIVE HDR DATABASE. THE BOLD VALUES INDICATE THE BEST PERFORMING ALGORITHM FOR THAT CATEGORY

(LibSVM [65]) to implement ε-SVR with the radial basis
function kernel, where the kernel parameter is by default the
inverse of the number of features.

We randomly split the data into disjoint training and testing
sets at a 4:1 ratio and the split was randomized over 100 trials.
Care was taken to ensure that the same source scene did not
appear during both training and testing to prevent artificial
inflation of the results. The Spearman’s rank ordered corre-
lation coefficient (SROCC) and Pearson’s linear correlation
coefficient (PLCC) values between the predicted and the
ground truth quality scores were computed at each iteration
and the median values of the correlations were found. The

results indicate that there is significant room for improvement
among current NR-IQA algorithms when predicting HDR
artifacts. The results are summarized in Table IV.

Table V shows the root-mean-squared-errors (RMSE),
reduced χ̃2 statistic between scores predicted by the algo-
rithms and MOS (after logistic regression) and the outlier
ratios (expressed in percentage). The top performing algo-
rithms yielded lower values of RMSE, reduced χ̃2 statistic
and outlier ratio.

Many of the tonemapping and multi-exposure fusion algo-
rithms modify the gradients of the component images of
the exposure stack. We found that algorithms that take into
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TABLE VI

ESPL STUDY: VARIANCE OF THE RESIDUALS BETWEEN INDIVIDUAL
SUBJECTIVE SCORES AND NR-IQA ALGORITHM PREDICTIONS

TABLE VII

ESPL STUDY: VARIANCE OF THE RESIDUALS BETWEEN INDIVIDUAL

SUBJECTIVE SCORES AND NR-IQA ALGORITHM PREDICTIONS

account variations of the gradient of the images achieved a
higher degree of correlation with the human ground truth
subjective data. Both grayscale and color versions of the
proposed models were found to exhibit good correlations
with human judgment compared to other state-of-the-art
NR-IQA algorithms. However, as expected, algorithms that
use all three LAB color channels performed better than models
that only extract feature on the L-channel, especially on post-
processing artifacts that modify the color-saturation and/or
color temperature of the images.

A. Determination of Statistical Significance

Ten representative NR-IQA algorithms were studied in
regards to determining the significance of their relative per-
formances. Following the methods outlined in [50], statistical
significance tests were carried out over multiple 4:1 train-
test splits and similar results were obtained. We show the
results obtained for one such representative trial. Results are
summarized in Tables VI, VII, VIII and IX. For the F-Test
based on MOS, the variance of the residuals obtained from
the null-model and the ten selected IQA algorithms, along
with the number of samples considered in each category
and the threshold F-ratio at 95% significance are shown
in Table VI, while Table VII shows the corresponding result
considering the individual scores obtained from the human
subjects. None of the IQA algorithms tested was found to
be statistically equivalent to the null-model corresponding to
human judgment. HIGRADE-1 shows the least variance of the
residuals for the overall database.

To determine whether the performance of the IQA algo-
rithms are significantly different from each other, the

F-statistic, as in [50], was used to determine the statistical
significance between the variances of the residuals after a
non-linear logistic mapping between the two IQA algorithms,
at the 95% confidence interval. Table VIII shows the results
for the ten IQA algorithms and all HDR processing methods
when MOS scores were considered, while Table IX shows the
corresponding result considering the individual scores obtained
from human subjects. Both of these indicate that while most
of the models produced similar results, HIGRADE-1 and
HIGRADE-2 were found to be statistically superior overall
relative to the other NR-IQA algorithms.

VII. LIMITATIONS AND DISCUSSION

The overarching goal of this study has been to leverage
crowdsourcing tools to collect human opinion data on a
large scale, while allowing for a wide range of displays
and viewing conditions that are closer to free-viewing sce-
narios than can be obtained under strictly controlled labo-
ratory settings. By design, the human observers rated the
images in the most natural way, using a Single Stimulus
Continuous Quality Scale, instead of ranking their quali-
ties. Our study is directed at the evaluation of NR models
only, hence a limitation of this new resource is it cannot
be used to evaluate the relative performances of FR-IQA
algorithms that measure the signal fidelity between original
HDR irradiance maps and images obtained by processing them
with different TMO operators. To create the image database,
we generated images using eleven widely used tonemapping
and other HDR processing algorithms that deploy funda-
mental methods. This has an advantage of generality, but
does not supply a resource for directly comparing the effi-
cacies of the latest TMO models against human subjective
judgments. Future interesting directions for crowdsourced
studies might include large numbers of images generated
by emergent HDR-processing algorithms or wider classes of
distortions, and multiply distorted images [66], such as those
arising from compressing or transmitting HDR-processed
images.

While crowdsourcing human opinion scores requires con-
siderable care, we applied the experiences gained on an even
larger study [28] to produce a dataset exhibiting excellent
internal consistency. Nevertheless, it would be quite useful
to conduct dual experiments whereby a large number of
the same images are evaluated under both laboratory and
crowdsourcing conditions, to determine the differences in
human responses under these very different conditions. In a
laboratory study, HDR displays could be used to display
floating point HDR irradiance maps to the human subjects,
against the wide diversity of displays used in a corresponding
crowdsourced experiment. This could lead to insightful com-
parisons between the perceptions of HDR and HDR-processed
images.

The kinds of distortions caused by TMOs also depend
on the color gamut and peak luminance of each display.
Hence, such a study might be used to determine which TMOs
are the most efficacious. Optimizing the parameters of TMO
models using crowdsourcing is an interesting direction of open
research.
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TABLE VIII

RESULTS OF THE F-TEST PERFORMED ON THE RESIDUALS BETWEEN MODEL PREDICTIONS AND MOS SCORES ON ESPL-LIVE HDR DATABASE. EACH
CELL IN THE TABLE IS A CODEWORD CONSISTING OF 4 SYMBOLS THAT CORRESPOND TO “TONE MAPPING OPERATORS”’, “MULTI-EXPOSURE

FUSION”, “POST PROCESSING”, AND “OVERALL” PROCESSING ALGORITHMS. “1”(“0”) INDICATES THAT THE PERFORMANCE OF THE

ROW IQA ALGORITHM IS SUPERIOR(INFERIOR) TO THAT OF THE COLUMN IQA ALGORITHM. - INDICATES THAT THE STATISTICAL

PERFORMANCE OF THE ROW IQA IS EQUIVALENT TO THAT OF THE COLUMN IQA. THE MATRIX IS SYMMETRIC

TABLE IX

RESULTS OF THE F-TEST PERFORMED ON THE RESIDUALS BETWEEN MODEL PREDICTIONS AND INDIVIDUAL QUALITY SCORES ON ESPL-LIVE HDR
DATABASE. EACH CELL IN THE TABLE IS A CODEWORD CONSISTING OF 4 SYMBOLS THAT CORRESPOND TO “TONE MAPPING OPERATORS”’,

“MULTI-EXPOSURE FUSION”, “POST PROCESSING”, AND “OVERALL” PROCESSING ALGORITHMS. “1”(“0”) INDICATES THAT THE
PERFORMANCE OF THE ROW IQA ALGORITHM IS SUPERIOR(INFERIOR) TO THAT OF THE COLUMN IQA ALGORITHM. - INDICATES

THAT THE STATISTICAL PERFORMANCE OF THE ROW IQA IS EQUIVALENT TO THAT

OF THE COLUMN IQA. THE MATRIX IS SYMMETRIC

While we chose to keep the instructions that were given to
the subjects simple and performance-directed, we did solicit
feedback from them regarding the viewing distance and dis-
play type. Given the heterogeneity of display devices and
viewing conditions in the crowdsourced experiment, it was not
possible (nor desirable) to have the subjects evaluate images
on calibrated displays or to measure the ambient lighting.
As a complement to the current study, future experiments
might target more knowledgeable pools of subjects, to obtain
answers to detailed questions regarding the effects of viewing
conditions (such as the ambient illumination), and the display
settings (e.g., the model, age, resolution, and size of the
monitor). Another variation might involve individual human
subjects evaluating the same images on multiple displays to
better account for how perception varies across displays. The
results of the current study cannot answer these questions.

In the present study, only those AMT workers having AMT
confidence values greater than 0.75 (on a [0,1] scale) were
allowed to participate, and strict subject rejection criteria were
imposed. In future crowdsourced studies, it may be useful to
collect more background data, such as the average time spent
by each subject on each image, the overall time spent by her
rating all of the images, and so on.

VIII. CONCLUSION

We have described the new ESPL-LIVE HDR Image Qual-
ity Database of more than 300,000 human judgments garnered
from more than 5,000 unique subjects. We outlined variable

sources of HDR images, the algorithms used to process them
and our crowdsourced subjective study framework, which
allowed the images to be evaluated by thousands of observers
over the Internet.

We also studied current NR-IQA algorithms in light of the
collected subjective data as predictors of the perceptual quality
of HDR-processed images. To the best of our knowledge,
this is the largest and most comprehensive study of HDR-
processed image quality conducted to date. It is our hope
that the new database will prove to be a valuable resource,
allowing researchers to develop improved IQA models of HDR
processed images, and tonemapped HDR quality prediction
algorithms that can be used for a variety of processing tasks,
such as perceptually optimizing HDR processing algorithms
for tonemapping and multi-exposure fusion (and for assessing
the results).

REFERENCES

[1] H. Yeganeh and Z. Wang, “Objective quality assessment of tone-mapped
images,” IEEE Trans. Image Process., vol. 22, no. 2, pp. 657–667,
Feb. 2013.

[2] G. Eilertsen, R. K. Mantiuk, and J. Unger, “A comparative review
of tone-mapping algorithms for high dynamic range video,” Comput.
Graph. Forum, vol. 36, no. 2, pp. 565–592, 2017.

[3] P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen, “Evaluation of
tone mapping operators using a high dynamic range display,” ACM
Trans. Graph., vol. 24, no. 3, pp. 640–648, Jul. 2005. [Online].
Available: http://doi.acm.org/10.1145/1073204.1073242

[4] A. Yoshida, R. Mantiuk, K. Myszkowski, and H.-P. Seidel, “Analysis
of reproducing real-world appearance on displays of varying dynamic
range,” Comput. Graph. Forum, vol. 25, no. 3, pp. 415–426, 2006.



KUNDU et al.: LARGE-SCALE CROWDSOURCED STUDY FOR TONE-MAPPED HDR PICTURES 4739

[5] F. Drago, W. L. Martens, K. Myszkowski, and H.-P. Seidel, “Perceptual
evaluation of tone mapping operators,” in Proc. ACM SIGGRAPH
Sketches Amp Appl., New York, NY, USA, 2003, p. 1. [Online].
Available: http://doi.acm.org/10.1145/965400.965487

[6] M. Čadík, M. Wimmer, L. Neumann, and A. Artusi, “Evaluation of HDR
tone mapping methods using essential perceptual attributes,” Comput.
Graph., vol. 32, no. 3, pp. 330–349, Jun. 2008. [Online]. Available:
https://www.cg.tuwien.ac.at/research/publications/2008/CADIK-2008-
EHD/

[7] P. B. Delahunt, X. Zhang, and D. H. Brainard, “Perceptual image
quality: Effects of tone characteristics,” J. Electron. Imag., vol. 14, no. 2,
p. 023003, 2005.

[8] J. Kuang, R. Heckaman, and M. D. Fairchild, “Evaluation of HDR tone-
mapping algorithms using a high-dynamic-range display to emulate real
scenes,” J. Soc. Inf. Disp., vol. 18, no. 7, pp. 461–468, 2010.

[9] M Klíma et al., “Deimos-an open source image database,” Radioengi-
neering, vol. 20, no. 4, pp. 1016–1023, 2011.

[10] I. Sprow, D. Kuepper, Z. Baranczuk, and P. Zolliker, “Image quality
assessment using a high dynamic range display,” in Proc. AIC, 2013,
p. 307310.

[11] L. Krasula, M. Narwaria, K. Fliegel, and P. Le Callet, “Influence of HDR
reference on observers preference in tone-mapped images evaluation,” in
Proc. 7th Int. Workshop Quality Multimedia Exper. (QoMEX), Jul. 2015,
pp. 1–6.

[12] M. Ashikhmin and J. Goyal, “A reality check for tone-mapping opera-
tors,” ACM Trans. Appl. Perception (TAP), vol. 3, no. 4, pp. 399–411,
2006.

[13] J. Petit and R. K. Mantiuk, “Assessment of video tone-mapping: Are
cameras’ S-shaped tone-curves good enough?” J. Vis. Comun. Image
Represent., vol. 24, no. 7, pp. 1020–1030, Oct. 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.jvcir.2013.06.014

[14] G. Eilertsen, R. Wanat, R. K. Mantiuk, and J. Unger, “Evaluation of tone
mapping operators for HDR-video,” in Comput. Graph. Forum, vol. 32,
no. 7, pp. 275–284, 2013.

[15] H. Z. Nafchi, A. Shahkolaei, R. F. Moghaddam, and M. Cheriet,
“FSITM: A feature similarity index for tone-mapped images,” IEEE
Signal Process. Lett., vol. 22, no. 8, pp. 1026–1029, Aug. 2015.

[16] H. R. Nasrinpour and N. D. Bruce, “Saliency weighted quality assess-
ment of tone-mapped images,” in Proc. IEEE Int. Conf. Image Process.,
Sep. 2015, pp. 4947–4951.

[17] A. C. Bovik, “Automatic prediction of perceptual image and video
quality,” Proc. IEEE, vol. 101, no. 9, pp. 2008–2024, Sep. 2013.

[18] K. Ma, K. Zeng, and Z. Wang, “Perceptual quality assessment for
multi-exposure image fusion,” IEEE Trans. Image Process., vol. 24,
no. 11, pp. 3345–3356, Nov. 2015.

[19] M. Narwaria, M. Perreira Da Silva, P. Le Callet, and R. Pepion,
“Tone mapping-based high-dynamic-range image compression: Study of
optimization criterion and perceptual quality,” Opt. Eng., vol. 52, no. 10,
p. 102008, Oct. 2013.

[20] P. Hanhart, P. Korshunov, and T. Ebrahimi, “Crowdsourcing evaluation
of high dynamic range image compression,” in Proc. SPIE Opt. Eng.
Appl., 2014, p. 92170D.

[21] P. Hanhart, M. V. Bernardo, M. Pereira, A. M. G. Pinheiro, and
T. Ebrahimi, “Benchmarking of objective quality metrics for HDR image
quality assessment,” EURASIP J. Image Video Process., vol. 2015, no. 1,
2015, Art. no. 39. [Online]. Available: http://dx.doi.org/10.1186/s13640-
015-0091-4

[22] C. Mantel, S. C. Ferchiu, and S. Forchhammer, “Comparing sub-
jective and objective quality assessment of HDR images compressed
with JPEG-XT,” in Proc. IEEE 16th Int. Workshop Multimedia Signal
Process. (MMSP), Sep. 2014, pp. 1–6.

[23] T. Richter, “On the standardization of the JPEG XT image compression,”
in Proc. Picture Coding Symp. (PCS), Dec. 2013, pp. 37–40.

[24] M. Liu, G. Zhai, S. Tan, Z. Zhang, K. Gu, and X. Yang, “HDR2014—A
high dynamic range image quality database,” in Proc. IEEE Int. Conf.
Multimedia Expo Workshops, Jul. 2014, pp. 1–6.

[25] T. Hoßfeld et al., “Best practices for QoE crowdtesting: QoE assess-
ment with crowdsourcing,” IEEE Trans. Multimedia, vol. 16, no. 2,
pp. 541–558, Feb. 2014.

[26] M. Hirth, T. Hossfeld, M. Mellia, C. Schwartz, and F. Lehrieder,
“Crowdsourced network measurements,” Comput. Netw., vol. 90,
pp. 85–98, Oct. 2015. [Online]. Available: http://dx.doi.org/10.1016/
j.comnet.2015.07.003

[27] F. Ribeiro, D. Florencio, and V. Nascimento, “Crowdsourcing subjective
image quality evaluation,” in Proc. 18th IEEE Int. Conf. Image Process.,
Sep. 2011, pp. 3097–3100.

[28] D. Ghadiyaram and A. C. Bovik, “Massive online crowdsourced
study of subjective and objective picture quality,” IEEE Trans. Image
Process., vol. 25, no. 1, pp. 372–387, Jan. 2016. [Online]. Available:
http://dx.doi.org/10.1109/TIP.2015.2500021

[29] P. Korshunov, H. Nemoto, A. Skodras, and T. Ebrahimi,
“Crowdsourcing-based evaluation of privacy in HDR images,” in
Proc. SPIE Photon. Eur., 2014, pp. 913802-1–913802-11.

[30] M. D. Fairchild, “The HDR photographic survey,” in Proc. Color Imag.
Conf., 2007, pp. 233–238.

[31] S. Winkler, “Analysis of public image and video databases for quality
assessment,” IEEE J. Sel. Topics Signal Process., vol. 6, no. 6,
pp. 616–625, Oct. 2012.

[32] V. Hulusic, G. Valenzise, E. Provenzi, K. Debattista, and F. Dufaux,
“Perceived dynamic range of HDR images,” in Proc. IEEE Int. Conf.
Qual. Multimedia Exper., Jun. 2016, pp. 1–6.

[33] J. Hu, O. Gallo, K. Pulli, and X. Sun, “HDR deghosting: How to deal
with saturation?” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2013, pp. 1163–1170.

[34] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-
dynamic-range images,” in Proc. ACM SIGGRAPH, 2002, pp. 257–266.
[Online]. Available: http://doi.acm.org/10.1145/566570.566574

[35] R. Fattal, D. Lischinski, and M. Werman, “Gradient domain high
dynamic range compression,” ACM Trans. Graph., vol. 21, no. 3,
pp. 249–256, Jul. 2002.

[36] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone
reproduction for digital images,” ACM Trans. Graph., vol. 21, no. 3,
pp. 267–276, Jul. 2002.

[37] G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone
reproduction operator for high dynamic range scenes,” IEEE Trans. Vis.
Comput. Graph., vol. 3, no. 4, pp. 291–306, Oct. 1997.

[38] S. Paul, I. Sevcenco, and P. Agathoklis, “Multi-exposure and multi-
focus image fusion in gradient domain,” J. Circuits, Syst. Comput.,
2016. [Online]. Available: http://www.mathworks.com/matlabcentral/
fileexchange/48782-multi-exposure-and-multi-focus-image-fusion-in-
gradient-domain

[39] F. Pece and J. Kautz, “Bitmap movement detection: HDR for dynamic
scenes,” in Proc. Conf. Vis. Media Product. (CVMP), 2010, pp. 1–8.
[Online]. Available: http://nbn-resolving.de/urn:nbn:de:0009-6-36506

[40] S. Raman and S. Chaudhuri, “Bilateral filter based compositing
for variable exposure photography,” in Eurographics-Short Papers,
P. Alliez and M. Magnor, Eds. The Eurographics Association,
2009.

[41] F. Banterle. HDR Toolbox for Matlab, accessed on Jan. 2016. [Online].
Available: https://github.com/banterle/HDR_Toolbox

[42] P. E. Debevec and J. Malik, “Recovering high dynamic range
radiance maps from photographs,” in Proc. ACM SIGGRAPH,
New York, NY, USA, 1997, pp. 369–378. [Online]. Available:
http://dx.doi.org/10.1145/258734.258884

[43] Mann, Picard, S. Mann, and R. W. Picard, “On being ‘undigital,’ with
digit. Cameras: Extending dynamic range by combining differently
exposed pictures,” Proc. IS&T, 1995, pp. 442–448.

[44] S. Nayar and T. Mitsunaga, “High dynamic range imaging: Spatially
varying pixel exposures,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., vol. 1. Jun. 2000, pp. 472–479.

[45] P. Ledda, L. P. Santos, and A. Chalmers, “A local model of eye
adaptation for high dynamic range images,” in Proc. 3rd Int. Conf.
Comput. Graph., Virtual Reality, Visualisation Interact. Africa, 2004,
pp. 151–160.

[46] R. Szeliski, Computer Vision: Algorithms and Applications, 1st ed.
New York, NY, USA: Springer-Verlag, 2010.

[47] R. Mantiuk. (2015). Hdr Image Gallery. [Online]. Available:
http://pfstools.sourceforge.net/hdr_gallery.html

[48] Methodology for the Subjective Assessment of the Quality of
Television Pictures, document ITU-R BT.500-13. [Online]. Available:
https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.500-13-201201-
I!!P% DF-E.pdf

[49] M. Kleiner, D. Brainard, D. Pelli, C. Broussard, T. Wolf,
and D. Niehorster. The Psychology Toolbox. [Online]. Available:
http://psychtoolbox.org/

[50] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation of
recent full reference image quality assessment algorithms,” IEEE Trans.
Image Process., vol. 15, no. 11, pp. 3440–3451, Nov. 2006.

[51] Amazon Mechanical Turk, accessed on Jan. 2016. [Online]. Available:
https://www.mturk.com

[52] Microworkers, accessed on Jan. 2016. [Online]. Available:
https://microworkers.com/



4740 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 10, OCTOBER 2017

[53] Crowdflower, accessed on Jan. 2016. [Online]. Available:
https://crowdflower.com/

[54] T. Schulze, S. Seedorf, D. Geiger, N. Kaufmann, and M. Schader,
“Exploring task properties in crowdsourcing—An empirical study on
mechanical turk,” in Proc. 19th Eur. Conf. Inf. Syst. (ECIS), Helsinki,
Finland, Jun. 2011, p. 122. [Online]. Available: http://aisel.aisnet.
org/ecis2011/122

[55] Inter-Rater Reliability—Wikipedia, the Free Encyclopedia. [Online].
Available: https://en.wikipedia.org/wiki/Inter-rater_reliability

[56] K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack,
“Study of subjective and objective quality assessment of video,” IEEE
Trans. Image Process., vol. 19, no. 6, pp. 1427–1441, Jun. 2010.

[57] Y. Zhang and D. M. Chandler, “No-reference image quality assessment
based on log-derivative statistics of natural scenes,” J. Electron. Imag.,
vol. 22, no. 4, p. 043025, 2013.

[58] D. Kundu, “Subjective and objective quality evaluation of synthetic
and high dynamic range images,” Ph.D. dissertation, Dept. Elect.
Comput. Eng. Univ. Texas, Austin, TX, USA, May 2016. [Online].
Available: http://users.ece.utexas.edu/ bevans/students/phd/debarati_kundu/

[59] W. Xue, X. Mou, L. Zhang, A. C. Bovik, and X. Feng, “Blind
image quality assessment using joint statistics of gradient magnitude
and Laplacian features,” IEEE Trans. Image Process., vol. 23, no. 11,
pp. 4850–4862, Nov. 2014.

[60] L. Liu, H. Dong, H. Huang, and A. C. Bovik, “No-reference image
quality assessment in curvelet domain,” Signal Process. Image Commun.,
vol. 29, no. 4, pp. 494–505, Apr. 2014.

[61] Y. Fang, K. Ma, Z. Wang, W. Lin, Z. Fang, and G. Zhai, “No-reference
quality assessment of contrast-distorted images based on natural scene
statistics,” IEEE Signal Process. Lett., vol. 22, no. 7, pp. 838–842,
Jul. 2015.

[62] M. A. Saad, A. C. Bovik, and C. Charrier, “Blind image quality
assessment: A natural scene statistics approach in the DCT domain,”
IEEE Trans. Image Process., vol. 21, no. 8, pp. 3339–3352, Aug. 2012.

[63] Y. Zhang, A. K. Moorthy, D. M. Chandler, and A. C. Bovik,
“C-DIIVINE: No-reference image quality assessment based on local
magnitude and phase statistics of natural scenes,” Signal Process., Image
Commun., vol. 29, no. 7, pp. 725–747, Aug. 2014.

[64] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality
assessment in the spatial domain,” IEEE Trans. Image Process., vol. 21,
no. 12, pp. 4695–4708, Dec. 2012.

[65] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, p. 27, 2011.
[Online]. Available: http://www.csie.ntu.edu.tw/ cjlin/libsvm

[66] D. Jayaraman, A. Mittal, A. K. Moorthy, and A. C. Bovik, “Objective
quality assessment of multiply distorted images,” in Proc. Asilomar
Conf. Signals, Syst. Comput., Nov. 2012, pp. 1693–1697.

Debarati Kundu received the B. Eng. degree
in electronics and telecommunications engineering
from Jadavpur University, Kolkata, India, in 2010,
and the M.Sc. and Ph.D. degrees the Department of
Electrical and Computer Engineering, The Univer-
sity of Texas at Austin (UT Austin). She joined the
Department of Electrical and Computer Engineering,
UT Austin in 2010. She is currently a Senior Engi-
neer with Qualcomm Research Bangalore, India. Her
research interests include image and video qual-
ity assessment, computer graphics, computer vision,

machine learning, and prototyping of real-time systems. She was a recipient of
the RGM Advisors Research Award for best poster at Graduate and Industry
Networking, UT Austin, in 2016, the Top 10% Paper Award at the IEEE
International Conference on Image Processing in 2015, and the Qualcomm
Roberto Padovani Fellowship 2014 awarded to the top 1% of the interns.

Deepti Ghadiyaram received the B.Tech. degree
in computer science from the International Institute
of Information Technology, Hyderabad, in 2009,
and the M.S. degree from The University of Texas
at Austin (UT Austin), in 2013. She is currently
pursuing the Ph.D. degree with the Laboratory for
Image and Video Engineering, UT Austin. Her
research interests broadly include image and video
processing, particularly perceptual image and video
quality assessment, computer vision, and machine
learning. She was a recipient of the Microelectronics

and Computer Development Fellowship from 2013 to 2014 and the Graduate
Student Fellowship offered to the top 1% of the students by the Department
of Computer Science for the academic years 2013–2016.

Alan C. Bovik (F’96) is currently a Cockrell Family
Regents Endowed Chair Professor with The Uni-
versity of Texas at Austin. His books include The
Handbook of Image and Video Processing, Modern
Image Quality Assessment, and The Essential Guides
to Image and Video Processing. He is a fellow of
the Optical Society of America and SPIE. He has
received many major international awards, including
the 2017 Edwin H. Land Medal from the Optical
Society of America, the 2015 Primetime Emmy
Award for Outstanding Achievement in Engineering

Development from the Academy of Television Arts and Sciences, and the
Society Award from the IEEE Signal Processing Society. He cofounded and
was the longest serving Editor-in-Chief of the IEEE TRANSACTIONS ON
IMAGE PROCESSING and created the IEEE International Conference on Image
Processing in Austin, Texas, 1994.

Brian L. Evans (F’09) has authored more than
240 refereed conference and journal papers, and
graduated 27 Ph.D. and 11 M.S. students. His
research bridges digital signal processing theory and
embedded real-time implementation. Applications
include image/video acquisition/display and cellu-
lar/smart grid communications. He holds the Engi-
neering Foundation Professorship at UT Austin. He
received Top 10% Paper Awards at the 2012 IEEE
Multimedia Signal Processing Workshop and the
2015 IEEE International Conference on Image

Processing, and the Best Paper Award at the 2013 IEEE International
Symposiam on Power Line Communications and Its Applications. He received
three teaching awards at UT Austin, and a 1997 U.S. National Science
Foundation CAREER Award.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


