
Abstract
This paper explores implementation of MPEG-2 decoding
functions (bitstream parsing, IDCT, variable length
decoding, motion compensation, dequantization) in soft-
ware on the T.I. TMS320C6X architecture. We discuss
cycle count estimates for these functions; our estimates
are based on optimized, functionally accurate implementa-
tions in some cases, and on analysis of C implementations
of the function in other cases. We describe how we arrive
at these estimates in detail, and discuss how we were able
to use automatic compilation effectively for certain func-
tions. We also compare the C6x implementation to other
MPEG-2 implementations that have been reported for
general purpose CPUs that support a multimedia
enhanced instruction set, such as Intel Pentium (MMX),
SUN UltraSPARC (VIS), and HP PA (MAX).

1.  Introduction

Over the next few years, we are going to see an explo-
sive growth in the market for digital video devices, such as
set-top-boxes, DVD players, DSS units etc. In all these
products, video decompression is one of the most compute
intensive, and memory and bandwidth intensive function.
As a result there is great interest in obtaining the lowest
cost solution for video decompression, the standard for
which is MPEG-2. Current solutions for MPEG-2 are
based principally on VLSI implementations because of the
compute power required, except for certain control func-
tions that may be implemented on a programmable micro-
controller [1]. To make the implementation flexible and
cost effective over a variety of products and product gener-
ations, however, there is now a great deal of interest in
migrating functionality from application specific hardware
into software running on a programmable CPU or DSP.

A number of manufacturers are offering “multimedia
processors” that are claimed to be able to decode MPEG-2
coded video streams in real-time in software. Notable
among these are the Trimedia processor from Philips,
Mpact from Chromatics research, Multimedia signal pro-
cessor from Samsung, and Mitsubishi’s multimedia pro-
cessor [2]. Most of these usually have hardware assists (in
the form of peripherals) for one or more of the video

decoding functions. There are also a number of general
purpose CPU manufacturers that are offering “multimedia
enhanced” versions of their CPUs for accelerating audio
and video processing; the UltraSPARC processor
enhanced with the “Visual Instruction Set” (VIS) from
Sun [11], and the multimedia-enhanced MMX Pentium
processors from Intel [8] are examples. Such CPUs will
likely take over multimedia functions like A/V decoding/
encoding, modem, telephony functions, and network
access functions on a PC/workstation platform, along with
the general purpose computing they currently perform.
The market for special purpose multimedia processors will
be in low cost embedded applications such as set-top
boxes, wireless terminals, digital TVs, and stand-alone
entertainment devices such as DVD players.

The TI road map for high performance multimedia pro-
cessors includes the newly introduced TMS320C6201 pro-
cessor and its derivatives (C6x family). This processor is

first in a series of announcements by major DSP manufac-
turers planning to come out with high performance general
purpose DSPs using a VLIW architecture. The C6x pro-
cessor is designed around eight functional units that are
grouped into two identical sets of four units each (Figure
1). These functional units are the D unit for memory load/
store and add/subtract operations; the M unit for multipli-
cation; the L unit for addition/subtraction, logical and
comparison operations; and the S unit for shifts in addition
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to add/subtract and logical operations. Each set of four
functional units has its own register file, and a bypass is
provided for accessing each half of the register by either
sets of functional units. All eight functional units are con-
trolled by a single 256-bit wide instruction word. Please
refer to the C6x technical documentation [3] for details.

In this paper, we examine the various functions that are
performed as a part of MPEG-2 decoding, and discuss
implications for software implementation of these func-
tions on the TI C6x architecture. By “MPEG-2” we will
refer to main level, main profile, CCIR 601 format video,
at 30 frames per second (fps). We present cycle count esti-
mates for various functions implemented on the C6x, and
discuss the system design issues for a set-top-box
designed around this processor.

2.  MPEG-2 video decoding overview

The block diagram for the functions involved in
MPEG-2 decoding is shown in Fig. 2. The main functions
involved are bitstream parsing, variable length decoding
(VLD), inverse quantization and run length expansion,
inverse discrete cosine transform (IDCT), and motion
compensation (Mocom). We will only briefly define these
functions in this paper; refer to [4][5] for details.

The memory system plays a very important part for any
practical implementation of an MPEG video decoder,
since the decoder core interfaces to between 12 and 16
Mbits of external SDRAM (Synchronous Dynamic Ran-
dom Access Memory), depending on the decoder imple-
mentation, and the bandwidth to external DRAM can be as
high as 100 MB/s.

3.  Bitstream parsing

The MPEG-2 bitstream is serial, and has a well defined
syntax as specified by the ISO/IEC13818-2 standard [5].
The parsing function consists of identifying headers, read-
ing parameters for the decoding process, and then actually
reading out picture data such as variable length coded
motion vectors and transform coefficients. This function

involves bit-level operations (variable length shifts, mask-
ing a bit-field, comparison operations), as well as a signifi-
cant amount of control and decision making. The latter
arises owing to various mode decisions (picture type, mac-
roblock type, motion compensation mode, VLC table to
use etc.) that are made during the parsing phase. Even
though parsing is best handled in software, processors
with deep pipelines do not perform well for parsing
because of frequent branching and condition evaluation.
The predicated instructions in processors such as the C6x
are helpful for short CASE statements, and conditionals
that are not deeply nested. We estimate that 37 Million
cycles/s will be required for video parsing on the C6x.
This estimate is based on analysis of the C implementation
of this operation, using worst case paths through the code,
and profiling the “mpeg2play” program on a Sun worksta-
tion for determining trip counts on loops. This estimate
assumes (pessimistically) that four motion vectors need to
be computed in every macroblock.

Bandwidth to local and external memory is negligible
for parsing, because the only accesses to memory are for
storing values for various decoding parameters that are
pulled off of the bitstream. Reading the bitstream from
external DRAM is of course required, but we lump that
bandwidth with the VLD operation below, because much
of the bitstream represents the variable length coded trans-
form coefficients anyway.

4.  Variable length decode (VLD)

Variable length encoding of symbols is performed
using a Huffman type encoding (MPEG-2 VL codes are
not true Huffman codes). Motion vector information as
well as run-level coded transform coefficients are variable
length encoded [4]. Decoding operation for the coded run-
level pairs is the most significant VLD operation, so we
focus on decoding run-level pairs only. A run-level pair

 represents a string of zero DCT coefficients of
length , followed by a non-zero coefficient with value
(more on this in Section 5). The decoding process involves
matching the input bits to the correct VL code, and then
advancing the bitstream by the length of the code. There
are a number of ways of implementing the VLD function
[10}. The easiest method is to use a table lookup; input
bits address a ROM containing the decoded symbol, and
the length of the VL code. The ROM is addressed by the
maximum size of the VL code. Thus, for the AC transform
coefficients, 17 bits at the head of the bitstream would
address a ROM, which would then output the length of the
code, and the run-level value corresponding to it, at which
point the bitstream is advanced by the code length just
determined.

A single table in a ROM of size  for codes that
could have lengths as large as 17 is clearly expensive.
Such tables are also wasteful, because the shorter codes
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have many repeated entries in the table. E.g. a code of
length 4 would have to be repeated  times within the
table. In the case of hardware, such tables are imple-
mented in PLAs or standard cells, and hence can be opti-
mized significantly (only about 2000 gates for all the
MPEG-2 VLC tables).

There are several different ways to decode the VL sym-
bols in software [10]. One approach uses multiple-pass
lookups. First we look up the first few bits of the bitstream
in a look-up table. If the code lies within those few bits
(which is very likely by the manner in which VLC tables
are constructed) then the decoding process ends and the
bitstream is advanced by the appropriate length. If the
code does not lie within those bits, another table is pointed
to based upon the first few bits. The second level table
does the same for the successive few bits. This is com-
monly referred to as the tree method.

Although this method saves memory, it does so at the
expense of processor cycles. An alternative is to bound the
first few bits of the code-word according to the unique
structure of a particular VLC table. The "mpeg2play" pro-
gram implements decoding by determining the magnitude
of the first 16 bits of the bitstream. Depending on the
range in which this number lies, one of 8 different lookup
tables is chosen. Finally, a masking operation and a trans-
lation is done to generate the address for the lookup within
the chosen table. This yields the decoded run-level pair as
well as the length of the code; the decoder advances the
bitstream by this length.

Yet another way to decode the VLC is to partition the
VLC tables, and then make use of the length of successive

leading ones and zeros in the code, to pick which partition
to use. This method is also highly dependent on the struc-
ture of the MPEG Video VLC tables. Fortunately, MPEG
Video specifies two VLC tables and does not allow a cus-
tomized table (like JPEG), enabling such an optimization.

The fact that the length of a code is known only after is
has been decoded poses a serious problem for deeply pipe-
lined processors that have a significant memory access
latency, since the subsequent code cannot be decoded
unless the length information of the current code is known.
The C6x for example has a memory access latency of 4
cycles. Since the next code cannot be decoded before the
current one, these cycles are essentially unusable, unless
we overlap the VLD function with another function such
as inverse quantization or IDCT.

The bounding approach leads to data-dependent num-
ber of cycles for decoding a symbol.   It varies from 14
cycles for length 3 codes to 29 cycles for length 17 codes
(the maximum possible code length for the AC coeffi-
cients is 17). Escape codes are ignored in this analysis, as
are the DC coefficients, since these contribute significantly
less to the VLD computation load than do the AC coeffi-
cients. The leading ones/zeros approach leads to a lower
and more predictable cycle count. It takes 10 cycles to
decode a symbol, which consists of an AC coefficient plus
the length of zero run preceding the nonzero. Figure 3
shows the lookup and calculation process using an exam-
ple. A fixed number of lookup operations, 3, are per-
formed for each VLC symbol.

The VLD function needs to be done only for non-zero
coefficients in each macroblock (MB). Thus the number of
cycles required for VLD depends on the input data. On
average, it is observed that 10 coefficients for inter-mac-
roblocks, and less than 15 coefficients for intra-macrob-
locks are non-zero. However, a design based on these aver-
age numbers still has to deal with bitstreams containing a
sequence of "bad" MBs with mostly non-zero transform
coefficients. The amount of memory allocated for buffer-
ing during such peaks determines whether such peaks can
be handled successfully. Both the worst case (all DCT
coefficients coded) and a conservative average case (25%
DCT coefficients coded) are reported.

5.  Dequantization / Run-length expansion /
Un-zigzag

The VLD outputs are run-level pairs in a zigzag scan
order [4]. The next step is to expand the zero runs, quan-
tize the level values and write the result in a row major
scan order. Instead of explicitly performing the run length
expansion, we propose to simply zero out an 8x8 block in
memory, and write out the scaled levels into the correct
address within the 8x8 block. The address can be looked
up in a table indexed by the position of the run-level pair

 0 0 0 1 1 1 0 x x

left-aligned bitstream

2

 0 1 1 1

NORM 
(extra sign bits)

extract bits 

+
length  table

7
shift/offset table

run/level table

run level

5 1

left-shift

<< 4

offset rshlsh

176 4 29

<< lsh
>> rsh
+ offset

LOOKUP

LOOKUP

LOOKUP

FIGURE 3. Variable length decoding

to count leading 0/1

2
13



in the zigzag scan order. This index is determined simply
by accumulating the run values, and adding one to the sum
for each run-level pair. This same index can be used to get
the quantization (Q) matrix entry, since the Q matrix is
also extracted from the bitstream in a zigzag scanned fash-
ion, and it need not be un-zigzagged before being stored.

Writing 64 zeros to the 8x8 block consumes 15 MCyc/
s at 30 fps, if this operation is performed by the CPU. This
operation, however, can equally well be off-loaded to a
DMA device external to the CPU. Assuming such a
device, the DQ/RLE/unzigzag step takes 5 cycles for 2
pixels if performed in a separate loop. Again, only the
nonzero DCT coefficients need to be processed, so the
processing load for the VLD operation is data dependent.

It is in fact possible to merge the DQ/RLE/unzigzag
loop into the VLD loop without incurring additional
cycles. In other words, the overall VLD/DQ/RLE/unzig-
zag operation takes 10 cycles for each nonzero DCT coef-
ficient. Such a merged implementation is possible because
of the many free slots in the sequential VLD-only compu-
tation. Processing load for the merged VLD/DQ loop is
156 Mcyc/sec for the worst case when all the DCT coeffi-
cients are non-zero, and 39 Mcyc/sec for the average case.

6.  IDCT

The 2-D 8x8 IDCT was implemented with the row-col-
umn method of using 16 instances of 1-D 8-point IDCT.
The 8-point IDCT was carried out using the even-odd
decomposition algorithm [12]. Figure 4 shows the signal
flow graph of 8-point IDCT, wherein the cosine factor
denotes .

During our scheduling of the algorithm for the C6x
architecture, we found that there is more pressure in the
addition (S & L) units than in the multiplication (M) units.
We used the following “trick” to reduce the number of
additions. Each 8-point IDCT needs to properly round
down all 8 outputs; simple truncation will not meet the
IEEE precision requirements. To that end a half unit needs
to be added to all 8 outputs before the right shifts. We uti-
lize the structure of the signal flowgraph to add this half
unit, instead, to the DC term  right after multiplying
with , and have the half unit propagate to all outputs
during the normal computation. Seven additions per 8-
point IDCT are thus saved.

This implementation has been verified to pass both the
IEEE precision requirement for IDCT as well as the
dynamic range requirement in the Technical Corrigendum
2 of MPEG-2 Video [5].

The C6x implementation of IDCT has 12-cycle loop
for the first dimension, and 13-cycle loop for the second
dimension. Saturation is required by MPEG-2 Video for
the second dimension. It takes 1249 cycles to compute 6
8x8 blocks, leading to 51 Mcycles/sec load.

7.  Motion compensation

The motion compensation operation consists of form-
ing a prediction macroblock and adding it to the error
block from the IDCT unit. The prediction is formed by
using reference frame information pointed to by motion
vectors specified for each intra-coded MB. Each motion
vector points to a (potentially interpolated) MB in the ref-
erence frame. Maximum computation occurs when an MB
requires both vertical and horizontal interpolation for each
direction of prediction.

There are two ways in which the motion compensation
algorithm may be implemented. One is to fetch pixels
from the on-chip memory one pixel at a time using byte
loads. This has the advantage of simplicity, at the expense
of bandwidth to on-chip memory. The final program, com-
piled from C, consumes 6 pixels/cycle. The bandwidth to
memory is 112 MW/s (out of the available 400 MW/s for a
200MHz C6x).

An alternative to fetching reference pixels a byte at a
time is to use word loads to fetch four pixels of the refer-
ence MB at a time. This approach has the advantage of
lower bandwidth to on-chip memory (28 MW/s for B pic-
tures). Doing this, however, means the pixels have to be
unpacked into half words, since the averaging operations
need to be performed using 16 bit operations to maintain
precision. The C6x shifter (S) units are likely to bottleneck
seriously due to the packing, unpacking and shifts
involved.

We decided to proceed with hand-optimized assembly
coding for the byte-load approach. Additional arithmetic
manipulations are employed to reduce the number of oper-
ations. The original expression of

avg_2_ref = ((a+b+c+d+2)>>2 + (e+f+g+h+2)>>2 + 1)>>1
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FIGURE 4. Even/odd decomposition algorithm for IDCT
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was changed to
avg_2_ref = ((a+b+c+d+2) & ~3 +(e+f+g+h+2) + 4)>>3

= (((a+b+c+d+2) & ~3) +e+f+g+h+6) >> 3.
Two reference blocks, each 17 x 17 for luminance com-

ponent and 9 x 9 for each chrominance component, are
assumed to have been brought in by a DMA mechanism
before the computation starts.

The benchmark code achieves 4 cycles per output
point. The looping overhead is about 14%. The overall
processing load for the worst case motion compensation
processing comes out to be 71 Mcycles/sec. This load is
for B frames that are bidirectionally predicted, with both
horizontal and vertical interpolation. In reality an MPEG-2
image sequence has a mix of I, P and B frames, where the
I frames require no motion compensation, and the P
frames require only one direction of prediction (and hence
take roughly half the CPU load as compared to a B frame).

8.  Benchmark results

Table 1 summarizes cycle counts (in Megacycles per
second) for the main MPEG-2 functions as implemented
on the C6x. We also compare against published bench-
mark results for the Pentium (with MMX), HP PA (with
MAX), and UltraSPARC (with VIS). Functions, such as
bitstream parsing, for which we do not have benchmark
numbers available are left blank. In some cases the VLD
& DQ operations are merged, and so we provide a single
number for the combined function. We refrain from com-
paring against platforms such as the Philips Trimedia, and
Chromatics Mpact since these processors provide hard-
ware acceleration for certain MPEG functions, e.g. VLD.

We have normalized all the published benchmarks to
the same picture size (720x480 pels, at 30fps), and to the
same number of non-zero DCT coefficients and I/P/B
frame mix for average cycle count calculations. The 25%
non-zero DCT coefficient assumption is somewhat pessi-
mistic for real bitstreams; this is deliberately chosen to
leave headroom for particularly “bad” bit-streams that
may contain many more non-zero coefficients. The I/P/B
mix of 7%/67%/26% is also similarly pessimistic.

9.  Conclusion

We discussed the cycle count estimates for key func-
tions in the MPEG-2 decoding algorithm, as implemented
on the TMS320C6x architecture. Our methodology
employed different strategies to obtain these numbers,
based upon the effort required to obtain these numbers and
the required accuracy of the cycle counts. The strategy
ranged from rough estimates based on a C implementation
(for the parsing function) to detailed functionally correct
hand optimized assembly implementation of the function
(e.g. for the VLD). Finally, we compared the benchmark
numbers obtained for the C6x with published MPEG-2
benchmarks for “multimedia enhanced” general purpose
CPUs.

The comparison results show that the C6x, with its
flexible 8-way VLIW architecture, provides improved per-
formance over general purpose CPUs that include multi-
media acceleration. Note that these general purpose CPUs
are several times more expensive in terms of dollar cost
than the C6x, which is targeted toward embedded applica-
tions.
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a. Assumes 25% DCT coefficients are non-zero; one number for both
operations indicates the CPU load for a combined implementation

b. Assumes an average of 20 B frames, 8 P frames and 2 I frames out
of every 30 frames.

NA ⇒ Data Not Available

Table 1.MPEG2 decode benchmark summary (in Mcyc/s)

Parse IDCT VLDa DQa M. Compb

TMS320C6x 37 51 39 62

Pentium
MMX [8][9]

NA 59 33 72

HP MAX [6] NA 97 41 13 72

UltraSPARC
VIS [11]

NA 52 48 14 68


