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Abstract - This paper gives an algebraic frame-

work for designing analog �lters that are jointly op-

timized for magnitude, phase, and step responses,

and �lter quality. We formulate the design prob-

lem as a sequential quadratic programming (SQP)

problem and use symbolic mathematical software

to translate the SQP formulation into workingMAT-

LAB programs to optimize analog �lters.

1. INTRODUCTION

This paper derives an extensible framework for jointly
optimizing the behavior of analog �lters in terms of
their magnitude, phase, and step responses, and their
implementation in terms of their quality factors. The
optimization is performed with respect to the pole-
zero locations, subject to constraints on magnitude
response, quality factors, and peak overshoot. We for-
mulate the procedure at an algebraic level, and use
symbolic mathematical software to generate the code
to compute the optimization.

We convert the constrained non-linear optimiza-
tion �lter design problem to a sequential quadratic
programming (SQP) problem. SQP requires that the
objective function [1] and the constraints [2] be real-
valued and twice continuously di�erentiable with re-
spect to the free parameters. SQP relies on the gra-
dients of the objective function and constraints. SQP
methods have been previously applied to optimizing
loss and delay in digital �lter designs [3].

Section 2 reviews notation. Section 3 derives a
family of weighted, di�erentiable objective functions
to measure the deviation in magnitude response, devi-
ation in linear phase response, �lter quality, and peak
overshoot of the step response, of an analog �lter. In
the derivation, we �nd a new analytic approximation
for the peak overshoot. Section 4 converts �lter speci-
�cations into di�erentiable constraints. Section 5 gives
an example of an optimized �lter design.

We bring the equations for the objective function
and constraints together in the symbolic mathematics
environment Mathematica, and program it to

(1) compute the gradients of the objective function

and constraints symbolically,

(2) convert the objective function, constraints, and
their gradients into MATLAB [4] functions,

(3) generate a MATLAB script to run the numeri-
cal optimization.

When the designer changes the objective function, our
symbolic software will then recompute the gradients
and regenerate the numerical optimization code. In
essence, we have bridged the gap between the sym-
bolic work designers often do on paper and the work-
ing computer implementation. We have eliminated al-
gebraic errors in hand calculation and bugs in coding
the software implementation.

2. NOTATION

We represent an analog �lter by its n complex conju-
gate pole pairs pk = ak � jbk where ak < 0 and its r
complex conjugate zero pairs zl = cl � jdl where cl <
0, such that r < n. The magnitude and unwrapped
phase responses of an all-pole �lter, expressed as real-
valued di�erentiable functions, are
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We factor the polynomial under the square root in
(1) into Horner's form because it has better numerical
properties. Together with the zero pairs, the magni-
tude and unwrapped phase responses are
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In this paper, Q represents quality factors, � rep-
resents a small positive number, � denotes deviation,
m represents slope of a line, t is time, and W is a
weighting factor.

3. OBJECTIVE FUNCTIONS

In this section, we derive measures of closeness to
an ideal magnitude and phase response, quality fac-
tors, and peak overshoot. The objective function is a
weighted combination of these measures, and a non-
negative function.

3.1. Deviation in the Magnitude Response

We measure the deviation from the ideal in terms of
magnitude response in the passband, transition bands,
and stopbands separately. Based on the notation in
Figure 1, the �ve components of the objective function
relating to the deviation from an ideal magnitude re-
sponse in the least squares sense are:
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where Fp(!), Ft1(!), Ft2(!), and Fs(!) are integrable
weighting functions, and m1 and m2 are the slopes of
the ideal response in the transition regions de�ned as
m1 = 1=(!p1 � !s1) and m2 = 1=(!p2 � !s2).

3.2. Deviation in the Phase Response

For the passband response, the objective function mea-
sures the deviation from linear phase over some range
of frequencies (usually over the passband):
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where mlp is the ideal slope of the linear phase re-
sponse. Unfortunately, one does not know the value
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Figure 1: The Ideal Magnitude Response

of mlp �a priori. We can compute it as the slope of the
line in ! that minimizes (10):

min
mlp
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In (11), the H(j!) term does not depend on mlp, so
the integrand is quadratic in mlp. To �nd the mini-
mum, we take the derivative with respect to mlp, set
it to zero, and solve for mlp:
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After evaluating the integrals,
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Using Mathematica, we computed the de�nite inte-
grals in (12) and veri�ed the answers. Now that we
have a closed-form solution for mlp, we can substi-
tute (13) into (10) to obtain a rather complicated but
di�erentiable expression for the deviation from linear
phase.

3.3. Filter Quality

The quality factor measures the relative distance of
poles from the imaginary frequency axis. The lower
the quality factor, the less likely that the pole will
cause oscillations in the output (e.g., as a response to
noisy input). The quality factorQk for the kth second-
order section with conjugate poles ak�jbk (with ak <
0) and the e�ective overall quality factor Qe� are

Qk =

p
a2k + b2k
�2ak

Qe� =

 
nY

k=1

Qi

! 1

n

(14)



where Qk; Qe� � 0:5. Qk = 0:5 corresponds to a
double real-valued pole (bk = 0), and Qk = 1 corre-
sponds to an ideal oscillator (ak = 0). We de�ne Qe�

as the geometric mean of the quality factors, and use
Qe� � 0:5 to measure the �lter quality.

3.4. Peak Overshoot in the Step Response

A closed-form solution for the overshoot of a second-
order analog �lter exists, but one for higher-order �l-
ters does not. From the step response, we can numer-
ically compute the peak overshoot and the time tpeak
at which it occurs. In order to make the peak over-
shoot calculation di�erentiable, this section derives an
analytic expression that approximates tpeak in terms
of the pole-zero locations. This derivation assumes
that there are no multiple poles, so some classes of
�lters are excluded [5].

The Laplace transform of the step response is
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Assuming no duplicate poles, partial fractions yields
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Ck = 2jAkj cos( 6 Ak)
Dk = �2jAkj (ak cos( 6 Ak) + bk sin(6 Ak))

Ak = [H(s)(s � pk)]s=pk = jAkjej 6 Ak

jAkj and 6 Ak can be expressed as real-valued di�eren-
tiable functions of the pole and zero locations. After
inverse transforming (16), the overall step response is
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which can be positive or negative, is the steady-state
value for that second-order section.

For a second-order section, the time at which the
maximum overshoot occurs is
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and this reduces in the all-pole case to
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We construct the following function to approximate
tpeak for the purposes of computing derivates:
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where � is set to the true value of tpeak (found numeri-
cally) divided by the approximation 1

n

Pn

k=1 t
k
peak. We

veri�ed (20) using the SQP routine. We measure the

peak overshoot cost by using (hstep(tpeak) � 1)2.

4. CONSTRAINTS

This section discusses two sets of constraints. The �rst
speci�es the magnitude response, quality, and peak
overshoot, and the second prevents numerical instabil-
ities in the computations. We sample the magnitude
response at a set of passband frequencies fwmg and
stopband frequencies fwlg:

1��p � jH(jwm)j � 1 and jH(jwl)j � �s (21)

We compute the maximum overshoot by �nding the
maximum value of step response in (17) by searching
over t 2 [mink tkpeak;maxk tkpeak]. Before �nding the
gradient of this constraint, we substitute the analytic
approximation for tpeak, given by (20), into (17).

When the analog �lter is implemented, the second-
order sections will be cascaded in order of ascend-
ing quality factors. This arrangement minimizes the
oscillatory behavior of the �nal sections because the
earlier sections will have attenuated the input signal.
Nonetheless, an upper limit Qmax does exist in prac-
tice on the quality factors. We set Qmax to 10 for
!p2 < 2�(10) kHz, and 25 otherwise:p

a2k + b2k
�2ak

< Qmax for k = 1 : : :n (22)

The real components of the poles and zeroes ap-
pear in the denominator of the phase response. There-
fore, we constrain the real parts of the poles and zeroes
to be a neighborhood away from 0.

ak < ��div < 0 for k = 1 : : :n
cl < ��div < 0 for l = 1 : : : r

Ensuring the numerical stability of the denominators
of jAkj and 6 Ak in (16) requires that

p
ak � am > �div for k = 1 : : :n and m = k + 1 : : :n

These constraints are analogous to preventing dupli-
cate poles and poles spaced too closely to one another.

5. AN EXAMPLE FILTER DESIGN

An all-pole lowpass �lter will be minimized in terms
of its overshoot and deviation from linear phase. The
speci�cations on the magnitude response are wp = 20
rad/sec with �p = 0:21 and ws = 30 rad/sec with �s =
0:31. We use a fourth-order Butterworth �lter with
poles at �8:4149� j20:3153 and �20:3153� j8:4149.



In the objective function, we weight the linear phase
cost by 0.1 and overshoot cost by 1. The initial value
of the objective function is 1:17, which almost entirely
comes from overshoot cost. 97% of �nal value of the
objective function, 4:7 � 10�5, is the cost of the de-
viation from linear phase. The �nal poles, in order
of ascending quality factors, are �19:5623 � j0:6255
and �7:7918� j22:8984. For these poles a1 � jb1 and
a2� jb2, the gradient with respect to fa1; b1; a2; b2g is
f�2:251� 10�5;�5:507� 10�6; 3:116� 10�5; 4:179�
10�5g. Since the second �lter section is more sensitive
than the �rst �lter section with respect to perturba-
tions in the pole locations, the second �lter section
should be implemented with better components.

Figure 2 plots the frequency and step responses
for the initial and �nal �lters. The �gures illustrates
that the optimization procedure e�ectively trades o�
magnitude response in the passband for a more linear
phase response in the passband and a lower overshoot.

6. CONCLUSION

We give an extensible algebraic framework for opti-
mizing analog �lter designs in terms of magnitude re-
sponse, phase response, quality, and peak overshoot.
We formulate the constrained non-linear optimization
problem as a SQP problem, and derive di�erentiable,
real-valued, constraints and non-negative objective
functions. We give a �lter design example.

We use Mathematica to bring the equations for the
objective functions and constraints together. The key
idea is that our approach eliminates errors in hand
calculations and errors in programming. It also al-
lows a researcher to create new �lter design programs
by simply rede�ning the objective function, and our
software will take care of recomputing the gradients
and regenerating the source code.
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We are trading linear phase response and peak over-
shoot for magnitude response while keeping the mag-
nitude response within speci�cation.

Figure 2: Fourth-Order Lowpass Filter with Opti-
mized Phase and Step Responses


