
System Design and Re-Engineering Through Virtual Prototyping: A

Temporal Model-Based Approach

M. H. Khan and V. K. Madisetti
VP Technologies, A Georgia ATDC Company,
P.O. Box 680190, Marietta, GA 30068-0004.

http://www.vptinc.com

Georgia Institute of Technology-ECE, Atlanta, GA 30332-0250

Abstract

During the design and re-engineering process, mod-

eling the application's timing characteristics on the tar-

get architecture is necessary in order to evaluate the

number of processors, communication fabric, and par-

titioning trade-o�s required for an e�cient design of

a system. The over-all performance of most of COTS

(Commercial-O�-The-Shelf) systems, ranging from su-

percomputers to multiprocessor DSP (Digital Signal

Processing) systems, is uniquely a�ected by the behav-

ior of the communication primitives supported by them.

To evaluate the performance of such systems, it is es-

sential that temporal models, commonly known as per-

formance models, re
ect the e�ects of the communi-

cation primitives on the system performance. In this

paper, we propose a VHDL-based (VHSIC Hardware

Description Language) temporal modeling environment

where we model system's hardware as well as its ac-

companying software. We incorporated support for the

Message Passing Interface (MPI) standard into the

modeling domain, allowing an architecture independent

abstraction of application and more accurate model for

communication primitives. This tool provides an excel-

lent platform for temporal evaluation of systems under

design and re-engineering. Finally, when coupled with

code-generation tools, we are able to generate control

software that can directly run on the target platform,

simplifying the task of code design for legacy system

upgrades.

1 Introduction

In this paper, we propose the use of a simulation-

based system design and re-engineering methodology,

describe its implementation via tools, and its impact

through case studies. In our modeling paradigm, we

opted for an architecture-independent representation

of the complex systems, while faithfully capturing the

temporal related behavior of the desired implementa-

tion in an executable form. The proposed platform

allows modeling of the underlying targeted HW (hard-

ware) systems as well as the existing SW (software) or

the SW under design. Modeling of both HW and SW

allows to capture the timing characteristics of the sys-

tem more accurately. Furthermore, by quickly chang-

ing the HW models and SW models we can �nd the

performance of the application on various target ar-

chitecture, and also the e�ect of the SW changes on

systems performance.

The MPI (Message Passing Interface) standard pro-

vides the system`s designer with a library of commu-

nication primitives which makes the underlying im-

plementation of the message transaction transparent

to the �rmware engineers [10]. Modeling MPI allows

us to represent the application in an architecture in-

dependent manner such that the models of HW and

SW models can be changed independent of each other

and analysis of trade-o�s can be performed very eas-

ily. Furthermore, we can observe the e�ects of dif-

ferent MPI primitives on performance metrics of the

system under design or re-engineering. We have cho-

sen the RASSP (Rapid Prototyping for Application

Speci�c Signal Processor) SAR (Synthetic Aperture

Radar) benchmark as our case study to demonstrate

the platform's usage for system design. In the second

case study, we demonstrate how the temporal model-

ing tool can be useful for re-engineering of a typical

avionics system.

2 Architectural Modeling Approaches

Evaluation of timing and performance (latency,

throughput, and utilization) of digital computing sys-

tems has been a topic of research since the early days of

computer science. Simulation-based or numerical tech-

niques are preferred over analytical and statistical tech-

niques typically due to their better control over the ex-

perimental conditions, ability to capture the transient

scenarios and ease of use. Though simulation mod-

els can be time consuming to create, they can provide

accurate performance of the system before the system

HW and SW have been fabricated, thus reducing sys-

tem design time [5].

In past few years, VHDL (VHSIC Hardware De-

sign Language) has served as a powerful language

for realization of many of the performance modeling

techniques. Among them ATL (Advanced Technol-

ogy Lab)[7] , PML (Performance Modeling Lab)[1],

RASCAL (Rapid Architectural Synthesis of Advanced

Computer Architecture)[6], MSCE[3]. The reasons be-

hind VHDL's popularity as a platform are its inherent

support for discrete event simulation, notion of explicit

time, and ease of representation of actual underlying

hardware.

3 Proposed Exploration Environment

Since a system's performance is dependent on soft-

ware and hardware (which is not available at the time

of design), it is essential to have early representations

of both system components in the modeling environ-

ment. In earlier work at Georgia Tech, we had provided

very realistic and accurate representations of intercon-

nection components. Communication interconnects in

RASCAL environment are modeled as virtual packet

passing networks. These communication components

were more detailed than those found in the PML li-

brary [1] and closer to actual protocol of the underlying

interconnect since they capture the protocol in a sim-

ilar fashion to Harel's state chart [8]. For representa-

tion of hardware we have adopted our earlier approach.

This allowed us to reuse RASCAL's CPL (Conceptual

Prototyping Library), a library of interconnect models

and various packages (e.g. tra�c generation package)

as well as AIM (Automatic Interface Model Generator)

and a hybrid modeling environment [5]. On the other

hand, as part of DARPA's RASSP program, Lockheed

Martin ATL proposed an e�cient technique to model

software [7] where the software was modeled as a set

of generic instructions such as compute, receive, send,

loopback, and programdone. The application composed

by these generic instructions is read by a processor

model. Due to the
exibility of this software represen-

tation, we have adopted an approach similar to that of

ATL for modeling applications. We have extended the

instruction set to account for the choice of processor,

choice of algorithm implementation, and communica-

tion primitives (or MPI primitives).

An MPI representation of a program consists of a set

of autonomous processes, executing their own codes in

either MIMD (Multiple Instruction and Multiple Data)

or SPMD (Single Program and Multiple Data) pro-

gramming paradigms [10]. The basic communication

mechanism within MPI is point-to-point communica-

tion between pairs of processes. Apart from point to

point communication primitives MPI o�ers group com-

munication primitives. These operations can be per-

formed in di�erent modes, blocking and non blocking.

Each communication mode can be either synchronous

or asynchronous. Due to the variety of communications

primitives o�ered by MPI, almost any application can

be adequately modeled with a set of computation com-

mands and MPI communication commands. There-

fore, once an application under design or a currently

existing is abstracted in terms of MPI primitives, we

can observe the execution of the application on various

platforms to evaluate trade o�s.

For most avionics systems, communication overhead

appears to play a major role in determining systems

performance. Communication overhead is dependent

not only on the underlying network characteristics and

topology, but also the communication primitives. Not

only communication overhead but also peak bu�er

length and even overall execution time of an algorithm

may change because of di�erent communication modes.

Execution time of a task on a system has two dom-

inant components computation time and communica-

tion time or communication overhead. The communi-

cation overhead (tOH) for any communication primi-

tive is comprised of the following components.

tOH = tSetup + tLat + tTrans � tOverlap (1)

Modeling message passing in the temporal domain,

essentially, means capturing these delays in the model.

One can represent tLat as the time a process/task waits

to start communicating, and the queuing delay at var-

ious nodes as the message is transferred, tTrans as the

transmission time of the message, tSetup as the time

taken by the process for internal copying etc., and

tOverlap as the amount of time communication and

computation can be overlapped. For blocking commu-

nication there is no overlap of computation and com-

munications. The value of tSetup is usually provided

by vendors or measured from an existing system. The

network delay cannot be predetermined since they are

dependent on the dynamic behavior of a system and

often is the dominating contributor to the equation.

Thus these delay parameters are to be extracted by

simulation.

3.1 Model of Computation

The processor model comprises of a set of con�g-

urable generic VHDL processes: these are communi-

cating processes, control processes, and computation

processes. The communication process handles the

network communications, while the computation pro-

cesses handle the computation, and perform communi-

cation between nodes through the communicating pro-

cess. Control processes control the scheduling of the

computing processes. This modular approach allows us

to quickly map the communication, computation, and

control related design decisions (for instance, the con-

trol process can re
ect the scheduling scheme, whereas

the communication process can model the communica-

tion modes etc.).

Task Partitioning

 Allocation and Scheduling

Simulation and
Data Collection

Analysis of Data and

Design of SystemTemporal Models
Scope of Executable

Architecture Selection Code Generation

Codes

Synthesis
of Architecture

Candidate
Architectures Algorithm

O
th

er
 A

rc
hi

te
ct

ur
e

Representation
MPI based

Figure 1. Architecture exploration environ-
ments.

4 Case Study I: Architecture Selection

for System Design

Our design exploration environment appears very

useful to evaluate di�erent system architectures in

terms of their performance. The Figure. 1 shows the

typical methodology for systematic architectural trade-

o� analysis in early system design. This case study

evaluates several design decisions for a SAR system.

SAR is an important tool for the collection of high-

resolution, all-weather image data for military and re-

mote sensing applications. The SAR algorithm has

been accepted as a RASSP evaluation benchmark (Fig-

ure. 2) [11]. At the maximum PRF (Pulse Repetition

Frequency) 556 Hz, the radar delivers 512 pulses of

4064 data samples for each of the four transmit/receive

polarization (HH, HV, VH, VV) in 0.92 seconds. The

system under design must be able to form a 512 pulse

image for each of three(3 out of 4 are used) polariza-

tions in real-time. Given a maximum PRF of 556 Hz

for the radar, the real time constraint on the range pro-

cessing task is 1.8 ms, the real time constraint on the

azimuth processing is approximately 1.1 G
op/sec, and

the memory requirement is approximately 77 MBytes.

Though the SAR algorithm is composed of a number of

FFT kernels, the size of the problem, substantial com-

putational throughput and memory requirements and

real time constraints have made a successful design of

the system a challenging task.

Load

Processor Function

Coeffs

Set-up Function

I/Q

Input Data

Barker Detect

Video-to-Baseband

Equalization Weight

Range DFT

RCS Calibration Weights
RCS

Load

Weights
Equalization

Load

Kernels
Convolutional

Load

Form Aux

Header Decode

Form Signal

Data Preparation

Form Frame
Array

Processing
Form

Azimuth DFT
Kernel

Multiplication

Azimuth IDFT

Output Data

Real-Time Constraint: 1.8 ms

Real-Time Constraint: 920 ms

Range Processing

Azimuth Processing

Figure 2. SAR algorithm block diagram.

6-port
Crossbar Switch

6-port
Crossbar Switch

6-port
Crossbar Switch

PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PE16

6-port 6-port
Crossbar Switch Crossbar SwitchCrossbar Switch

6-port6-port
Crossbar Switch

6-port
Crossbar Switch

PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PE16

6-port 6-port
Crossbar Switch Crossbar SwitchCrossbar Switch

6-port 6-port
Crossbar Switch

6-port
Crossbar Switch

ROOT

SUBTREE 1

LEAF 1 LEAF 2 LEAF 4LEAF 3 LEAF 2 LEAF 3 LEAF 4LEAF 1

. . .SUBTREE 2

PE25 PE26 PE27 PE28 PE29 PE30 PE31 PE32

6-port 6-port
Crossbar Switch Crossbar SwitchCrossbar Switch

6-port

PE17 PE18 PE19 PE20 PE21 PE22 PE23 PE24

Figure 3. Target architecture for SAR.

In order to implement the SAR algorithm, we de-

composed the functional block diagram into three par-

allel data
ow graphs for each polarization. Each

functional block was decomposed further into paral-

lel blocks to exploit the maximum parallelism in the

algorithm.

For a given candidate architecture, one can sched-

ule and allocate tasks using one of many di�erent well

known techniques [9]. In this particular case, we used

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5

1

1.5

2

2.5
x 10

5

NODE IDs for Single Polarization

C
om

m
un

ic
at

io
n

ov
er

he
ad

 in
 u

se
c

Communication Overhead for Different MPI Primitives

Blocking

Non Blocking

Figure 4. Communication overhead (SAR al-
gorithm) for different MPI schemes.

CADE (Cost Driven Architecture Design Engine) to

decide on allocation and schedule for a candidate ar-

chitectures [4]. The target architecture in this case is

a tree-network built using the Mercury Raceway cross-

bar fabric with 36 processors (Figure. 3). In conven-

tional design, task mapping and scheduling are done

with certain static assumptions about the underlying

system. Thus, veri�cation needs to be performed on

these design decisions. Temporal models, in our envi-

ronment, validate and evaluate the performance of the

target architecture, task allocation and scheduling, and

the e�ect of di�erent communication primitives.

1 2 3 4 5 6 7 8 9 10 11 12 13
0

2

4

6

8

10

12

14

16

18
x 10

6

NODE IDs for Single Polarization

B
uf

fe
r

Le
ng

th
 fo

r
i/o

 in
 W

or
ds

(2
 B

yt
es

)

I/O Buffer length for Different MPI Primitives

Figure 5. Effect of MPI on I/O buffer length.

While choosing the communications primitives, we

ensured the precedence relation in the algorithm and

group communications calls were maintained. In Fig-

ure. 4, it is observed that the modeling tool could cap-

ture the variation of communication overhead caused

by di�erent communications primitives. In addition

to the communication overhead, the communication

primitives also a�ect the I/O bu�er requirements and

peak I/O bu�er length (Figure. 5) have been captured

for di�erent communication modes.

Existing
ApplicationSystem

Existing
Functionality

NewSystem
Options

Understanding
HW SW

Task Partitioning

 Allocation and Scheduling

of Architecture
Existing or New

Synthesis

MPI based
Representation

Understanding

MPI based

Data Collection
Simulation and

Code GenerationAnalysis of Data and
Re-engineering decision

Executable
Codes

Temporal Models
Scope of

Representation

Figure 6. Re-engineering approach.

5 Case Study II: Legacy System Re-

Engineering

Like system design, system re-engineering is also a

challenging task since it deals with two sets of con-

straints | one de�ned by the existing legacy sys-

tem and other from the upgrade requirements. How-

ever, there is no systematic approach to perform re-

engineering and more often it is done in an ad hoc

fashion. Using temporal modeling, we can formulate

a systematic approach for system re-engineering. Re-

engineering typically comprises of addition of more

functionality to the system, addition or replacement

of older (possibly unavailable) components with better

ones, or upgrading the existing system architecture to a

newer COTS system architecture. The following steps

can be followed to evaluate the re-engineering trade o�s

while re-engineering an existing system (Figure 6).

SMS FCR

FCNP INUFCC

ADC
Air Data CPR

REO
Radar Display

MIL-STD-1553 Bus

Fire Control CPR Inertial Navigation Unit

Storage Management

Fire Control Navigation Head On Display
HUD

TISL
Target Identification

Figure 7. A legacy avionics system architec-
ture.

The �rst step would be SW understanding and ab-

straction of the currently existing legacy application

to the MPI-based abstract instruction set. Since this

representation is architecture independent, we can eas-

ily perform architectural trade-o�s if needed. The next

5 10 15 20
56.8

57

57.2

57.4

57.6

57.8

58

58.2

58.4

58.6

58.8
Loading Analysis for 1553

Minor Frames

Lo
ad

in
g

%
Schedule 1
Schedule 2

Figure 8. MIL-STD-1553 bus loading analy-
sis.

step would be to understand the existing HW, its archi-

tecture, con�guration and resources. The underlying

HW can then be captured in terms of a COTS model

from the reuse library. Now the designer can include

the desired changes in the architecture, application SW

model and co-simulate to evaluate the e�ects of the

changes on the system.

A typical example for re-engineering would be re-

engineering of a legacy avionics system for enhancing

its functionality. Figure. 7 shows a commonly used

avionics architecture [2]. This system uses MIL-STD-

1553 serial multiplex data bus for its communication

between various subsystems. The system consists of

a number of sub-systems | �re controller, �re con-

trol navigation, air data unit, target identi�cation set,

radar display, head-up display, etc., [2]. Each of the

subsystems perform their tasks under given real time

constraints. Most of the computational and communi-

cations tasks are periodic, for example, the navigation

unit updates the display unit in real time. In order to

cater to all the periodic and aperiodic real time com-

munication needs, the bus controller follows a prede-

�ned static or cyclo-static schedule to arbitrate access

to the bus. Bus transactions take place in a command-

response fashion. The communication schedule a�ects

the communication latency and communication over-

head of each of the nodes, thus may potentially a�ect

the real time performance of the subsystems specially

when errors and retransmission are taken into consid-

eration. Typically, rate monotonic schedules can be

designed to ensure guaranteed real time performance

of all the tasks. Now, even if some simple features are

added to such an existing system, the communication

schedule of the controller may have to change to ac-

commodate additional need which may a�ect the RT

performance of the existing system. Thus a system-

atic approach towards evaluation of the re-engineering

alternatives is very crucial. In this example, we con-

sidered the case of increasing the image formation win-

dow for the RADAR unit. This change caused addi-

tional periodic message transfers between head up dis-

play, target detector and radar unit. Figure 8 shows

the loading of a MIL-STD-1553 bus for two di�erent

communication schedules, one for the existing system,

other for the re-engineered schedule showing increased

loading due to additional message transfers.

6 Conclusion

In this paper, we have presented a tempo-

ral/performance modeling environment/toolset that

is suitable for system design and legacy system re-

engineering. This virtual prototyping environment af-

fords the capability for architecture selection and de-

sign evaluation for a variety of complex applications

design and re-engineering tasks. When coupled with

code-generation, this environment promises much in

terms of productivity, design integrity, and e�ciency.

References

[1] Url: rassp.scra.org/public/tb/honeywell/honeywell-

docs.html. 1994.
[2] E. C. deLong. Databus Systes Integration Handbook.

The SAE Press, Warrendale, PA, �rst edition, 1991.
[3] J.-P. Calvez. System Level Performance Model and

Method. In Meta Modeling, pages 57{102, 1996.
[4] J. Debardelaben and V. K. Madisetti. The Economics

of Design and Test of COTS-based Embedded Micro

Electronics Systems. IEEE Design and Test of Com-

puters, Fall 1997.
[5] L. Dung and V. K. Madisetti. Conceptual Prototyping

of Scalable Embedded DSP System . IEEE Design and

Test of Computers, pages 54 { 65, Fall 1996.
[6] L. Dung and V. K. Madisetti. RASCAL: A Library-

based Environment for Rapid Architectural Synthe-

sis of Advanced Computing Architectures . SCIzzl-6

Workshop, pages 97 { 103, Sept 1996.
[7] J. S. Fred Rose and C. Hein. Performance Modeling

of System Architecture. Journal of VLSI Signal Pro-

cessing, 15:97 { 109, 1997.
[8] D. Harel. Statecharts: A visual formalism for complex

systems. Science of Computer Programming, 8(3):231{

274, June 1987.
[9] V. K. Madisetti. VLSI Signal Processing. The IEEE

Press, New Jersey, �rst edition, 1995.
[10] M. Snir. MPI: The Complete Reference . The MIT

Press, Cambridge, Massachusetts, �rst edition, 1996.
[11] B. Zuerndorfer and G. Shaw. SAR Processing for

RASSP Application. Proceedings of 1st Annual

RASSP Conference, pages 253 { 268, Aug 1994.

