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ABSTRACT

At Berkeley, we have recently revised the curriculum in
EECS to have a common core in electrical engineering and
computer science, where the common core reflects the con-
temporary reality of a digital, networked, computational
world. Part of this curriculum revision is a new introductory
course that reflects the signals and systems side of electrical
engineering. The course is aimed as sophomores, although
it is taken by significant numbers of students at all levels,
from freshmen to seniors. The course is designed to be
as relevant to computer scientists as to electrical engineers.
Thus, it does not have a circuits prerequisite, and does not
use circuits as an illustration of systems. Instead, it moti-
vates signals and systems through media, primarily sound
and images, with occasional references to radio and electri-
cal signals. The course presents a unified view of signals
and systems that is much broader than the traditional fo-
cus on linear-time-invariant systems. It uses sets and func-
tions on sets as a unified notation, and defines discrete-time
and continuous-time signals, as well as event sequences, im-
ages, and video within this notation. Systems are functions
whose domain and range are sets of functions.

1. INTRODUCTION

Like so many engineering schools, Berkeley used to have an
introductory course entitled “Introduction to Electrical En-
gineering” that was about analog circuits. Many of the fac-
ulty felt that this was no longer a good introduction to our
discipline, since it seemed to talk more about the origins of
the discipline that its contemporary reality. We undertook
to “digitize” the curriculum, first by making the introduc-
tory circuits course more digital, and second by designing
a new course that introduces the systems side of the disci-
pline. This paper is about this new course.

A great deal has changed in our discipline since the in-
troductory circuits courses were first designed. Whereas cir-
cuits used to be the heart of the discipline, it is arguable that
today it is the analytical techniques that emerged from cir-
cuit theory that are the heart of the discipline. The circuits
themselves have become an area of specialization, albeit a

very important one. Whereas a signal used to be primarily a
voltage that varies over time, an electromagnetic waveform,
or an acoustic waveform, now it is likely to be a sequence
of discrete message. Whereas the state of a system used to
be represented by variables in a differential equation, now it
is likely to be represented by the registers and memory of a
computer. Whereas a system used to be well-modeled by a
linear time-invariant transfer function, now it is likely to be
a computation in a Turing-complete computation engine.

Fundamental limits have also changed. Although we
still face thermal noise and the speed of light, we are likely
to encounter other limits before we get to these, such as
complexity, computability, and chaos. The mathematical
basis for the discipline has also shifted. Although we
still need calculus and differential equations, we more fre-
quently need discrete math, set theory, and mathematical
logic.

The new course is about signals and systems, but with
a twist. First, the course embraces a computational view
of signals and systems. Thus, like other innovative intro-
ductory courses in EE, it puts more emphasis on discrete-
time modeling than on continuous time. In this regard, we
have been heavily influenced by the excellent and innova-
tive textbooks by McClellan, Schafer and Yoder [1] and by
Steiglitz [4] that also introduce signals and systems empha-
sizing discrete-time models and applications. The themes
of the course are

� The connection between imperative (computational)
and declarative (mathematical) descriptions of signals
and systems.

� The use of sets and functions as a universal language
for declarative descriptions of signals and systems.

� State machines and frequency domain analysis as
complementary tools for designing and analyzing sig-
nals and systems.

� Early and frequent discussion of applications.

On the latter issue, it has been our objective that every one
of the 45 lectures in this course touch upon at least one real-
world application. Although we have fallen somewhat short
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on this goal, we do much better in this regard than most
other signals and systems courses.

2. COURSE CONTENT

The course begins by describing signals as functions, fo-
cusing on characterizing the domain and the range. Sys-
tems are also described as functions, but now the domain
and range are sets of signals. Characterizing these func-
tions is the topic of this course. We begin by describing
systems using the notion of state, first using automata the-
ory and then progressing to linear systems. Frequency do-
main concepts are introduced as a complementary toolset,
different from that of state machines, and much more pow-
erful when applicable. Frequency decomposition of signals
is introduced using psychoacoustics, and gradually devel-
oped until all four Fourier transforms (the Fourier series,
the Fourier transform, the discrete-time Fourier transform,
and the DFT) have been described. We linger on the first
of these, the Fourier series, since it is conceptually the eas-
iest, and then quickly present the others as simple general-
izations of the Fourier series. Finally, the course closes by
using these concepts to study sampling and aliasing.

The course is designed for Berkeley’s 15 week semester,
and has a accompanying textbook and web page [3].

Week 1 – Signals as Functions. The first week moti-
vates forthcoming material by illustrating how signals can
be modeled abstractly as functions on sets. The emphasis is
on characterizing the domain and the range, not on charac-
terizing the function itself. The startup sequence of a voice-
band data modem is used as an illustration, with a support-
ing applet (see figure 1) that plays the very familiar sound
of the startup handshake of V32.bis modem, and examines
the waveform in both the time and frequency domain. The
domain and range of the following signal types is given:
sound, images, position in space, angles of a robot arm, bi-
nary sequences, word sequences, and event sequences.

Week 2 – Systems as Functions. The second week in-
troduces systems as functions that map functions (signals)
into functions (signals). Again, it should focus not on how
the function is defined, but rather on what is the domain and
range. Block diagrams are defined as a visual syntax for
composing functions. Applications considered are DTMF
signaling, modems, digital voice, and audio storage and re-
trieval. These all share the property that systems are re-
quired to convert domains of functions. For example, to
transmit a digital signal through the telephone system, the
digital signal has to be converted into a signal in the domain
of the telephone system (i.e., a bandlimited audio signal).

Week 3 – State. Week 3 is when the students get seri-
ously into Matlab (see [2]). The first lecture in this week is
therefore devoted to the problem of relating declarative and
imperative descriptions of signals and systems. This sets the

framework for making the intellectual connection between
the labs and the mathematics.

The rest of the week is devoted to introducing the notion
of state and state machines. State machines are described
by a function update that, given the current state and input,
returns the new state and output. In anticipation of compos-
ing state machines, the concept of stuttering is introduced.
This is a slightly difficult concept to introduce at this time
because it has no utility until you compose state machines.
But introducing it now means that we don’t have to change
the rules later when we compose machines.

Week 4 – Nondeterminism and Equivalence. The
fourth week deals with nondeterminism and equivalence
in state machines. Equivalence is based on the notion of
simulation, so simulation relations and bisimulation are de-
fined for both deterministic and nondeterministic machines.
These are used to explain that two state machines may be
equivalent even if they have a different number of states, and
that one state machine may be an abstraction of another, in
that it has all input/output behaviors of the other (and then
some).

Week 5 – Composition. This week is devoted to com-
position of state machines. The deep concepts are syn-
chrony, which gives a rigorous semantics to block diagrams,
and feedback. The most useful concept to help subsequent
material is that feedback loops with delays are always well
formed.

Week 6 – Linear Systems. We consider linear systems
as state machines where the state is a vector of reals. Dif-
ference equations and differential equations are shown to
describe such state machines. The notions of linearity and
superposition are introduced.

Week 7 – Response of Linear Systems. Matrices and
vectors are used to compactly describe systems with linear
and time-invariant state updates. Impulses and impulse re-
sponse are introduced. The deep concept here is linearity,
and the benefits it brings, specifically being able to write
the state and output response as a convolution sum.

We begin to develop frequency domain concepts, using
musical notes as a way to introduce the idea that signals can
be given as sums of sinusoids.

Week 8 – Frequency Domain. This week introduces
frequency domain concepts and the Fourier series. Peri-
odic signals are defined, and Fourier series coefficients are
calculated by inspection for certain signals. The frequency
domain decomposition is motivated by the linearity of sys-
tems considered last week (using the superposition princi-
ple), and by psychoacoustics and music.

Week 9 – Frequency Response. In this week, we con-
sider linear, time-invariant (LTI) systems, and introduce the
notion of frequency response. We show that a complex ex-
ponential is an eigenfunction of an LTI system. The Fourier
series is redone using complex exponentials, and frequency
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response is defined in terms of this Fourier series, for peri-
odic inputs.

Week 10 – Filtering. The use of complex exponentials
is further explored, and phasors and negative frequencies
are discussed. The concept of filtering is introduced, with
the terms lowpass, bandpass, and highpass, with applica-
tions to audio and images. Composition of LTI systems is
introduced, with a light treatment of feedback.

Week 11 – Convolution. We describe signals as sums
of weighted impulses and then use linearity and time in-
variance to derive convolution. FIR systems are introduced,
with a moving average being the prime example. Implemen-
tation of FIR systems in software and hardware is discussed,
and signal flow graphs are introduced. Causality is defined.

Week 12 – Fourier Transforms. We relate frequency
response and convolution, building the bridge between time
and frequency domain views of systems. We introduce the
DTFT and the continuous-time Fourier transform and de-
rive various properties. These transforms are described as
generalizations of the Fourier series where the signal need
not be be periodic.

Week 13 – Sampling and Aliasing. We discuss sam-
pling and aliasing as a major application of Fourier analysis
techniques. Emphasis is on intuitive understanding of alias-
ing and its relationship to the periodicity of the DTFT. The
Nyquist-Shannon sampling theorem is stated and related to
this intuition, but its proof is not emphasized.

Week 14 – Filter Design. This week begins a review
that focuses on how to apply the techniques of the course
in practice. Filter design is considered with the objective
of illustrating how frequency response applies to real prob-
lems, and with the objective of enabling educated use of fil-
ter design software. The modem startup sequence example
is considered again in some detail, zeroing in on detection
of the answer tone to illustrate design tradeoffs.

Week 15 – Comprehensive Examples. This week de-
velops applications that combine techniques of the course.
The precise topics depend on the interests and expertise of
the instructors, but we have specifically covered the follow-
ing:

� Speech analysis and synthesis, using a historical Bell
Labs recording of the Voder and Vocoder from 1939
and 1940 respectively, and explaining how the meth-
ods illustrated there (parametric modeling) are used
in today’s digital cellular telephones.

� Digital audio, with emphasis on encoding techniques
such as MP3. Psychoacoustic concepts such as per-
ceptual masking are related to the frequency domain
ideas in the course.

� Vehicle automation, with emphasis on feedback con-
trol systems for automated highways. The use of dis-

crete magnets in the road and sensors on the vehicles
provides a superb illustration of the risks of aliasing.

2.1. Discussion

The first few times we offered this course, automata ap-
peared after frequency domain concepts. The new ordering,
however, is far better. In particular, it introduces mathe-
matical concepts gradually. Specifically, the mathematical
concepts on which the course relies are, sets and functions,
matrix multiplication, complex numbers, and series and in-
tegrals. In particular, note that although students need to be
comfortable with matrix multiplication, most of linear alge-
bra is not required. We never mention an eigenvalue nor a
matrix inverse, for example. The calculus required is also
quite simple. The few exercises in the text that require cal-
culus provide any integration formulas that a student might
otherwise look up. Although series figure prominently, we
only lightly touch on convergence, raising but not resolving
the issue.

Some instructors may be tempted to omit the material
on automata. We advise strongly against this. First, it gets
students used to formally characterizing signals and sys-
tems in the context of a much simpler framework than lin-
ear systems. Most students find this material quite easy.
Moreover, the methods apply much more broadly than fre-
quency domain analysis, which applies primarily to LTI
systems. Most systems are not LTI. Thus, inclusion of
this material properly reflects the breadth of electrical engi-
neering, which includes such specialties as data networks,
which have little to with LTI systems. Even in specializa-
tions that heavily leverage frequency domain concepts, such
as signal processing and communications, practitioners find
that a huge fraction of their design effort deals with control
logic and software-based services. Regrettably, classically
trained electrical engineers harbor the misapprehension that
these parts of their work are not compatible with rigor. This
is wrong.

3. USE OF THE WEB

Our version of this course makes extensive use of the web.
Detailed notes for every lecture are on line, many with il-
lustrative applets that include interactive manipulation of
sounds and images (see figure 1). The web content is used
in lecture in order to leverage the applets, but mathematical
concepts are developed in the traditional way, on the black-
board. This seems to lead to better pacing.

A major difficulty with the web materials for this course
is that web has no widely available mechanism for dis-
played typeset mathematics. Use of GIF images, as for in-
stance provided by LATEXto HTML converters, is inadequate
because these images are too small to be used in lecture.
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Moreover, they do not print well. Our (interim) solution
here is to use the symbol font with ordinary HTML to ren-
der mathematics. Regrettably, this means that these web
pages cannot be viewed on Unix or Apple computers with-
out font errors. Apple computers have a symbol font, but
regrettably, it is a different font from the one provided by
Microsoft, and so symbols get remapped to other symbols,
resulting in nonsensical expressions.

We experimented with using applets to display math-
ematics (which could then be specified, for example, in
MathML), but the various implementations of this that we
tried were hopelessly slow. A page with more than one or
two mathematical expressions takes too long to render.

We find it amazing that the web, which was largely de-
veloped by the technical community, so poorly serves that
technical community. We hope that browsers will provide
native rendering of MathML soon so that our pages do are
not limited to Microsoft platforms.

The course has a tightly integrated software lab, based
on Matlab and Simulink, that is described in [2].

4. NOTATION

The notation we use is somewhat unusual when compared
to standard notation in the vast majority of texts on signals
and systems. However, we believe that the standard nota-
tion is seriously flawed. As a community, we have been
able to get away with it for many years because signals and
systems dealt only with continuous-time LTI systems. But
to be useful, the discipline must be much broader now. Our
specific complaints about the standard notation include:

4.1. Domains and Ranges

It is all too common to use the form of the argument of
a function to define the function. For example, x(n) is a
discrete-time signal, while x(t) is a continuous-time signal.
This leads to mathematical nonsense like the x(n) = x(nT )
to define sampling. Similarly, many authors use ! for fre-
quency in radians per second (unnormalized) and 
 for fre-
quency in radians per sample (normalized). This means that
X(
) 6= X(!) even when 
 = !. The same problem
arises when using the form X(j!) for the continuous-time
Fourier transform and X(ej!) for the discrete-time Fourier
transform. Worse, these latter forms are used specifically to
establish the relationship to the Laplace and Z transforms.
So X(j!) = X(s) when s = j!, but X(j!) 6= X(ej!)
when e

j! = j!.
The intent in using the form of the argument is to in-

dicate what the domain of the function is. However, the
form of the argument is not the best way to do this. In-
stead, we treat the domain of a function as an integral part
of its definition. Thus, for example, a discrete-time (real-

valued) signal is a function x: Ints ! Reals, and it has
a discrete-time Fourier transform that is also a function
X :Reals ! Comps. The DTFT itself is a function whose
domain and range are sets of functions

DTFT: [Ints ! Reals] ! [Reals ! Comps]:

Thus, we can write X = DTFT(x).

4.2. Functions as Values

Most texts call the expression x(t) a function. A better in-
terpretation is that x(t) is an element in the range of the
function x. The difficulty with the former interpretation be-
comes obvious when talking about systems. Many texts pay
lip service to the notion that a system is a function by in-
troducing a notation like y(t) = T (x(t)). This makes no
distinction between the value of the function at t and the
function y itself.

Why does this matter? Consider our favorite type of
system, an LTI system. We write y(t) = x(t) � h(t) to
indicate convolution. Under any reasonable interpretation
of mathematics, this would seem to imply that y(t � �) =
x(t��)�h(t��). But it is not so! How is a student supposed
to conclude that y(t � 2�) = x(t � �) � h(t � �)? This
sort of sloppy notation could easily undermine the students’
confidence in mathematics.

In our notation, a function is the element of a set of
functions, just as its value for a given element in the do-
main is an element of its range. Convolution is a function
whose domain is the cross product of two sets of functions.
Continuous-time convolution, for example, is

Convolution : [Reals ! Reals]� [Reals ! Reals]

! [Reals ! Reals]:

We then introduce the notation � as a shorthand,

x � y = Convolution(x; y);

and define the convolution function by

(x � y)(t) =

1Z

�1

x(�)y(t � �)d�:

Note the careful parenthesization.
A major advantage of our notation is that it easily ex-

tends beyond LTI systems to the sorts of systems that in-
evitably arise in any real world application. For example,
the events generated by the buttons of an audio component
are a signal given as a function,

Commands:Nats ! fRec;Play; Stop;FastFwd;Rewindg;

where Nats is the set of natural numbers. This is now a
signal! With traditional notation, it is a whole new animal.
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4.3. Names of Functions

We have chosen to use long names for functions and vari-
ables when they have a concrete interpretation. Thus, in-
stead of x we might use Sound. This follows a long-
standing tradition in software, where readability is consid-
erably improved by long names. By giving us a much richer
set of names to use, this helps us avoid some of the pitfalls
we cite above. For example, to define sampling of an audio
signal, we might write

SampledSound = SamplerT (Sound):

It also helps bridge the gap between realizations of systems
(which are often software) and their mathematical models.
How to manage and understand this gap is a major theme of
our approach.

5. RESULTS

We have taught EECS 20 four times. In Spring of 2000, we
had 227 students, representing all four class levels, with the
vast majority of the students being sophomores and juniors. 1

We conducted a survey and performed a detailed statistical
analysis of the factors that affected the performance of stu-
dents in the class. We present the highlights of this analysis
here.2

We summarize the results as follows. First, we define
diligent students to be those who responded to the survey
(the data bear that up). We define one grade level to be
the increment from B and B+, or B+ and A-, for example.
We define class standing to be freshman, sophomore, ju-
nior, or senior. And we define taking a class to mean either
concurrently or before taking this one.

We found the following Math classes to be helpful:

� Math 53. Multivariable calculus. Parametric equa-
tions and polar coordinates. Vectors in 2- and 3-
dimensional Euclidean spaces. Partial derivatives.
Multiple integrals. Vector calculus. Theorems of
Green, Gauss, and Stokes.

� Math 54. Linear Algebra and Differential Equa-
tions. Basic linear algebra; matrix arithmetic and de-
terminants. Vector spaces; inner product as spaces.
Eigenvalues and eigenvectors; linear transformations.
Homogeneous ordinary differential equations; first-
order differential equations with constant coefficients.
Fourier series and partial differential equations.

1At Berkeley, many of our students spend their first two years in junior
colleges, where there is no comparable course. These students must take
this course in their junior or senior year, after arriving at Berkeley.

2For details, see
http://www.eecs.berkeley.edu/ eal/eecs20/adm/sp00/analysis.pdf.

� Math 55. Discrete Mathematics. Logic, mathemati-
cal induction sets, relations, and functions. Introduc-
tion to graphs, elementary number theory, combina-
torics, algebraic structures, discrete probability, the-
ory, and statistics. Emphasis on topics of interest to
students in computer science.

These classes are taken after a basic calculus sequence, and
are not currently prerequisites for this course.

� Class standing had little significant effect on perfor-
mance.

� On average, the GPA of students was neither raised
nor lowered by this class.

� Students who attend lecture do better than those who
do not.

� Taking at least one of Math 53, 54, and 55 signifi-
cantly helps (by slightly more than one grade level).

� Taking Math 53 or Math 55 helps by half a grade
level.

� Taking Math 54 helps by almost a grade level.

� Taking more than one of Math 53, 54, or 55 helps
somewhat, but many students do well without this.

� Many students believe Math 54 should be a prerequi-
site.

� Computing classes have little effect on performance,
assuming as was the case with this class, that all stu-
dents have had some computing classes.

� Students do not believe that a computing class pre-
requisite is needed.

6. CHALLENGES

Any instructor in electrical engineering is qualified to teach
this class. Although some of the material, such as automata
theory, might be initially unfamiliar, they are easy for an ed-
ucated person to learn. Indeed, it is these nontraditional as-
pects of the course that the students find easiest. The harder
parts of the course, primarily the Fourier transforms, are
part of the traditional EE curriculum, and thus are familiar
to instructors in this field. Although our notation might be
initially unfamiliar, we believe that instructors will become
quickly used to it, and will appreciate its strengths.

There is one challenging aspect to teaching this course,
however. Since it emphasizes applications, an instructor
needs to be current on these applications. For example,
although MP3 is not explicitly discussed in the course, be
assured that unless the students are asleep, they will ask
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about it. An instructor needs to know what it is. Other
questions that arise are: What is oversampling? How do
cable modems and DSL work? What is the difference be-
tween CDMA and TDMA? What is the difference between
analog cellular and digital cellular? What does “cellular”
mean? What is GIF? PNG? JPEG? MPEG? How do CDs
work? DVDs? Of course, it is not possible to go into these
in much detail, but an effective instructor must be able to
connect at least a reasonable subset of these with the course
material. This is what keeps the students interested, because
it gives them deep insight into the world they live in. More
traditional courses in signals and systems given them deep
insight into a world they never knew existed, and which ap-
parently has no connection to the one they live in.

Figure 1.  A web page showing aliasing in an interactive applet.
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