Equalizer Design to Maximize Bit Rate in ADSL Transceivers

Prof. Brian L. Evans Dept. of Electrical and Comp. Eng. The University of Texas at Austin http://signal.ece.utexas.edu

Last modified February 24, 2003

UT Ph.D. graduates: Dr. Güner Arslan (Silicon Labs), Dr. Biao Lu (Schlumberger)
 UT Ph.D. students: Ming Ding, Kyungtae Han, Milos Milosevic (Schlumberger)
 UT M.S. students: Zukang Shen, Ian Wong

UT senior design students: Wade Berglund, Jerel Canales, David J. Love, Ketan Mandke, Scott Margo, Esther Resendiz, Jeff Wu

Other collaborators: Dr. Lloyd D. Clark (Schlumberger), Prof. C. Richard Johnson, Jr. (Cornell), Prof. Sayfe Kiaei (ASU), Mr. Rick Martin (Cornell), Dr. Lucio F. C. Pessoa (Motorola), Dr. Arthur J. Redfern (Texas Instruments)

Discrete Multitone (DMT) DSL Standards

• ADSL – Asymmetric DSL (G.DMT Standard)

- Maximum data rates supported (*ideal case*)
 Echo cancelled: 14.94 Mbps downstream, 1.56 Mbps upstream
 Frequency division multiplexing: 13.38 Mbps downstream, 1.56 Mbps up
- Widespread deployment in US, Canada, Western Europe, Hong Kong Central office providers only installing frequency-division multiplexed ADSL

ADSL:cable modem market 1:2 in US & 5:1 worldwide

- VDSL Very High Rate DSL (Proposed Standard)
 - Also has symmetric mode: 13, 9, or 6 Mbps
 - Single carrier and DMT
 - DMT VDSL

Higher speed G.DMT ADSL Frequency division multiplex 2^m subcarriers $m \in [8, 12]$

	G.DMT	Asymmetric
	ADSL	DMT VDSL
Data band	25 kHz –	1 MHz –
	1.1 MHz	12 MHz
Upstream	32	256
subcarriers		
Downstream subcarriers	256	2048/4096
Target up- stream rate	1 Mbps	3 Mbps
Target down- stream rate	8 Mbps	13/22 Mbps

Outline

- **Multicarrier modulation**
- **Conventional equalizer**
 - Minimum Mean Squared Error design [Stanford]
 - Maximum Shortening Signal-to-Noise Ratio design [Tellabs]
 - Maximum Bit Rate design (optimal) [UT Austin]
 - Minimum Inter-symbol Interference design (*near-optimal*) [UT Austin]
- **Per-tone equalizer** [Catholic University, Leuven, Belgium]
 - **Dual-path equalizer** •
 - **Conclusion**

[UT Austin]

Single Carrier Modulation

- Ideal (non-distorting) channel over transmission band
 - Flat magnitude response
 - Linear phase response: delay is constant for all spectral components
 - No intersymbol interference
- Impulse response for ideal channel over all frequencies
 - Continuous time: $g \delta(t-T)$
 - Discrete time: $g \delta[k-\Delta]$
- Equalizer
 - Shortens channel impulse response (*time domain*)
 - Compensates for frequency distortion (*frequency domain*)

Multicarrier Modulation

Multicarrier Modulation

Divide channel into narrowband subchannels

 No inter-symbol interference (ISI) in subchannels if constant gain within every subchannel and if ideal sampling

Multicarrier Modulation

Multicarrier Modulation by Inverse FFT Filter Bank

g(t) : pulse shaping filter

 X_i : *i*th subsymbol from encoder

Discrete Multitone Modulation Symbol

• Subsymbols are in general complex-valued

- ADSL uses 4-level Quadrature Amplitude Modulation (QAM) during training
- ADSL uses QAM of 2², 2³, 2⁴, ..., 2¹⁵ levels during data transmission

• Mirror and conjugate subsymbols before multicarrier modulation using inverse FFT

 $\begin{array}{c}
X_{0} \\
\hline X_{1} \\
\hline X_{2} \\
\hline \\ Per carrier
\end{array}$ $\begin{array}{c}
X_{0} \\
\hline \\
X_{1} \\
\hline \\
X_{2} \\
\hline \\
X_{N/2} \\
\hline \\
X_{N/2-1} \\
\end{array}$ $\begin{array}{c}
X_{0} \\
\hline \\
X_{1} \\
\hline \\
X_{2} \\
\hline \\
N-point \\
Inverse \\
FFT \\
\end{array}$

 $\begin{array}{c|c} & x_1 \\ & x_2 \\ & x_3 \\ & \end{array}$ one symbol of N real-valued samples

 $\sim x_N$

Discrete Multitone Modulation Frame

• Frame is sent through D/A converter and transmitted

- Frame is the symbol with cyclic prefix prepended

– Cyclic prefix (CP) consists of last v samples of the symbol

- Is circular convolution if channel length is CP length plus one or shorter
- Circular convolution \Rightarrow frequency-domain equalization in FFT domain
- Time-domain equalization to reduce effective channel length and ISI

Multicarrier Modulation

Eliminating ISI in Discrete Multitone Modulation

• Time domain equalizer (TEQ)

- Finite impulse response (FIR) filter
- *Effective channel impulse response*: convolution of TEQ impulse response with channel impulse response

• Frequency domain equalizer (FEQ)

- Compensates magnitude/phase distortion of equalized channel by dividing each FFT coefficient by complex number
- Generally updated during data transmission

• ADSL G.DMT equalizer training

- *Reverb*: same symbol sent 1,024 to 1,536 times
- *Medley*: aperiodic sequence of 16,384 symbols
- At 0.25 s after medley, receiver returns number of bits on each subcarrier that can be supported

∆: transmission delay∨: cyclic prefix length

ADSL G.DMT Values						
	Down	Up				
	stream	stream				
V	32	4				
N	512	64				

Multicarrier Modulation

ADSL Transceiver: Data Transmission

Outline

- Multicarrier modulation
- Conventional equalizer
 - Minimum Mean Squared Error design [Stanford]
 - Maximum Shortening Signal-to-Noise Ratio design [Tellabs]
 - Maximum Bit Rate design (*optimal*) [UT Austin]
 - Minimum Inter-symbol Interference design (near-optimal) [UT Austin]
- Per-tone equalizer
- Dual-path equalizer
- Conclusion

Minimum Mean Squared Error (MMSE) TEQ Design

- Chose length of **b** (e.g. v+1 in ADSL) to shorten length of $\mathbf{h} * \mathbf{w}$
- **b** is eigenvector of minimum eigenvalue of channel-dependent matrix
- Minimum MSE achieved when $\mathbf{w}^T = \mathbf{b}^T \mathbf{R}_{xy} \mathbf{R}_{yy}^{-1}$ where $\mathbf{w} \neq \mathbf{0}$
- Disadvantages
 - Does not consider bit rate
 - Deep notches in equalizer frequency response (zeros out low SNR bands)
 - Infinite length TEQ: zeros of **b** lock onto unit circle (kills v subchannels)

Maximum Shortening SNR (MSSNR) TEQ Design

- Minimize energy in effective channel impulse response outside of window of v+1 samples, which causes ISI [Melsa, Younce & Rohrs, 1996]
- For each possible start position Δ of window of v+1 samples,

- Equivalent to MMSE for additive white Gaussian channel noise

Maximum Shortening SNR (MSSNR) TEQ Design

• **Choose w to minimize energy outside window of desired length** Locate window to capture maximum channel impulse response energy

h_{win}, h_{wall} : effective channel within and outside window

• Objective function is shortening SNR (SSNR)

 $\max_{\mathbf{w}} (\text{SSNR in dB}) = \max_{\mathbf{w}} 10 \log_{10} \frac{\mathbf{w}^T \mathbf{B} \mathbf{w}}{\mathbf{w}^T \mathbf{A} \mathbf{w}} \text{ subject to } \mathbf{w}^T \mathbf{B} \mathbf{w} = 1$ $\mathbf{C} = \left(\sqrt{\mathbf{B}}\right)^{-1} \mathbf{A} \left(\sqrt{\mathbf{B}^T}\right)^{-1}$

 $\mathbf{w}_{opt} = \left(\sqrt{\mathbf{B}^T}\right)^{-1} \mathbf{q}_{min} \quad \mathbf{q}_{min}$: eigenvector of minimum eigenvalue of **C**

Modeling Signal, ISI, and Noise at Receiver

• Receive	Delay	(y ₁ (/ 	$(\widetilde{h}_1 a_4)$						ĺ	$\int (\widetilde{n}_1)$
$\mathbf{y} = \mathbf{x} * \widetilde{\mathbf{h}} + \widetilde{\mathbf{n}}$	СР	y_2		$(\widetilde{h}_1 a_1)$	+	$\tilde{h}_2 a_4$					$\langle \tilde{n}_2 \rangle$
$\mathbf{h} = \mathbf{w} * \mathbf{h}$	1	$\int y_3$		$\widetilde{h_1}a_2$	+	$\widetilde{h}_2 a_1$	+	$\tilde{h}_3 a_4$			$\left(\widetilde{n}_{3}\right)$
x is transmitted si	Ignal	(y_4)		$(\tilde{h}_1 a_3)$	+	$\widetilde{h}_2 a_2$	+	$\tilde{h}_3 a_1$	+	$\widetilde{h}_4 a_4$	$\left \widetilde{n}_{4} \right $
• Symbols a b		(y_5)		$(\widetilde{h}_1 a_4)$	+	$\widetilde{h}_2 a_3$	+	$\tilde{h}_3 a_2$	+	$\widetilde{h}_4 a_1$	$\left(\widetilde{n}_{5}\right)$
• Symbol length		(y_6)		$(\widetilde{h}_1 b_4)$	+	$\widetilde{h}_2 a_4$	+	$\tilde{h}_3 a_3$	+	$\widetilde{h}_4 a_2$	(\widetilde{n}_6)
N = 4	СР	$\int y_7$	=	$(\widetilde{h}_1 b_1)$	+	$\widetilde{h}_2 b_4$	+	$\tilde{h}_3 a_4$	+	$\widetilde{h}_4 a_3$	$+ (\widetilde{n}_7)$
• Length of h		$\int y_8$		(\widetilde{h}_1b_2)	+	$\widetilde{h}_2 b_1$	+	$\widetilde{h}_3 b_4$	+	$\widetilde{h}_4 a_4$	(\widetilde{n}_8)
L = 4		(y_9)		$(\widetilde{h}_1 b_3)$	+	$\widetilde{h}_2 b_2$	+	$\widetilde{h}_3 b_1$	+	$\widetilde{h}_4 b_4$	$\left(\widetilde{n}_{9}\right)$
• Cyclic prefix $y = 1$		$\int (y_{10})$		$(\widetilde{h}_1 b_4)$	+	$\widetilde{h_2}b_3$	+	$\tilde{h}_3 b_2$	+	$\widetilde{h}_{_{4}}b_{_{1}}$	$\left \widetilde{n}_{10} \right $
• Delay		((y ₁₁				$\widetilde{h}_2 b_4$	+	$\tilde{h}_3 b_3$	+	$\widetilde{h}_4 b_2$	$\left(\widetilde{n}_{11}\right)$
$\Lambda = 1$		(y ₁₂		($\widetilde{h}_3 b_4$	+	$\widetilde{h}_4 b_3$	$\widetilde{n_{12}}$
	Tail	(y ₁₃ ((<u> </u>		$\widetilde{h}_4 b_4$	(\widetilde{n}_{13})
[Arslan, Evans & Kiaei, 20	001]			ISI		S	igna	.1		ISI	noise

Proposed Subchannel SNR Model

Partition equalized channel • Equalized channel impulse into signal path, ISI path, noise path [Arslan, Evans & Kiaei, 2001]

response $\tilde{h}_k = h_k * w_k$

$$h_{k}^{signal} = \widetilde{h}_{k} g_{k}$$
$$h_{k}^{ISI} = \widetilde{h}_{k} (1 - g_{k})$$
$$h_{k}^{noise} = w_{k}$$

Proposed Subchannel SNR Definition

• SNR in *i*th subchannel (leads to maximum bit rate method) [Arslan, Evans & Kiaei, 2001]

 $SNR_{i} = \frac{\text{signal power}}{\text{noise power} + \text{ISI power}} = \frac{S_{x,i} |H_{i}^{\text{signal}}|^{2}}{S_{n,i} |H_{i}^{\text{noise}}|^{2} + S_{x,i} |H_{i}^{\text{ISI}}|^{2}}$ $\begin{vmatrix} H_{i}^{\text{signal}} | \text{ gain of } h_{k}^{\text{signal}} \text{ in subchannel } i \\ H_{i}^{\text{ISI}} | \text{ gain of } h_{k}^{\text{ISI}} \text{ in subchannel } i \\ H_{i}^{\text{noise}} | \text{ gain of } h_{k}^{\text{noise}} \text{ in subchannel } i \\ \end{vmatrix}$

 $\operatorname{SNR}_{i} = \frac{\frac{S_{x,i}}{S_{n,i}} |H_{i}^{signal}|^{2}}{|H_{i}^{noise}|^{2} + \frac{S_{x,i}}{S_{n,i}} |H_{i}^{ISI}|^{2}}$

• Divide SNR_i numerator and denominator by noise power spectral density S_{n,i} (leads to minimum ISI method)

Conventional subchannel SNR is $S_{x,i} / S_{n,i}$

Maximum Bit Rate (MBR) TEQ Design

• Subchannel SNR as nonlinear function of equalizer taps w

- Maximize nonlinear function of bits/symbol with respect to w $b_{DMT} = \int_{i=1}^{N/2} \log_2(1 + \frac{1}{\Gamma} \frac{\mathbf{w}^T \mathbf{A}_i \mathbf{w}}{\mathbf{w}^T \mathbf{B}_i \mathbf{w}})$
 - Good performance measure for comparison of TEQ design methods
 - Not an efficient TEQ design method in computational sense

Minimum-ISI (Min-ISI) TEQ Design

• Rewrite proposed subchannel SNR [Arslan, Evans & Kiaei, 2001]

- ISI power weighted in frequency domain by inverse of noise spectrum
- Generalize MSSNR method by weighting ISI in frequency
 - ISI power in *i*th subchannel is $ISI_i = S_{x,i} |\mathbf{q}_i^H \mathbf{D} \mathbf{H} \mathbf{w}|^2$
 - Minimize frequency weighted sum of subchannel ISI power $\left(ISI_{i} = \left(K_{i} | \mathbf{q}_{i}^{H} \mathbf{DH} \mathbf{w} |^{2} = \mathbf{w}^{T} \mathbf{X} \mathbf{w} \right)^{2} \right)$

- Penalize ISI power in high conventional SNR subchannels: $K_i = \frac{S_{x,i}}{C}$

- Constrain signal path gain to one to prevent all-zero solution for \mathbf{w} $|h^{signal}|^2 = |\mathbf{GHw}|^2 = \mathbf{w}^T \mathbf{Y} \mathbf{w} = 1$
- Solution is generalized eigenvector of X and Y

Simulation Results for 17-Tap TEQ

Achievable percentage of upper bound on bit rate

ADSL		Maximum	Maximum			Upper
CSA	Minimum	Geometric	Shortening	Minimum	Maximum	Bound
Loop	MSE	SNR	SNR	ISI	Bit Rate	(Mbps)
1	43%	84%	62%	99%	99%	9.059
2	70%	73%	75%	98%	99%	10.344
3	64%	94%	82%	99%	99%	8.698
4	70%	68%	61%	98%	99%	8.695
5	61%	84%	72%	98%	99%	9.184
6	62%	93%	80%	99%	99%	8.407
7	57%	78%	74%	99%	99%	8.362
8	66%	90%	71%	99%	100%	7.394
Cyclic p	orefix lengt	h 32	Inpu	it power	23 dBm	
FFT siz	e (<i>N</i>)	512	. Nois	se power	-140 dBr	n/Hz
Coding	gain	4.2	dB Cros	sstalk noise	8 ADSL	disturbers
Margin		6 d.	B POT	TS splitter	5 th order	Chebyshev

Simulation Results for Three-Tap TEQ

Achievable percentage of matched filter bound on bit rate

ADSL		Maximum	Maximum			Upper
CSA	Minimum	Geometric	Shortening	Minimum	Maximum	Bound
Loop	MSE	SNR	SNR	ISI	Bit Rate	(Mbps)
1	54%	70%	96%	97%	98%	9.059
2	47%	71%	96%	96%	97%	10.344
3	57%	69%	92%	98%	99%	8.698
4	46%	66%	97%	97%	98%	8.695
5	52%	65%	96%	97%	98%	9.184
6	60%	71%	95%	98%	99%	8.407
7	46%	63%	93%	96%	97%	8.362
8	55%	61%	94%	98%	99%	7.394
Cyclic 1	orefix lengt	h 32	Inpu	it power	23 dBm	
FFT siz	e (<i>N</i>)	512	2 Nois	se power	-140 dBr	n/Hz
Coding	gain	4.2	dB Cros	sstalk noise	8 ADSL	disturbers
Margin		6 d	B PO7	S splitter	5 th order	Chebyshe

Bit Rate vs. Number of TEQ Taps

- Min-ISI and MBR give similar bit rate
- Three-tap Min-ISI, MBR, and MSSNR achieve matched filter bound (MFB)
- Beyond three taps, MSSNR bit rate falls
- 3-tap Min-ISI beats 21-tap MMSE
- Maximum Geometric SNR close to MMSE

cyclic prefix (v)32FFT size (N)512coding gain4.2 dmargin6 dE

Drawbacks to Minimum ISI Method

- High complexity to compute X and Y matrices
- Sensitivity to transmission delay parameter ∆
 - Requires computationally intensive search
- Does not work for all TEQ lengths
 - Formulation does not work for TEQ lengths longer than ν
 - Also sensitivity to fixed-point implementation due to Cholesky decomposition

- Recursively calculate diagonal elements of X and Y from first column [Wu, Arslan, Evans, 2000]
- Reformulate Minimum ISI objective function
- Develop iterative method for reformulated objective
 - Works for any TEQ length
 - Does not require a Cholesky decomposition
 - Works well under fixed-point arithmetic

Outline

- Multicarrier modulation
- Conventional equalizer
 - Minimum Mean Squared Error design
 - Maximum Shortening Signal-to-Noise Ratio design
 - Maximum Bit Rate design (optimal)
 - Minimum Inter-symbol Interference design (near-optimal)
- Per-tone equalizer

[Catholic University, Leuven, Belgium]

- Dual-path equalizer
- Conclusion

Drawbacks to Using Single FIR Filter for TEQ

- Conventional N real N/2 complex equalizer samples samples **N-FFT** invert time channe and removel domain remove cyclic S/P equalizer frequenc mirrored (FIR prefix domain filter) data equalizer
- Equalizes all tones in combined fashion: may limit bit rate
- Output of conventional equalizer for tone *i* computed using sequence of linear operations

$$Z_i = D_i \operatorname{row}_i(\mathbf{Q}_N) \mathbf{Y} \mathbf{w}$$

 D_i is the complex scalar value of one-tap FEQ for tone *i* \mathbf{Q}_N is the $N \times N$ complex-valued FFT matrix **Y** is an $N \times L_w$ real-valued Toeplitz matrix of received samples **w** is a $L_w \times I$ column vector of real-valued TEQ taps

Frequency-Domain Per Tone Equalizer

• **Rewrite equalized FFT coefficient for each of** *N***/2 tones** [Van Acker, Leus, Moonen, van de Wiel, Pollet, 2001]

 $Z_i = D_i \operatorname{row}_i(\mathbf{Q}_N) \mathbf{Y} \mathbf{w} = \operatorname{row}_i(\mathbf{Q}_N \mathbf{Y}) (\mathbf{w} D_i) = \operatorname{row}_i(\mathbf{Q}_N \mathbf{Y}) \mathbf{w}_i$

- Take sliding FFT to produce $N \times L_w$ matrix product $Q_N Y$

- Design \mathbf{w}_i for each tone

Simulation Results

CSA	MMSE	Maximum	Minimum	Data Rate	Least Sq.	Filter Bank
Loop	UEC	SSNR	ISI	Maximum	Per Tone	Bound (Mbps)
1	86.3%	95.0%	97.5%	99.6%	99.5%	11.417
2	87.2%	96.5%	97.3%	99.6%	99.5%	12.680
3	83.9%	97.0%	97.3%	99.5%	99.6%	10.995
4	81.9%	95.4%	98.2%	99.3%	99.1%	11.288
5	88.6%	97.1%	97.2%	99.6%	99.5%	11.470
6	82.7%	96.4%	98.3%	99.5%	99.4%	10.861
7	75.8%	96.7%	96.3%	98.8%	99.6%	10.752
8	82.6%	97.5%	97.5%	98.7%	99.2%	9.615
Average	83.6%	96.4%	97.5%	99.3%	99.4%	11.135

Cyclic prefix length	32	Input power	23.93 dBm
FFT size (N)	512	Noise power	-140 dBm/Hz
Coding gain	0 dB	Crosstalk noise	49 ADSL disturbers
Margin	0 dB	Tx/Rx filters	2 nd order Chebyshev

Bit rates averaged over 2-32 tap equalizers 1,000 symbols transmitted (accuracy of ± 60 kbps or ± 0.5%)

Implementation Complexity Comparison

Data transmission

- Modified per tone equalizer has similar arithmetic complexity as a conventional equalizer but much higher memory usage and memory I/O
- Memory I/O is larger bottleneck on programmable DSP

Equalizer	Million Real MACS (8 taps)	Word of Memory (8 taps)	Million Real MACs (32 taps)	Words o <u>f</u> Memory (32 taps)
Per Tone (sliding FFT)	98	7,232	295	19,520
Modified Per Tone	55	6,151	105	18,463
Conventional	59	3,188	112	3,236

• Training

- Conventional: design/adapt L_w real FIR filter coefficients. $O(L_w^3)$
- Per-tone equalizer: design/adapt $\frac{1}{2} N L_w$ complex taps. $O(N L_w^3)$
- Per-tone equalizer can train for groups of tones to reduce complexity

Outline

- Multicarrier modulation
- Conventional equalizer
 - Minimum Mean Squared Error design
 - Maximum Shortening Signal-to-Noise Ratio design
 - Maximum Bit Rate design (optimal)
 - Minimum Inter-symbol Interference design (*near-optimal*)
- Per-tone equalizer

Dual-Path Equalizer

Dual-Path Time Domain Equalizer

• Per tone equalizer

- Achieves higher bit rate than single-FIR TEQ
- Has significantly more implementation complexity to train equalizer than MMSE, MSSNR, and Min-ISI single-FIR TEQs
- **Dual-path TEQ** [Ding, Redfern & Evans, 2002]
 - First FIR TEQ equalizes entire available bandwidth
 - Second FIR TEQ tailored for subchannels with higher SNR
 - Path selection for each subchannel is fixed during training
 - Enables reuse of previous ASIC designs of conventional equalizers

Dual-Path Equalizer

Simulation Results

• ANSI-13 Loop

- Crosstalk: 24 DSL disturbers
- Additive white Gaussian noise

• Dual-Path TEQ

- Both paths use tones 33-255
- Second path only optimizes tones 55-85

Achieved Bit Rate

- Path 1: 2.5080 Mbps
- Dual Path: 2.6020 Mbps
- 4% improvement in bit rate

Results for ANSI-13 channel

Contributions by Research Group

- New methods for single-path time-domain equalizer design
 - Maximum Bit Rate method maximizes bit rate (upper bound)
 - Minimum Inter-Symbol Interference method (*real-time, fixed-point*)
- Minimum Inter-Symbol Interference TEQ design method
 - Generalizes Maximum Shortening SNR by frequency weighting ISI
 - Improve bit rate in an ADSL transceiver by change of software only
 - Implemented in real-time on three fixed-point digital signal processors: Motorola 56000, TI TMS320C6200 and TI TMS320C5000
 http://www.ece.utexas.edu/~bevans/projects/adsl
- New dual-path time-domain equalizer
- Comparison to frequency-domain per-tone equalizer
 - Competitive bit rates
 - Lower implementation complexity in training and data transmission

Conclusion

Matlab DMTTEQ Toolbox 3.1

• Single-path, dual-path, per-tone & TEQ filter bank equalizers

Available at http://www.ece.utexas.edu/~bevans/projects/adsl/dmtteq/

Introduction

Applications of Broadband Access

Application	Downstream rate (kb/s)	Upstream rate (kb/s)	Willing to pay	Demand Potential
Database Access	384	9	High	Medium
On-line directory; yellow pages	384	9	Low	High
Video Phone	1,500	1,500	High	Medium
Home Shopping	1,500	64	Low	Medium
Video Games	1,500	1,500	Medium	Medium
Internet	3,000	384	High	Medium
Broadcast Video	6,000	0	Low	High
High definition TV	24,000	0	High	Medium

Residential

Business

Application	Downstream	Upstream	Willing to pay	Demand
	rate (kb/s)	rate (kb/s)		Potential
On-line directory; yellow pages	384	9	Medium	High
Financial news	1,500	9	Medium	Low
Video phone	1,500	1,500	High	Low
Internet	3,000	384	High	High
Video conference	3,000	3,000	High	Low
Remote office	6,000	1,500	High	Medium
LAN interconnection	10,000	10,000	Medium	Medium
Supercomputing, CAD	45,000	45,000	High	Low

Introduction

Selected DSL Standards

Standard	Meaning	Data Rate	Mode	Applications
ISDN	Integrated Services	144 kbps	Symmetric	Internet Access, Voice, Pair
	Digital Network			Gain (2 channels)
<i>T1</i>	T-Carrier One	1.544 Mbps	Symmetric	Enterprise, Expansion,
	(requires two pairs)			Internet Service
HDSL	High-Speed Digital	1.544 Mbps	Symmetric	Pair Gain (12 channels),
	Subscriber Line			Internet Access, T1/E1
	(requires two pairs)			replacement
HDSL2	Single Line HDSL	1.544 Mbps	Symmetric	Same as HDSL except pair
				gain is 24 channels
G.Lite	Splitterless	up to 1.5 Mbps	Downstream	Internet Access, Digital
ADSL	Asymmetric Digital	up to 512 kbps	Upstream	Video
	Subscriber Line			
G.DMT	Asymmetric Digital	up to 10 Mbps	Downstream	Internet Access, Digital
ADSL	Subscriber Line	up to 1 Mbps	Upstream	Video
VDSL	Very High-Speed	up to 22 Mbps	Downstream	Internet Access, Digital
	Digital Subscriber	up to 3 Mbps	Upstream	Video, Broadcast Video
	Line (proposed)	up to 13 Mbps	Symmetric	

Courtesy of Shawn McCaslin (Cicada Semiconductor, Austin, TX)

Introduction

Discrete Multitone DSL Standards

- Discrete multitone (DMT) modulation uses multiple carriers
- ADSL Asymmetric DSL (G.DMT)
 - Asymmetric: 8 Mbps downstream and 1 Mbps upstream
 - Data band: 25 kHz 1.1 MHz
 - Maximum data rates possible in standard (ideal case)
 - Echo cancelled: 14.94 Mbps downstream, 1.56 Mbps upstream
 - Frequency division multiplexing: 13.38 Mbps downstream, 1.56 Mbps up
 - Widespread deployment in US, Canada, Western Europe, Hong Kong
 - Central office providers only installing frequency-division ADSL
 - ADSL modems have about 1/3 of market, and cable modems have 2/3
- VDSL Very High Rate DSL
 - Asymmetric: either 22/3 or 13/3 Mbps downstream/upstream
 - Symmetric: 13, 9, or 6 Mbps each direction
 - *Data band*: 1 12 MHz
 - DMT and single carrier modulation supported
 - DMT VDSL essentially higher speed version of G.DMT ADSL

- Encoder maps a group of message bits to data symbols
- Modulator maps these symbols to analog waveforms
- Demodulator maps received waveforms back to symbols
- Decoder maps the symbols back to binary message bits

Intersymbol Interference (ISI)

Combat ISI with Equalization

- Equalization because channel response is not flat
- Zero-forcing equalizer
 - Inverts channel
 - Flattens freq. response
 - Amplifies noise
- MMSE equalizer
 - Optimizes trade-off between noise amplification and ISI
- Decision-feedback equalizer
 - Increases complexity
 - Propagates error

Multicarrier Modulation

Open Issues for Multicarrier Modulation

• Advantages

- Efficient use of bandwidth without full channel equalization
- Robust against impulsive noise and narrowband interference
- Dynamic rate adaptation
- Disadvantages
 - Transmitter: High signal peak-to-average power ratio
 - Receiver: Sensitive to frequency and phase offset in carriers

• Open issues

- Pulse shapes of subchannels (orthogonal, efficient realization)
- Channel equalizer design (increase bit rate, reduce complexity)
- Synchronization (timing recovery, symbol synchronization)
- Bit loading (allocation of bits in each subchannel)
- Echo cancellation

TEQ Algorithm

• ADSL standards

- Set aside 1024 frames (~.25s) for TEQ estimation
- Reserved ~16,000 frames for channel and noise estimation for the purpose of SNR calculation
- **TEQ is estimated before the SNR calculations**
- Noise power and channel impulse response can be estimated before time slot reserved for TEQ if the TEQ algorithm needs that information

Single-FIR Time-Domain Equalizer Design Methods

- All methods below perform optimization at TEQ output
- Minimizing the mean squared error
 - Minimize mean squared error (MMSE) method [Chow & Cioffi, 1992]
 - Geometric SNR method [Al-Dhahir & Cioffi, 1996]
- Minimizing energy outside of shortened (equalized) channel impulse response
 - Maximum Shortening SNR method [Melsa, Younce & Rohrs, 1996]
 - Divide-and-conquer methods [Lu, Evans, Clark, 2000]
 - Minimum ISI method [Arslan, Evans & Kiaei, 2000]
- Maximizing bit rate [Arslan, Evans & Kiaei, 2000]
- Implementation
 - Geometric SNR is difficult to automate (requires human intervention)
 - Maximum bit rate method needs nonlinear optimization solver
 - Other methods implemented on fixed-point digital signal processors

Minimum Mean Squared Error (MMSE) TEQ

$$\mathbf{x}_{k} = \begin{bmatrix} n_{k} & \mathbf{y}_{k} & \mathbf{v}_{k} &$$

 $MSE = \mathcal{E}\{e_k^2\} = \hat{\mathbf{b}}^T \mathbf{R}_{\mathbf{xx}} \hat{\mathbf{b}} - 2\hat{\mathbf{b}}^T \mathbf{R}_{\mathbf{xy}} \mathbf{w} + \mathbf{w}^T \mathbf{R}_{\mathbf{yy}} \mathbf{w}$ minimum MSE is achieved only if $\mathbf{b}^T \mathbf{R}_{\mathbf{xy}} = \mathbf{w}^T \mathbf{R}_{\mathbf{yy}}$ $MSE = \hat{\mathbf{b}}^T \left[\mathbf{R}_{\mathbf{xx}} - \mathbf{R}_{\mathbf{xy}} \mathbf{R}_{\mathbf{yy}}^{-1} \mathbf{R}_{\mathbf{yx}} \right] \hat{\mathbf{b}} = \hat{\mathbf{b}}^T \mathbf{R}_{\mathbf{x}|\mathbf{y}} \hat{\mathbf{b}}$

Define $\mathbf{R}_{\Delta} = \mathbf{O}^T \mathbf{R}_{\mathbf{x}|\mathbf{y}} \mathbf{O}$ then $\mathbf{MSE} = \mathbf{b}^T \mathbf{R}_{\Delta} \mathbf{b}$

O selects the proper part out of $R_{x|v}$ corresponding to the delay Δ

Near-optimal Minimum-ISI (Min-ISI) TEQ Design

- Generalizes MSSNR method by frequency weighting ISI
 - ISI power in *i*th subchannel is $ISI_i = S_{x,i} |\mathbf{q}_i^H \mathbf{D} \mathbf{H} \mathbf{w}|^2$
 - Minimize ISI power as a frequency weighted sum of subchannel ISI $\left(ISI_{i} = \left(K_{i} | \mathbf{q}_{i}^{H} \mathbf{DHw} |^{2} = \mathbf{w}^{T} \mathbf{Xw} \right)^{2} \right)$
 - Constrain signal path gain to one to prevent all-zero solution $|h^{signal}|^2 = |\mathbf{GHw}|^2 = \mathbf{w}^T \mathbf{Y} \mathbf{w} = 1$
 - Solution is a generalized eigenvector of X and Y
- Possible weightings
 - Amplify ISI objective function in subchannels with low noise power (high SNR) to put ISI in low SNR bins:
 - Set weighting equal to input power spectrum:
 - Set weighting to be constant in all subchannels (MSSNR): $K_i = 1$
- Performance virtually equal to MBR (optimal) method

 $K_i = \frac{S_{x,i}}{S_{n,i}}$

 $K_i = S_{x_i}$

Efficient Implementations of Min-ISI Method

- Generalized eigenvalue problem can solved with generalized power iteration: $\mathbf{X}\mathbf{w}^{k+1} = \mathbf{Y}\mathbf{w}^k$
- Recursively calculate diagonal elements of X and Y from first column [Wu, Arslan, Evans, 2000]
 Method
 Rit Rate
 MAC

Method	Bit Rate	MACs
Original	99.6%	132,896
Recursive	99.5%	44,432
Row-rotation	99.5%	25,872
No-weighting	97.8%	10,064

Motivation for Divide-and-Conquer Methods

- Fast methods for implementing Maximum SSNR method
- Maximum SSNR Method
 - For each Δ , maximum SSNR method requires
 - Multiplications: $(L_h + \frac{7}{6})L_w + \frac{5}{2}L_w^2 + \frac{25}{3}L_w^3$

 L^2

• Additions:

$$(L_h - \frac{5}{6}) L_w - \frac{3}{2} L_w^2 + \frac{25}{3} L_w^3$$

- Divisions:
- Exhaustive search for the optimal delay Δ $0 \le \Delta \le L_h + L_w - v - 2 (0 \le \Delta \le 499)$
- Divide L_w TEQ taps into $(L_w 1)$ two-tap filters in cascade
 - Design first two-tap filter then second and so forth (greedy approach)
- Develop heuristic to estimate the optimal delay

Divide-and-Conquer Approach

- The *i*th two-tap filter is initialized as either
 - Unit tap constraint (UTC) $\mathbf{w}_i = \begin{pmatrix} 1 \\ g_i \end{pmatrix}$

- Unit norm constraint (UNC)
$$\mathbf{w}_i = \begin{pmatrix} \sin \theta_i \\ \cos \theta_i \end{pmatrix}$$

- Calculate best g_i or θ_i by using a greedy approach either by
 - Minimizing $\frac{1}{\text{SSNR}}$ (Divide-and-conquer TEQ minimization)
 - Minimizing energy in \mathbf{h}_{wall} (Divide-and conquer TEQ cancellation)
- Convolve two-tap filters to obtain TEQ

Divide-and-Conquer TEQ Minimization (UTC)

• At i^{th} iteration, minimize J_i over g_i

$$J_{i} = \frac{\mathbf{w}_{i}^{T} \mathbf{A} \mathbf{w}_{i}}{\mathbf{w}_{i}^{T} \mathbf{B} \mathbf{w}_{i}} = \frac{\begin{bmatrix} 1 & g_{i} \end{bmatrix} \begin{pmatrix} a_{1,i} & a_{2,i} \\ a_{2,i} & a_{3,i} \end{pmatrix} \begin{pmatrix} 1 \\ g_{i} \end{pmatrix}}{\begin{pmatrix} a_{2,i} & a_{3,i} \end{pmatrix} \begin{pmatrix} g_{i} \\ g_{i} \end{pmatrix}} = \frac{a_{1,i} + 2a_{2,i}g_{i} + a_{3,i}g_{i}^{2}}{b_{1,i} + 2b_{2,i}g_{i} + b_{3,i}g_{i}^{2}}$$

• Closed-form solution

$$g_{i(1,2)} = \frac{-(a_{3,i}b_{1,i} - a_{1,i}b_{3,i})}{2(a_{3,i}b_{2,i} - a_{2,i}b_{3,i})} \pm \frac{\sqrt{D}}{2(a_{3,i}b_{2,i} - a_{2,i}b_{3,i})}$$
$$D = (a_{3,i}b_{1,i} - a_{1,i}b_{3,i})^2 - 4(a_{3,i}b_{2,i} - a_{2,i}b_{3,i})(a_{2,i}b_{1,i} - a_{1,i}b_{2,i})$$

Divide-and-Conquer TEQ Minimization (UNC)

• At *i*th iteration, minimize J_i over η_i

W

$$J_{i} = \frac{\mathbf{w}_{i}^{T} \mathbf{A} \mathbf{w}_{i}}{\mathbf{w}_{i}^{T} \mathbf{B} \mathbf{w}_{i}} = \frac{\left(\sin \theta_{i} \begin{bmatrix} 1 & \eta_{i} \end{bmatrix}\right) \begin{pmatrix} a_{1,i} & a_{2,i} \\ a_{2,i} & a_{3,i} \end{pmatrix} \begin{pmatrix} \sin \theta_{i} \begin{pmatrix} \eta_{i} \end{pmatrix} \begin{pmatrix} \eta_{i$$

Divide-and-Conquer TEQ Cancellation (UTC)

• At i^{th} iteration, minimize J_i over g_i

$$J_{i} = \widetilde{\mathbf{h}}_{\text{wall}}^{T} \widetilde{\mathbf{h}}_{\text{wall}} = \left(\widetilde{h}_{i-1}(k) + g_{i} \widetilde{h}_{i-1}(k-1) \right)^{2},$$
$$S = \left\{ 1, 2, \mp, \Delta, \Delta + \nu + 2, \mp, L_{\widetilde{h}_{i-1}} \right\}$$

• Closed-form solution for the *i*th two-tap FIR filter

$$g_{i} = -\frac{\left(\widetilde{h}_{i-1}(k-1)\widetilde{h}_{i-1}(k)\right)}{\left(\widetilde{h}_{i-1}(k-1)\right)}$$

Divide-and-Conquer TEQ Cancellation (UNC)

• At i^{th} iteration, minimize J_i over θ_I

$$J_{i} = \widetilde{\mathbf{h}}_{\text{wall}}^{T} \widetilde{\mathbf{h}}_{\text{wall}} = \left\{ \left(\widetilde{h}_{i-1}(k) \sin \theta_{i} + \widetilde{h}_{i-1}(k-1) \cos \theta_{i} \right)^{2}, \\ S = \left\{ 1, 2, \mp, \Delta, \Delta + \nu + 2, \mp, L_{\widetilde{h}_{i-1}} \right\}$$

• Closed-form solution

$$\sin\theta_{i} = \pm \sqrt{0.5 \left(1 \pm \sqrt{\frac{a^{2}}{a^{2} + 4b^{2}}}\right)}, \cos\theta_{i} = \pm \sqrt{0.5 \left(1 \pm \sqrt{\frac{a^{2}}{a^{2} + 4b^{2}}}\right)}$$
$$a = \left(\left(\widetilde{h}_{i-1}^{2}(k) - \widetilde{h}_{i-1}^{2}(k-1)\right)\right), b = \left(\widetilde{h}_{i-1}(k-1)\widetilde{h}_{i-1}(k)\right)$$

Computational Complexity

• Computational complexity for each candidate Δ

Method	X	+	÷	Memory (words)	G.DMT ADSL
Maximum SSNR	120379	118552	441	1899	$L_h = 512$
DC-TEQ-mini- mization (UTC)	53240	52980	60	563	$V = 32$ $L_w = 21$
DC-TEQ-can- cellation (UNC)	42280	42160	20	555	
DC-TEQ-can- cellation (UTC)	41000	40880	20	554	

• Divide-and-conquer methods vs. maximum SSNR method

- Reduces multiplications, additions, divisions, and memory
- No matrix calculations (saves on memory accesses)
- Avoids matrix inversion, and eigenvalue and Cholesky decompositions

Heuristic Search for the Optimal Delay

• Estimate optimal delay Δ before computing TEQ taps

 $\Delta_{\text{ratio}} = \arg \max_{\Delta} \frac{\text{energy inside a window of original } \mathbf{h}}{\text{energy outside a window of original } \mathbf{h}}$

- Total computational cost
 - Multiplications: L_h
 - Additions: $3L_h 3$
 - Divisions: L_h
- Performance of heuristic vs. exhaustive search
 - Reduce computational complexity by factor of 500
 - 2% loss in SSNR for TEQ with four taps or more
 - 8% loss in SSNR for two-tap TEQ

Comparison of Earlier Methods

Method	MMSE	MSSNR	Geometric	
Advantages				
Maximize bit rate			<i>~</i>	
Minimize ISI		¥		
Bit Rate	Low-medium	High	Low-medium	
Disadvantages				
Nonlinear optimization			~	
Computational complexity	Low	Medium	High	
Artificial constraints	~		~	
Ad-hoc parameters			✓	
Lowpass frequency response			✓	
Unrealistic assumptions				

MBR TEQ vs. Geometric TEQ

Method	MBR	Geometric	
Advantages			
Maximize channel capacity	✓	¥	
Minimize ISI	✓		
Bit rate	optimal	Low-medium	
Disadvantages			
Low-pass frequency response			
Computationally complex	✓	✓	
Artificial constraints		✓	
Ad-hoc parameters		✓	
Nonlinear optimization	✓		
Unrealistic assumptions			

Min-ISI TEQ vs. MSSNR TEQ

Method	Min-ISI	MSSNR		
Advantages				
Maximize channel capacity				
Minimize ISI	~	✓		
Frequency domain weighting	✓			
Bit rate	high	high		
Disadvantages				
Computationally complex	very high	high		

- Min-ISI weights ISI power with the SNR
 - Residual ISI power should be placed in high noise frequency bands

$$SNR_{i} = \frac{\text{signal power}}{\text{noise power + ISI power}} = \frac{1}{10} = 0.1$$

$$SNR_{50} = \frac{1}{10} = 0.1$$

$$SNR_{50} = \frac{1}{10+1} = 0.09$$

$$SNR_{2} = \frac{1}{0.1} = 10$$

$$SNR_{2} = \frac{1}{0.1+1} = 0.9$$

Bit Rate vs. Cyclic Prefix (CP) Size

- Matched filter bound decreases because CP has no new information
- Min-ISI and MBR achieve bound with 16-sample CP
- Other design methods are erratic
- MGSNR better for 15-28 sample CPs

TEQ taps (L_w) 17**FFT size** (N)512**coding gain**4.2 dBmargin6 dB

Simulation Results

- Min-ISI, MBR, and MSSNR achieve matched filter bound owith CP of 27 samples
- Min-ISI with 13sample CP beats MMSE with 32sample CP
- MMSE is worst

TEQ taps (L_w) **FFT size** (N) **coding gain margin**

Bit Allocation Comparison

• Simulation

- NEXT from 24 DSL disturbers
- 32-tap equalizers: least squares training used for per-tone equalizer

Subchannel SNR

Frequency-Domain Per-Tone Equalizer

• Rearrange computation of FFT coefficient for tone *i* [Van Acker, Leus, Moonen, van de Wiel, Pollet, 2001]

 $Z_i = D_i \operatorname{row}_i(\mathbf{Q}_N) \mathbf{Y} \mathbf{w} = \operatorname{row}_i(\mathbf{Q}_N \mathbf{Y}) (\mathbf{w} D_i)$

 $\mathbf{Q}_N \mathbf{Y}$ produces $N \times L_w$ complex-valued matrix produced by sliding FFT Z_i is inner product of *i*th row of $\mathbf{Q}_N \mathbf{Y}$ (complex) and $\mathbf{w} D_i$ (complex) TEQ has been moved into FEQ to create multi-tap FEQ as linear combiner

- After FFT demodulation, each tone equalized separately Equalize each carrier independently of other carriers (*N*/2 carriers) Maximize bit rate at *output of FEQ* by maximizing subchannel SNR
- Sliding FFT to produce N × L_w matrix product Q_N Y Receive one ADSL frame (symbol + cyclic prefix) of N + v samples Take FFT of first N samples to form the first column Advance one sample Take FFT of N samples to form the second column, etc.

Per-Tone Equalizer: Implementation Complexity

Conventional	Real MACs	Words
TEQ	$L_w f_s$	$2 L_w$
FFT	$2 N \log_2(N) f_{sym}$	4 N
FEQ	$4 N_u f_{sym}$	$4 N_u$

Per Tone	Real MACs	Words
FFT	$2 N \log_2(N) f_{sym}$	4 N + 2 v
Sliding FFT	$2(L_w-1)Nf_{sym}$	N
Combiner	$4 L_w N_u f_{sym}$	$2(L_w+1)N_u$

Parameter	Symbol	Value
Sampling rate	f_s	2.208 MHz
Symbol rate	f _{sym}	4 kHz
TEQ length	L_w	3-32
Symbol length	Ν	512
Subchannels used	N_u	256
Cyclic prefix length	ν	32

Modified.	Real MACs	Adds	Words
Per Tone			
FFT	$2 N \log_2(N) f_{sym}$		4 N
Differencing		$(L_w - 1)f_{sym}$	$L_w - 1$
Combiner	$2 (L_w + 1) N_u f_{sym}$		$2 L_w N_u$

Dual-Path Equalizer

Dual-Path TEQ (Simulated Channel)

Motorola CopperGold ADSL Chip

- Announced in March 1998
- 5 million transistors, 144 pins, clocked at 55 MHz
- 1.5 W power consumption
- DMT processor consists
 - Motorola MC56300 DSP core
 - Several application specific ICs
 - 512-point FFT

• 17-tap FIR filter for time-domain channel equalization based on MMSE method (20 bits precision per tap)

• DSP core and memory occupies about 1/3 of chip area