
System-Level Modeling of DSP and Embedded Processors

Vojin Živojnović
AXYS Design Automation, Inc.

Irvine, CA 92606, USA
vz@axys.de

Chris Schläger, Joachim Fitzner
AXYS GmbH

Herzogenrath, D-52134, Germany
cs[jf]@axys.de

Abstract

High complexity and development costs of processor-
based DSP and embedded designs permanently force the
hardware and software designers to develop and intensively
use processor abstractions in form of abstract processor
models for specification, design, and verification of proces-
sor hardware and software. Based on the SuperSim pro-
cessor modeling technology we have developed a new pow-
erful methodology that can be used in an broad spectrum
of applications ranging from DSP C compiler design over
assembly code development to HW/SW co-simulation with
HDL simulators.

1 Introduction

The trend of processing power hungry DSP and embed-
ded applications with their complex implementations un-
der shrinking time-to-market conditions continues. A typi-
cal current-day electronic system implementation includes a
number of microcontroller and DSP cores fully loaded with
code, memories and dedicated logic, and interconnected
through shared memories and busses. At the same time,
advances in VLSI technology offer single dies with hun-
dreds of millions of transistors allowing complete systems-
on-chip to be easily manufactured. The arguments of lower
power consumption, size and costs prevailed and resulted in
an industry-wide undisputed acceptance of this new oppor-
tunity introducing the system-on-chip.

However, significant concerns related to the system-on-
chip design methodology are emerging at both antipodes of
the abstraction spectrum. Whereas the issue of high inte-
gration at the submicron level received significant attention,
the impact of system-on-chip technology revolution on the
embedded software design and HW/SW co-design and veri-
fication is still insufficiently explored. Especially the design
verification is a problem in real system-on-chip designs. A
system-on-chip is much more than a functionally-equivalent
and downscaled version of a standard printed circuit board

(PCB) with discrete components. Integration on a single
chip reduces our ability to observe and control events in
the implementation and makes the divide and conquer ap-
proach impossible. It is increasingly hard to provide instru-
ments giving us the full observation of intra-chip signals
and full control over its resources. In a single chip solution
the probes of the logic analyzer cannot be connected to the
signals interfacing the components, neither in-circuit emu-
lators can be inserted instead of the processors. The costs of
providing observation and control through implementation
of testing pins and dedicated interfaces tend to grow with
the number of processors on chip.

One common alternative way is to develop a prototype
realized as a PCB with the same components as the system-
on-chip. Our experience has shown that this approach has
significant drawbacks. First, a handful of chips has to be
manufactured and tested with the only purpose of prototyp-
ing. Even with the chip fabrication facility in the backyard
this process is time consuming and costly. Second, the PCB
has to resemble the final system-on-chip which requires the
architecture to be fixed quite early. Experience shows that
with the constantly changing requirements and priorities of
the embedded system market this task becomes very hard,
almost unsolvable. Actually, the design team ends up in
developing two or more complete systems instead of one.

The second alternative is to apply emulation with
the help of powerful FPGA-based emulation systems.
Emulation-based prototyping has shown to be useful for the
development of general purpose processors. In the case of
embedded systems, there are again two evident drawbacks.
First, to achieve an optimal mapping, significant skills have
to be acquired within a short period of time. With the high
dynamic of new processor designs produced each year it is
often impossible to invest in lengthy preparation of the ver-
ification process. Second, the costs for a complex system-
on-chip with a large number of gates are too high for the
embedded industry to justify the investment. The argu-
ments provided above favor the simulation approach where
the model of the whole system is developed in software and
run on the workstation. The advantages of simulation for



system-on-chip verification are shorter model design time,
high flexibility for model changes, full observability and
controllability of the design, and more freedom in selecting
the model precision. This allows the model-before-silicon
approach to be followed allowing tool and software designs
to start long before the actual chip is produced.

The main drawbacks of the simulation approach are
speed and model reliability. The execution speed of stan-
dard cycle-based ISA simulators is in the range of tens thou-
sands of instructions per second on 300 MIPS hosts. This
is much lower than the typical speed of emulators or proto-
types. Simulation of complete systems-on-chip introduces
an additional slowdown. The ways to remedy the speed
problem are compiled simulation and cycle-based ISA mod-
eling in standard programming languages, like C or C++.

A device model is reliable if under a certain precision
provides a faithful description of the underlying object. In
order to produce reliable system-on-chip models it is impor-
tant that the hardware designers keep updating the higher
level models as they change lower level models. For exam-
ple, if the gate- level model of the design is modified with-
out properly updating the corresponding RTL model, the
latter becomes definitely unreliable to serve as a reference
for the higher level HW/SW co- verification, or ISA model.
Although the same issue influences also FPGA-based em-
ulation, it hurts especially the simulation. The solution to
this problem is to adopt a methodology of processor hard-
ware development which will guarantee proper back anno-
tation of higher level model after lower level model updates.
Despite of both drawbacks we believe that driven by the
time-to-market issues the demand for simulation-based ver-
ification tools and processor models will grow in the future.

This paper provides a review of the previous work on
system-level DSP and embedded processor models and sim-
ulation, introduces a new application driven taxonomy and
discusses the use of compiled simulation technology to
bridge the gap between HW- and SW-oriented processor
models.

2 Previous Work on Processor Modeling and
Simulation

Processor simulators such as instruction set simulators
are standardly supplied with off-the-shelf or in-house DSP
processor. They enable comfortable debugging through
controlled program execution and provide visibility of pro-
cessor resources necessary for code development. All com-
mercially available instruction set simulators use the inter-
pretive simulation technique. Their main disadvantages are
the low simulation speed (2K-20K insns/s according to [1])
and the inability to be extended by the user or retargeted.

Processor models are also inevitable components of
HW/SW co-design environments. The Ptolemy HW/SW

co-design environment [2] uses the RTL circuit simula-
tor Thor [3] for simulation of programmable digital sig-
nal processors. A stand alone behavioral simulator for the
DSP56000 processor is interfaced to the Thor environment
by socket connections. The interpretive DSP56000 simula-
tor is able to deliver pin-exact simulation while executing
the code.

The HW/SW co-simulation environment reported in
[4] permits instruction- and phase-accurate HW/SW co-
simulation of the Mitsubishi M16 microprocessor. The sim-
ulation speed varies between 4.000 and 50.000 insns/s on a
87 MIPS machine (Sparc 10) depending on the selection
between phase- and instruction-accurate simulation.

Kra [5] attacks the problem of slow and uncomfortable
software debugging in hardware design verification envi-
ronments. His approach is based on tracking of hardware-
software interactions along the simulation, and later repro-
duction within the software debugger.

Other cosimulation approaches have been proposed in
[6], [7], [8], [9] and [10].

The state-of-the-art commercial HW/SW co-verification
tools, like [11] and [12] use a combination of interpretive
instruction-set models and bus functional wrappers to in-
tegrate the models in HDL environments and provide full
software debugging. At the same time, system-level sim-
ulation tools, like [13] directly interface the instruction-set
processor models supporting full software debugging.

3 Application-Oriented Processor Modeling
Taxonomy

Although the classification of models according to the
temporal (instruction, cycle, phase) and spatial (gate, RTL,
instruction, statement) accuracy, like those suggested by the
RASSP Taxonomy Working Group [14] characterizes the
processor models well, we believe that the characterization
according to the application domain, i.e. design-step, is
closer to the model users. The user is primarily interested
to know whether the proposed model is suited for the ap-
plication at hand, i.e. the specific design-step which will be
taken.

Figure 1 shows the various processor models from the
perspective of different design steps.

� Algorithm Development (Computation Model)

During algorithm development the designer starts
mostly with a statement-level spatial accuracy and
without detailed timing information. Although the in-
fluence of the underlying processor is mostly small,
already at this level the designer can make some
coarse predictions about the size and execution per-
formance of the program.



I/O interrupt
logic

timer

data 
path

&
memory

control 
path

shared
memory

accelerators
&

other cores

 - computation model

 - programming  model

 - system  model

 - interface  model

pins

processor core

Figure 1. Processor Models According to Ap-
plication Domains.

The next step is to explore the effects of the proces-
sor arithmetic used for computation, like finite word-
length effects, and tune the embedded program ap-
propriately. The designer has to switch to the next
lower level of spatial accuracy in order to see details
of the data registers and memory at the bit level. Of
interest are the saturation effects, overflows and ef-
fects of register spill-outs.

� Code Optimization and Compilation (Programming
Model)

The process of code optimization has three phases:
instruction selection, register allocation, and instruc-
tion scheduling. This design step can be done manu-
ally by the programmer or automated by the compiler.
In both cases successful code optimization requires
a detailed timing model, and an pure instruction-
accurate model has to be augmented by the cycle
counting logic. For pipelined processors even the
clock-accurate model has to be used. Also, the in-
formation about some specific architectural details is
necessary.

� System Design (System Model)

The system designer needs to extend the model by in-
cluding the peripherals (I/O, timer, etc.) and the inter-
rupt logic. Additionally, the processing accelerator,
other cores on the chip and their interfacing have to
be modeled. The spatial and temporal accuracy have
to be refined in order to explore the interfacing be-
tween the components of the system-on-chip and the
asynchronous events they cause. For that task the de-
signer needs cycle-accurate models of the processor
core and of all attached units.

� Processor Interfacing (Interface Model)

Using a complete RTL model of the processor for the
design and verification of the interfacing hardware
and software is an obvious overkill. It is definitely
advantageous to extract and model only those parts
of the processor which are relevant for the interface
design. Two models serving this purpose can be dis-
tinguished. One is the standard bus-functional model.
It is characterized by the complete modeling of all
pins for a standard access sequence, like a write cycle
to an external memory, and a full-timing temporal ac-
curacy. The alternative model provides additionally
programming-related details, like registers and mem-
ory, and is based on a phase-accurate timing.

4 Compiled Processor Models

We believe that processor models written in C/C++, es-
pecially compiled processor models, are highly beneficial
for HW/SW co-verification. They provide the flexibility
needed in HW and SW environments and also the perfor-
mance necessary for today’s embedded systems.

Our compiled processor models are based on the Super-
Sim [15] compiled simulation technology. A compiled sim-
ulation is generated by a Simulation Compiler (SimCom).
The SimCom reads in the object of the program, extracts
the static behavior and generates a C program that is func-
tionally equivalent to the read–in program. The C file is
compiled and can be run as a batch job or interactively con-
trolled by a standard C Debugger, like the Sun SparcWorks
Debugger or the public domain DDD [16]. With a few user–
defined commands these debuggers provide the same de-
bugging comfort as traditional simulators. This debugging
method is non–intrusive, that is, the state of the processor is
not changed during the debug process. Very often simula-
tors use techniques derived from emulation devices to facil-
itate single–stepping, data inspection and breakpoints. This
is usually done by injecting instructions into the pipeline.
For a stand–alone instruction set simulator this can be tol-
erated but with the simulated processor a part of a system,
the side effects can corrupt the simulation results.

4.1 Integration with HDL Simulators

An HDL block that is activated on the clock signal needs
to be created to integrate a cycle based C simulator into an
event–driven HDL simulation . Every time the block is ac-
tivated the C simulator simulates the processors operation
during that clock cycle. The integration of the C model
into the HDL simulation can be done using the support for
non-HDL code, like C, using the standard FLI and PLI in-
terfaces. The processor simulator can be either a separate
process that communicates over IPC with the FLI/PLI, or it



can be linked directly into the HDL simulator. In the lat-
ter case the processor model needs to be a dynamically–
linked library. This approach removes the IPC overhead but
is only beneficial if the HDL simulator can simulate faster
than 3000 clock cycles per second. Otherwise, the HDL
simulator and not the IPC connection will be the bottleneck.

When signals are passed from HDL signals to C vari-
ables they are converted into two–state signals. The proces-
sor model can use more than 2 states but this makes the sim-
ulator more complex and hence slower. To use C++ classes
and overloaded operators is the best way to implement this
feature. Beside the reduced number of states also the timing
information is lost. Signal changes are forced to the clock
edge that activates the C simulator. Signals that are passed
from the C part to the HDL simulator need to have this tim-
ing information attached to it again. This is fairly simple for
signals that come from registers or latches but it can be dif-
ficult to regenerate the timing for signals that travel through
complex logic before leaving the processor. In such cases
a worst–case value can be used or a value can be selected
from a set of values by another signal that is provided by the
C simulator. In any case these values need to be determined
using a HDL simulator. In typical situations the interface
between the HDL and the C model will be the bus interface
of the processor.

When the user debugs such a combined HDL/C sys-
tem he or she will have two graphical user interfaces on
the screen, one for the HDL simulator and one for the
instruction set simulator. Both provide functions to ad-
vance the simulation. The optimal solution would be that
both can control the simulation. When the user is stepping
through the code the HDL simulator advances the appropri-
ate amount of time. When the user is advancing the HDL
simulator the ISS is stepping forward appropriately. This
requires that both simulators can run in master and slave
mode. Another alternative would be to have a third instance,
a global simulation controller, that keeps the simulators in
sync. With this global simulation controller it would be eas-
ier to have more than two simulators in the system. So, it
would be possible to simulate a system that consists e.g. of a
micro controller, a DSP, several ASICs and some glue logic.
The most flexible approach would be to use IPC based in-
terfaces between the components. This is much easier to
realize than linking all together into one process. The draw-
back would be again the IPC bottleneck. We have found
that such systems cannot exceed simulation speeds of 3000
clock cycles per second. The alternative is to reduce the
amount of IPC by loosening the coupling. Instead of run-
ning the simulators completely synchronously we can run
them in free–run mode and sync them whenever necessary.
This approach cannot simulate the system in a clock–cycle
accurate fashion and is therefore only suitable for the func-
tional design phase but not for the verification phase. It also

requires that a handshake protocol is used in the system for
the interfaces between the simulators. This limitation of the
design space might restrict the system designer more than
necessary.

4.2 Integration with SW Design Tools

For the software designer the SuperSim compiled mod-
els provide several new and useful features. The SimCom
generates an functionally equivalent C version of the pro-
gram. It provides several hooks inside the simulation where
pieces of C/C++ code to extend the capabilities of the sim-
ulator can be attached. Hooks are provided at the beginning
and the end of the simulation, the beginning and end of ev-
ery instruction or clock cycle and at every label. Whenever
the simulation reaches such a hook it will execute the at-
tached C code. The user has full access to the state of the
processor as well as the symbol information. E.g. read-
ing the data from a file and writing it to certain registers or
variables in the program can be easily implemented. The
designer can use hooks to profile the code or determine dy-
namic instruction distributions, a feature that is very useful
for compiler designers. A predefined set of functions makes
the hooks even for inexperienced C programmers as com-
fortable to use as the rest of the simulator functionality.

As SuperSim simulators can be run in the slave mode it
is also possible to call parts of an embedded program from
within a C/C++ program that runs on the host. This is very
useful when migrating a C/C++ prototype to a program that
runs on the embedded system. The C code can call subrou-
tines on the processor handing over the execution control to
the simulator. It returns the control back to the C/C++ pro-
gram when the subroutine is finished. A set of C functions
is provided to transfer data between the C/C++ code and the
simulated processor. Full symbol debugging support is still
available.

High volume DSP systems like modems or cell phones
are very often designed around a fixed-point signal proces-
sor. Due to the poor quality of high–level language com-
pilers these processors have to be programmed in assembly
language. The DSP code development takes typically one
third of the overall design time. Comparing this to the time
one would need to type the code into a file it becomes clear
that roughly 90% of the time is used for debugging.

For most systems two prototypes, a floating-point and a
fixed-point, are developed in C or C++ prior to starting the
work on the actual assembly code. We have developed the
SuperSim Mixed–Mode methodology that enables the de-
signer to make a seamless transition from the fixed-point C
prototype to the final assembly code. The SuperSim Mixed-
Mode, turns the C++ prototype into a test bed for any piece
of assembly code. The assembly code is executed as part of
the embedding C++ program. Now we can check whether



the DSP code computed the right results by comparing the
results of the equivalent C operations. In case of a mis-
match an error is flagged. As the SuperSim C–Assembly–
Mixed—Mode imposes no limitation on the size of the DSP
code, the programmer can use any granularity that is help-
ful. E.g. in case of a tight coupling errors in the DSP code
can be found automatically within 10 to 15 instructions.

The SuperSim Mixed-Mode is highly beneficial for as-
sembly code implementation and optimization. The high
speed of the SuperSim simulator enables the designer to fre-
quently run huge sets of tests to validate the correctness of
the code during the design process. This technique, called
Comparative Debugging Technique[17] can be automated.
Users have reported a 5- to 10-fold speedup in debugging
their assembly code by applying the proposed methodology.

As we use standard C/C++ debuggers like SparcWorks
or DDD to control the simulation we have full debug sup-
port for the C/C++ code available. The user can step
through the C code that runs natively on the host and when
the processor simulation is called the display is switched
to the processor code. Now the user can step through the
processor simulation until it hands back the control to the
calling C code. Then the display switches back automati-
cally again. With full access to the C data and processor
state this is a very powerful debug tool.

The SuperSim Mixed–Mode can also be used in conjuc-
tion with tools like COSSAP [13] or SPW [18]. These tools
generate their simulation out of C code that was provided
for each block in the system. With the SuperSim Simula-
tion Compiler it is possible to convert a program for the
embedded processor into a C representation. This can be
inserted as one or multiple blocks into these tools. Contrary
to using the IPC based ISS interface that these tools pro-
vide, this is an extremely efficient way of co–simulating a
processor with COSSAP or SPW. Again it is very helpful
that the SuperSim simulator can use a standard C debugger
as debugging interface, so the user can use a single front–
end to debug the C code and the program running on the
simulated processor.

5 Conclusion

We have outlined the challenges designers are facing
while designing and verifying todays systems–on–a–chip
and presented a technique that is a reasonable compromise
between simulation accuracy and simulation speed. C/C++
models seem to be the natural bridge between the processor
models used by hardware and software designers. The in-
troduction of the compiled simulation of processor models
is the key element to provide the flexibility and simulation
speed necessary to create this compromise.

References

[1] J. Rowson, “Hardware/Software co-simulation,” inProc.
31st Design Automation Conference, 1994.

[2] A. Kalavade and E. Lee, “A hardware-software codesign
methodology for DSP applications,”IEEE Design & Test of
Computers, pp. 16–28, Sept. 1993.

[3] VLSI/CAD Group, Stanford University, Stanford, CA,Thor
Tutorial, 1986.

[4] A. Ghosh,et al., “A hardware-software co-simulator for em-
bedded system design and debugging,” inProc. of Asia and
South Pacific DAC, Chiba, Japan, pp. 155–164, Aug. 1995.

[5] P. Kra, “A cross-debugging method for hardware/software
co-design environments,” inProc. 30th Design Automation
Conference, pp. 673–677, 1993.

[6] D. Becker, R. Singh, and S. Tell, “An engineering envi-
ronment for hardware/software cosimulation,” inProc. of
DAC’92, 1992.

[7] S. Coumeri and D. Thomas, “A Simulation environment for
hardware-software codesign,” inProc. of ICCD’95, 1995.

[8] B. Schnaider and E. Yogev, “Software development in a
hardware simulation environment,” inProc. of the DAC –
1996, Las Vegas, USA, pp. 684–689, June 1996.

[9] Lin, B. et al., “Designing Single Chip Systems,” inProc. of
ASIC’96, 1996.

[10] R. Earnshaw, L. Smith, and K. Welton, “Challenges in cross-
development,”IEEE Micro, no. July/Aug., pp. 28–36, 1997.

[11] “Mentor Graphics Seamless CVE Tool.” Available on
http://www.mentorg.com/codesign/main-
f/collateral/Seamless-CVE/datasheet.htm.

[12] “Synopsys’ Eagle Tools.” Available on
http://www.synopsys.com/products/hwsw/eagleds.html.

[13] “Synopsys’ COSSAP Tools.” Available on
http://www.synopsys.com/products/dsp/dsp.html.

[14] “RASSP VHDL Modeling Terminology and Taxonomy .”
Available on http://rassp.scra.org.

[15] V. Živojnović and H. Meyr, “Compiled HW/SW co-
simulation,” inProc. of the DAC 1996 – Las Vegas, pp. 690–
695, June 1996.

[16] “The Data Display Debugger (DDD) .” Available on
http://www.cs.tu-bs.de/softech/ddd.

[17] C. Schläger and V.Živojnović, “C/C++ - based techniques
for production-quality DSP code development,” inProc. of
ICSPAT’95 - Boston, Oct. 1995.

[18] “Cadence Signal Processing Workstation.” Available on
http://www.cadence.com/alta/products/spwhdsdat.html.


