

ADC Bit Optimization for Spectrum- and Energy-Efficient Millimeter Wave Communications

Jinseok Choi, Junmo Sung, Brian Evans, and Alan Gatherer* Electrical and Computer Engineering, The University of Texas at Austin *Huawei Technologies Globecom 2017

December, 2017

Motivation

Millimeter Wave Massive MIMO

- Large bandwidth to achieve multi-gigabit data rates
- Small antenna sizes due to high carrier frequency
- Large antenna arrays to compensate large pathloss

Goal

Reduce uplink power consumption at base station
 Need to reduce power consumption at ADCs

Approach

- Exploit sparsity in mmWave MIMO channels
 - Apply analog processing (beamspace projection)
- ADC bit allocation subject to a total power constraint
 - Some ADCs/RF chains will be turned off to save power
 - Other ADCs will have a variable number of bits

Millimeter Wave Spectrum [Pi & Khan, II]

System Model

Multiuser Massive MIMO Uplink

- N_u users, each with single antenna
- N_r ULA* antennas at base station ($N_r >> N_u$)
- Narrowband channel H
- Known channel state information at receivers
- Received signals after analog combining

Hybrid receiver with adaptive-resolution ADCs

*Uniform Linear Array **Discrete Fourier Transform

System Model

Millimeter Wave Channel

L major propagation paths

$$\mathbf{h}_{k} = \sqrt{\gamma_{k}} \sum_{\ell=1}^{L} \omega_{\ell}^{k} \mathbf{a}(\theta_{\ell}^{k}) \in \mathbb{C}^{N_{r}}$$
Pathloss Complex path gain

• Array response vector under ULA Angle of $\mathbf{a}(\theta) = \frac{1}{\sqrt{N_r}} \left[1, e^{-j2\pi\vartheta}, e^{-j4\pi\vartheta}, \dots, e^{-j2(N_r-1)\pi\vartheta} \right]^{\mathsf{T}}$ where $\vartheta = \frac{d}{\lambda} \sin(\theta)$

Quantization Model [Fletcher et al., 07]

- Linear gain plus noise model
- Variable number of quantization bits Quantization gain matrix $\mathbf{y}_{q} = \mathcal{Q}(\mathbf{y}) = \mathbf{W}_{\alpha} \mathbf{y} + \mathbf{n}_{q}$ $= \sqrt{p_{u}} \mathbf{W}_{\alpha} \mathbf{H}_{b} \mathbf{s} + \mathbf{W}_{\alpha} \mathbf{n} + \mathbf{n}_{q}$ Beamspace channel $\mathbf{F}_{RF}^{H} \mathbf{H}$

where $\mathbf{W}_{\alpha} = \operatorname{diag}(\alpha_1, \cdots, \alpha_N)$ variance of $\mathbf{n}_{q}: \mathbf{R}_{qq} = \mathbf{W}_{\alpha}(\mathbf{I} - \mathbf{W}_{\alpha})\operatorname{diag}(p_u \mathbf{H}_{b} \mathbf{H}_{b}^{H} + \mathbf{I})$

- Problem Formulation

Minimum Mean Squared Quantization Error (MMSQE)

$$\mathbf{b}^{\star} = \operatorname{argmin}_{\mathbf{b} \in \mathbb{Z}_{+}^{N_{\mathrm{RF}}}} \sum_{i=1}^{N_{\mathrm{RF}}} \mathcal{E}_{i}(b_{i}) \quad \text{s.t.} \quad P_{\mathrm{tot}} \leq p \quad \text{[Choi, Evans & Gatherer, 17]}_{\text{Resolution switching}}$$
where $P_{\mathrm{tot}} = N_{r}P_{\mathrm{LNA}} + N_{\mathrm{act}}(N_{r}P_{\mathrm{PS}} + P_{\mathrm{RFchain}}) + 2\sum_{i=1}^{N_{\mathrm{RF}}} \left(P_{\mathrm{ADC}}(b_{i}) + P_{\mathrm{SW}}(b_{i}) \right) + P_{\mathrm{BB}}$

$$\overset{\# \text{ of active }}{\underset{RF \text{ chains }}{\sum_{i=1}^{N_{r}}} \mathbf{1}_{b_{i}\neq 0} \int ADC \text{ power } cf_{s}2^{b} \int C_{\mathrm{ballenges}}$$

 N_{act} $P_{\text{SW}}(b_i)$ functions of quantization bits (N_{act} , P_{SW} involves nonlinearity) $P_{\text{ADC}}(b_i)$

General Approach

Offline processing $(P_{SW}(b_i))$

Step 0. Estimate switching power $P_{SW}(b_i)$ as a function of power constraint $p, P_{SW}(b) \rightarrow P_{SW}(p)$ Switching power becomes fixed value for given power constraint

Joint search $(N_{\text{act}}, \mathbf{b}^{\star})$

Step I. Sort aggregated channel gain $\sigma_{x_i}^2$ to be $\sigma_{x_1}^2 \ge \sigma_{x_2}^2 \ge \cdots \ge \sigma_{x_{N_{RF}}}^2$ To consider RF chains with larger channel gains first

Step 2. Derive a MMSQE solution \mathbf{b}_M^{\star} assuming first M RF chains used $(N_{\mathrm{act}} = M)$

Closed form bit allocation solution for given M active RF chains

Step 3. Find optimal $M^* \in \{1, 2, \dots, N_{RF}\}$ that provides smallest quantization error $\sum_i \mathcal{E}_i(b^*_{M,i})$ Through binary search $O(N_r) \to O(\log N_r)$

Step 4. Final solution: $\mathbf{b}_{M^{\star}}^{\star}$

Closed form bit allocation solution for M^* active RF chains

- Joint Binary Search

Bit allocation solution at binary search stage s

: function of channel gains

* Karush–Kuhn–Tucker conditions

The University of Texas at Austin

Bit Optimization Algorithm

Offline Average Switching Power Modeling

The University of Texas at Austin what starts here changes the world

Resolution switching power estimation

: estimate average switching power as a function of total power constraint p

Training for given power constraint p

Step I. Set estimated average switching power \bar{P}_{est} Step 2. Perform Algorithm over different channel realizations and calculate actual switching power \bar{P}_{act} Step 3. Repeat Step I and 2 for different \bar{P}_{est} Step 4. Find best estimate of average switching power $\bar{P}_{est}^{\star} = \operatorname{argmin}_{\bar{P}_{est}(i)} |\bar{P}_{act}(i) - \bar{P}_{est}(i)|$ Step 5. Set $T_p = \bar{P}_{est}^{\star}$ (training data for power constraint p)

Modeling trained data T_P

Use least-squares polynomial to model average switching power using training data T_p

Total ADC power

(not receiver power)

Simulation

Environment

System Parameters	
Cell radius	200 m
Min dist.	30 m
Noise fig.	5 dB
Carrier freq. f_c	28 GHz
Bandwidth	I GHz
# Rx ant.	256
# RF chains	128
# users	10
# paths	13
Tx Power	20 dBm

Setting

- Proposed bit allocation (BA) algorithm
- Infinite resolution ADCs ($b_{\infty} = 12$)
- Fixed ADCs (\overline{b} -bit ADCs)
- revMMSQE-BA* [Choi, Evans & Gatherer, 17]

: Solves MMSQE subject to total ADC power constraint

$$\hat{\mathbf{b}} = \operatorname{argmin}_{\mathbf{b}} \sum_{i=1}^{N_{\mathrm{RF}}} \mathcal{E}_{x_i}(b_i) \quad \text{s.t.} \quad \sum_{i=1}^{N_{\mathrm{RF}}} P_{\mathrm{ADC}}(b_i) \leq N_{\mathrm{RF}} P_{\mathrm{ADC}}(\overline{b})$$
Fixed ADC bits

Resulting total receiver power from revMMSQE-BA
Power constraint for proposed BA algorithm

Simulation

Proposed Method

- Highest spectral efficiency
- Comparable to infinite-resolution at $\overline{b} = 1$
- Almost no quantization distortion at $\overline{b}=1$

- Highest energy efficiency
- b < 4 is effective region
 (already comparable to infinite bits)

Conclusion

Contributions

Proposes bit optimization algorithm that solves MMSQE problem:

$$\hat{\mathbf{b}} = \operatorname{argmin}_{\mathbf{b} \in \mathbb{Z}_{+}^{N_{\mathrm{RF}}}} \sum_{i=1}^{N_{\mathrm{RF}}} \mathcal{E}_{i}(b_{i}) \quad \text{s.t.} \quad P_{\mathrm{tot}} \leq p$$

- Achieves highest spectral/energy efficiency for low-resolution ADCs
- Eliminates most of quantization distortion with small power consumption
- Enables existing state-of-the-art digital combiners to be employed
- Allows more power for downlink communication

Thank you

[1] Pi, Zhouyue, and Khan, Farooq. "An introduction to millimeter-wave mobile broadband systems." IEEE communications magazine 49.6 (2011).

[2] Fletcher, Alyson K., et al. "Robust predictive quantization: Analysis and design via convex optimization." IEEE Journal of selected topics in signal processing 1.4 (2007): 618-632.

[3] J. Choi, B. L. Evans and A. Gatherer, "Resolution-Adaptive Hybrid MIMO Architectures for Millimeter Wave Communications," in *IEEE Transactions on Signal Processing*, vol. 65, no. 23, pp. 6201-6216, Dec. I, 1 2017.