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| MOTIVATION

Problem

" |[mprove communication reliability

using one-bit I/Q converters

Goal
"= Apply maximum likelihood (ML)

detection without channel estimation

Solution
= Adding dither to improve ML detection

Il MODELS

Multiuser-MIMO Communication

B

One-bit quantized observation

yln] = Q(r[n]) = Q(v/pHs[n| + nln))

Optimal ML detection

ML detection rule
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: likelihood function for ith antenna for vector s,
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: requires CSI Yk
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11l ROBUST LEARNING WITHOUT CSl

Learning technique during pilot transmission phase
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Signal model with dithering noise gl i
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Trained probability is derived as p(+ ~ <\/ : P h.Tsk>
‘ The number of zero probabilities

b -
= Sets p( ) = ppiqs and p,(” ) =1~ Phias, pr( ) =0
" Dpigs has to be less that 1/N,, |V POST UPDATE
l = Divides data transmission into D subframes
" Each subframe has length N Sub (N; = DNSUP)

= CRCis added to each frame, and checked as BS

Effective channel

Un ;= Biased-learning approach

. p,({ l) is updated using N, + d; (j)

* d, (j) is number of s, in first successfully

decoded subframes

Dither-and-learning method

. p,({ l) is updated after successfully decoding

[ Collect offline data ]

y[n],n =1,..., Nog; quantized signals

s 5 each subframe

Post updated likelihood function

¥ —&—Training data
\—— Linear regression (5th order) |

A
Measure SNR from offline data= Y¢ |
via 1-bit channel estimation 1
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~(b b ~(b
By = ani(0;)Py ) (0) + (1 — ani(v;)) By (v;)

________________________________ y
- f fully decoded subf
( Supervised learning for (12,3 R Uj. H# of successtu y decoded subrtrames
L via Regression or Neural Net J durlng flrst] su bframes
L
[ SNR estimation model | o akl( ) update rate after jth subframe
SNR = f(avg. # of Py ; over k) ) 0 2 4 6 8 10 12 14 16

: optimal parameter should be designed

- : o0 1s . (b)
Number of zero likelihood functions p,

SNR training
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VALIDATION & CONCLUSIONS
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System parameters
N, 32
Modulation 4-QAM
D 80
NSub 128

Conclusions

Robust learning-based one-bit ML detection

Likelihood probabilities with reasonable number of Ng,.
Post update has better performance

Optimization is needed
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