## Error Diffusion Halftoning Methods for High-Quality Printed and Displayed Images

Prof. Brian L. Evans

Embedded Signal Processing Laboratory The University of Texas at Austin Austin, TX 78712-1084 USA http:://www.ece.utexas.edu/~bevans



Ph.D. Graduates:Dr. Niranjan Damera-Venkata (HP Labs)<br/>Dr. Thomas D. Kite (Audio Precision)Graduate Student:Mr. Vishal MongaOther Collaborators:Prof. Alan C. Bovik (UT Austin)<br/>Prof. Wilson S. Geisler (UT Austin)

Last modified November 7, 2002

## Outline

- Introduction
- Grayscale halftoning methods
- Modeling grayscale error diffusion
  - Compensation for sharpness
  - Visual quality measures
- Compression of error diffused halftones
- Color error diffusion halftoning for display
  - Optimal design
  - Linear human visual system model
- Conclusion

#### Need for Digital Image Halftoning

#### • Examples of reduced grayscale/color resolution

- Laser and inkjet printers (\$9.3B revenue in 2001 in US)
- Facsimile machines
- Low-cost liquid crystal displays

#### • Halftoning is wordlength reduction for images

- Grayscale: 8-bit to 1-bit (*binary*)
- Color displays: 24-bit RGB to 12-bit RGB (e.g. PDA/cell)
- Color displays: 24-bit RGB to 8-bit RGB (e.g. cell phones)
- Color printers: 24-bit RGB to CMY (*each color binarized*)
- Halftoning tries to reproduce full range of gray/ color while preserving quality & spatial resolution

Introduction

#### **Conversion to One Bit Per Pixel: Spatial Domain**



Original Image



Clustered Dot Screening



Threshold at Mid-Gray



Floyd Steinberg Error Diffusion



#### **Dispersed Dot Screening**



Stucki Error Diffusion

Introduction

#### **Conversion to One Bit Per Pixel: Magnitude Spectra**



Original Image



Clustered Dot Screening



Threshold at Mid-Gray



Floyd Steinberg Error Diffusion



#### Dispersed Dot Screening



Stucki Error Diffusion

### Need for Speed for Digital Halftoning

#### • Third-generation ultra high-speed printer (CMYK)

- 100 pages per minute, 600 lines per inch, 4800 dots/inch/line
- Output data rate of 7344 MB/s (HDTV video is ~96 MB/s)
- Desktop color printer (CMYK)
  - 24 pages per minute, 600 lines/inch, 600 dots/inch/line
  - Output data rate of 220 MB/s (NTSC video is ~24 MB/s)
- Parallelism
  - Screening: pixel-parallel, fast, and easy to implement
     (2 byte reads, 1 compare, and 1 bit write per binary pixel)
  - Error diffusion: row-parallel, better results on some media
     (5 byte reads, 1 compare, 4 MACs, 1 byte and 1 bit write per binary pixel)

## Outline

#### • Introduction

## Grayscale halftoning methods

- Modeling grayscale error diffusion
  - Compensation for sharpness
  - Visual quality measures
- Compression of error diffused halftones
- Color error diffusion halftoning for display
  - Optimal design
  - Linear human visual system model
- Conclusion

## Screening (Masking) Methods

### • Periodic array of thresholds smaller than image

- Spatial resampling leads to aliasing (gridding effect)
- Clustered dot screening is more resistant to ink spread
- Dispersed dot screening has higher spatial resolution
- Blue noise masking uses large array of thresholds



### **Grayscale Error Diffusion**

- Shape quantization noise into high frequencies
- **Design of error filter key to quality**
- Not a screening technique





**Error Diffusion** 



9

## Simple Noise Shaping Example

#### • Two-bit output device and four-bit input words

- Going from 4 bits down to 2 increases noise by ~ 12 dB
- Shaping eliminates noise at DC at expense of increased noise at high frequency.



## **Direct Binary Search (Iterative)**

- Practical upper bound on halftone quality
- Minimize mean-squared error between lowpass filtered versions of grayscale and halftone images
  - Lowpass filter is based on a linear shift-invariant model of human visual system (a.k.a. contrast sensitivity function)
- Each iteration visits every pixel [Analoui & Allebach, 1992]
  - At each pixel, consider toggling pixel or swapping it with each of its 8 nearest neighbors that differ in state from it
  - Terminate when if no pixels are changed in an iteration
- Relatively insensitive to initial halftone provided that it is not error diffused [Lieberman & Allebach, 2000]

## Many Possible Contrast Sensitivity Functions

- Contrast at particular spatial frequency for visibility
  - Bandpass: non-dim backgrounds [Manos & Sakrison, 1974; 1978]
  - Lowpass: high-luminance office settings with low-contrast images [Georgeson & G. Sullivan, 1975]
  - Modified lowpass version
     [e.g. J. Sullivan, Ray & Miller, 1990]
  - Angular dependence: cosine function [Sullivan, Miller & Pios, 1993]
  - Exponential decay [Näsäsen, 1984]
- Näsänen's is best for direct binary search [Kim & Allebach, 2002]





### **Digital Halftoning Methods**



## Outline

- Introduction
- Grayscale halftoning methods
- Modeling grayscale error diffusion
  - Compensation for sharpness
  - Visual quality measures
- Compression of error diffused halftones
- Color error diffusion halftoning for display
  - Optimal design
  - Linear human visual system model
- Conclusion

#### **Floyd-Steinberg Grayscale Error Diffusion**



shape error

 $h(\mathbf{m})$ 

 $e(\mathbf{m})$ 

3/16 5/16 1/16

Steinberg

weights

15

• Goal: Model sharpening and noise shaping



Visual quality measures

## Linear Gain Model for Quantizer

• Best linear fit for  $K_s$  between quantizer input u(i,j)and halftone b(i,j)

$$K_{s} = \arg\min_{\alpha} \left( \alpha u(i, j) - b(i, j) \right)^{2}$$

$$K_{s} = \frac{1}{2} \frac{\left( |u(i,j)| \\ u^{2}(i,j) \right)}{\left( u^{2}(i,j) \right)} = \frac{1}{2} \frac{E\{|u(i,j)|\}}{E\{u^{2}(i,j)\}}$$

| Image    | Floyd | Stucki | Jarvis |
|----------|-------|--------|--------|
| barbara  | 2.01  | 3.62   | 3.76   |
| boats    | 1.98  | 4.28   | 4.93   |
| lena     | 2.09  | 4.49   | 5.32   |
| mandrill | 2.03  | 3.38   | 3.45   |
| Average  | 2.03  | 3.94   | 4.37   |

- Does not vary much for Floyd-Steinberg
- Can use average value to estimate  $K_s$  from only error filter
- Sharpening: proportional to *K<sub>s</sub>* Value of *K<sub>s</sub>*: Floyd Steinberg < Stucki < Jarvis

#### **Linear Gain Model for Error Diffusion**



## **Compensation of Sharpening**

- Adjust by threshold modulation [Eschbach & Knox, 1991]
  - Scale image by gain L and add it to quantizer input
  - For  $L \in (-1,0]$ , higher value of L, lower the compensation
  - No compensation when L = 0
  - Low complexity: one multiplication, one addition per pixel



#### **Compensation of Sharpening**

• Flatten signal transfer function [Kite, Evans, Bovik, 2000]

Globally optimum value of *L* to compensate for sharpening of signal components in halftone based on linear gain model

$$L = \frac{1}{K_s} - 1 = \frac{1 - K_s}{K_s} (L \in (-1, 0] \text{ since } K_s \ge 1)$$

 $K_s$  is chosen as linear minimum mean squared error estimator of quantizer output

- Assumes that input and output of quantizer are jointly wide sense stationary stochastic processes
- Use linear minimum mean squared error estimator for quantizer to adapt *L* to allow other types of quantizers [Damera-Venkata and Evans, 2001]

#### Visual Quality Measures [Kite, Evans, Bovik, 2000]

#### Impact of noise on human visual system

Signal-to-noise (SNR) measures appropriate when noise is additive and signal independent

Create unsharpened halftone  $y[m_1, m_2]$  with flat signal transfer function using threshold modulation

Weight signal/noise by contrast sensitivity function  $C[k_1,k_2]$ WSNR (dB) =  $10\log_{10} \frac{\left( X[k_1, k_2] C[k_1, k_2] \right)^2}{\left( X[k_1, k_2] - Y[k_1, k_2] C[k_1, k_2] \right)^2}$ 

Floyd-Steinberg > Stucki > Jarvis at all viewing distances

## Outline

- Introduction
- Grayscale halftoning methods
- Modeling grayscale error diffusion
  - Compensation for sharpness
  - Visual quality measures
- Compression of error diffused halftones
- Color error diffusion halftoning for display
  - Optimal design
  - Linear human visual system model
- Conclusion

## Joint Bi-Level Experts Group

- JBIG2 standard (Dec. 1999)
  - Binary document printing, faxing, scanning, storage
  - Lossy and lossless coding
  - Models for text, halftone, and generic regions

- Lossy halftone compression
  - Preserve local average gray level not halftone
  - *Periodic* descreening
  - High compression of ordered dither halftones



### JBIG2 Halftone Compression Model

- JBIG2 assumes that halftones were produced by a small periodic screen
- Stochastic halftones are aperiodic





stn

roos to

## Lossy Compression of Error Diffused Halftones

- Proposed method [Valliappan, Evans, Tompkins, Kossentini, 1999]
  - Reduce noise and artifacts
  - Achieve higher compression ratios
  - Low implementation complexity



0





tnr ton o rr



Corsson

### Lossy Compression of Error Diffused Halftones

• Fast conversion of error diffused halftones to screened halftones with rate-distortion tradeoffs [Valliappan, Evans, Tompkins, Kossentini, 1999]



Compression of Error Diffused Halftones

#### **Rate-Distortion Tradeoffs**



 $M \in \{2, 3, 4, 5, 6, 7, 8\}$ 

Weighted SNR for downsampling factor  $M \in \{2, 3, 4, 5, 6, 7, 8\}$ (linear distortion removed)

## Outline

- Introduction
- Grayscale halftoning methods
- Modeling grayscale error diffusion
  - Compensation for sharpness
  - Visual quality measures
- Compression of error diffused halftones
- Color error diffusion halftoning for display
  - Optimal design
  - Linear human visual system model
- Conclusion

### **Color Monitor Display Example (Palettization)**

#### • YUV color space

- Luminance (Y) and chrominance (U,V) channels
- Widely used in video compression standards
- Human visual system has lowpass response to Y, U, and V
- Display YUV on lower-resolution RGB monitor: use error diffusion on Y, U, V channels separably



#### Non-Separable Color Halftoning for Display

- Input image has a vector of values at each pixel (e.g. vector of red, green, and blue components) Error filter has matrix-valued coefficients
  - Algorithm for adapting matrix coefficients based on mean-squared error in RGB space [Akarun, Yardimci, Cetin, 1997]



#### Design problem

Given a human visual system model, find the color error filter that minimizes average visible noise power subject to diffusion constraints

**Optimal Design of the Matrix-Valued Error Filter** 

- Develop matrix gain model with noise injection n(m)
- Optimize error filter  $\mathbf{\tilde{h}}(\mathbf{m})$  for shaping  $\min E\left[\left\|\mathbf{b}_{n}(\mathbf{m})\right\|^{2}\right] = E\left[\left\|\mathbf{\tilde{v}}(\mathbf{m})*\left(\mathbf{\tilde{I}}-\mathbf{\tilde{h}}(\mathbf{m})\right)*\mathbf{n}(\mathbf{m})\right\|^{2}\right]$

Subject to diffusion constraints

$$\left( \prod_{\mathbf{m}} \breve{\mathbf{h}}(\mathbf{m}) \right) = 1$$

where  $\breve{\mathbf{v}}(\mathbf{m})$  linear model of human visual system \* matrix-valued convolution

#### Matrix Gain Model for the Quantizer

• Replace scalar gain w/ matrix [Damera-Venkata & Evans, 2001]

$$\mathbf{\breve{K}}_{s} = \arg\min_{\mathbf{\breve{A}}} E \int_{\mathbf{\breve{B}}} \| \mathbf{b}(\mathbf{m}) - \mathbf{\breve{A}} \mathbf{u}(\mathbf{m}) \|^{2} \int_{\mathbf{\breve{C}}} = \mathbf{\breve{C}}_{bu} \mathbf{\breve{C}}_{uu}^{-1}$$

 $\breve{\mathbf{K}}_n = \breve{\mathbf{I}}$ 

u(m) quantizer inputb(m) quantizer output

- Noise uncorrelated with signal component of quantizer input
- Convolution becomes matrix–vector multiplication in frequency domain

Noise

*component of output* 

Signal component of output

$$\mathbf{B}_{s}(\mathbf{z}) = \mathbf{K}(\mathbf{\breve{I}} + \mathbf{\breve{H}}(\mathbf{z})(\mathbf{\breve{K}} - \mathbf{\breve{I}}))^{-1} \mathbf{X}(\mathbf{z})$$

 $\mathbf{B}_{n}(\mathbf{z}) = (\breve{\mathbf{I}} - \breve{\mathbf{H}}(\mathbf{z})) \mathbf{N}(\mathbf{z})$ 

In one dimension

$$1 - H(z) \big) N(z)$$

$$\frac{K_s X(z)}{1 + (K_s - 1)H(z)}$$

### **Linear Color Vision Model**

#### • Pattern-color separable model [Poirson and Wandell, 1993]

- Forms the basis for Spatial CIELab [Zhang and Wandell, 1996]
- Pixel-based color transformation



### **Linear Color Vision Model**

- Undo gamma correction on RGB image
- Color separation
  - Measure power spectral distribution of RGB phosphor excitations
  - Measure absorption rates of long, medium, short (LMS) cones
  - Device dependent transformation C from RGB to LMS space
  - Transform LMS to opponent representation using O
  - Color separation may be expressed as  $\mathbf{T} = \mathbf{OC}$
- Spatial filtering included using matrix filter d(m)
- Linear color vision model  $\breve{v}(m) = \breve{d}(m) T$  where  $\breve{d}(m)$  is a diagonal matrix



Sample images and optimum coefficients for sRGB monitor available at: http://signal.ece.utexas.edu/~damera/col-vec.html

**Original Image** 





#### Floyd-Steinberg

#### Optimum Filter

#### **Generalized Linear Color Vision Model**

#### • Separate image into channels/visual pathways

- Pixel based linear transformation of RGB into color space
- Spatial filtering based on HVS characteristics & color space
- Best color space/HVS model for vector error diffusion? [Monga, Geisler and Evans, 2003]



#### **Color Spaces**

#### Desired characteristics

- Independent of display device
- Score well in perceptual uniformity [Poynton color FAQ http://comuphase.cmetric.com]
- Approximately pattern color separable [Wandell et al., 1993]
- Candidate linear color spaces
  - Opponent color space [Poirson and Wandell, 1993]
  - YIQ: NTSC video
  - YUV: PAL video

Eye more sensitive to luminance; reduce chrominance bandwidth

 Linearized CIELab [Flohr, Bouman, Kolpatzik, Balasubramanian, Carrara, Allebach, 1993]

#### **Monitor Calibration**

• How to calibrate monitor?

sRGB standard default RGB space by HP and Microsoft Transformation based on an sRGB monitor (which is linear)

- Include sRGB monitor transformation
  - *T*: sRGB → CIEXYZ → Opponent Representation [Wandell & Zhang, 1996]

Transformations sRGB → YUV, YIQ from S-CIELab Code at http://white.stanford.edu/~brian/scielab/scielab1-1-1/

• Including sRGB monitor into model enables Webbased subjective testing

http://www.ece.utexas.edu/~vishal/cgi-bin/test.html

### **Spatial Filtering**

• **Opponent** [Wandell, Zhang 1997] Data in each plane filtered by 2-D separable spatial kernels

$$f = k \sum_{i} w_i E_i$$
  $E_i = k_i \exp[-(x^2 + y^2)/\sigma_i^2].$ 

• Linearized CIELab, YUV, and YIQ

Luminance frequency response [Näsänen and Sullivan, 1984]  $W_{(Y_y)}(\rho) = K(L) e^{-\alpha(L)\rho}$ 

L average luminance of display

ρ radial spatial frequency

Chrominance frequency response [Kolpatzik and Bouman, 1992]

$$W_{(C_x,C_z)}(\rho) = A e^{-\alpha \rho}$$

Chrominance response allows more low frequency chromatic error not to be perceived vs. luminance response

#### **Subjective Testing**

#### Based on paired comparison task

- Observer chooses halftone that looks closer to original
- Online at www.ece.utexas.edu/~vishal/cgi-bin/test.html



halftone A



original



halftone B

• In decreasing subjective quality Linearized CIELab >> Opponent > YUV ≥ YIQ

#### • Design of "optimal" color noise shaping filters

- We use the matrix gain model [Damera-Venkata and Evans, 2001]
  - Predicts sharpening
  - Predicts shaped color halftone noise
- Solve for best error filter that minimizes visually weighted average color halftone noise energy
- Improve numerical stability of descent procedure
- Choice of linear color space
  - Linear CIELab gives best objective and subjective quality
  - Future work in finding better transformations
- Use color management to generalize device characterization and viewing conditions

#### Conclusion

## **Image Halftoning Toolbox 1.1**

- Grayscale and color methods Screening Classical diffusion
  - Edge enhanced diff. Green noise diffusion Block diffusion
- Figures of merit
   Peak SNR
   Weighted SNR
   Linear distortion measure
   Universal quality index



http://www.ece.utexas.edu/~bevans/projects/halftoning/toolbox

Close



### **Problems with Error Diffusion**

#### • Objectionable artifacts

- Scan order affects results
- "Worminess" visible in constant graylevel areas

#### • Image sharpening

- Larger error filters due to [Jarvis, Judice & Ninke, 1976] and
   [Stucki, 1980] reduce worminess and sharpen edges
- Sharpening not always desirable: may be adjustable by prefiltering based on linear gain model [Kite, Evans, Bovik, 2000]
- Computational complexity
  - Larger error filters require more operations per pixel
  - Push towards simple schemes for fast printing

#### Correcting Artificial Textures [Marcu, 1999]

- False textures in shadow and highlight regions
- Place dot if minimum distance constraint is met
  - Raster scan
  - Avoids computing geometric distance
  - Scans halftoned pixels in radius of the current pixel
  - Radius proportional to distance of pixel value from midgray
  - Scanned pixel location offsets obtained by lookup tables
    - One lookup table gives number of pixels to scan (256 entries)
    - One lookup table gives offsets (256 entries)
  - Affects grayscale values [1, 39] and [216, 254]

## Correcting Artificial Textures [Marcu, 1999]



## Correcting Artificial Textures [Marcu, 1999]





#### **Direct Binary Search**

#### Advantages

- Significantly improved halftone image quality over screening & error diffusion
- Quality of final solution is relatively insensitive to initial halftone, provided is not error diffused halftone [Lieberman & Allebach, 2000]
- Application in off-line design of screening threshold arrays [Kacker & Allebach, 1998]

## Disadvantages

- Computational cost and memory usage is very high in comparison to error diffusion and screening methods
- Increased complexity makes it unsuitable for real-time applications such as printing



#### **Grayscale Error Diffusion Analysis**

• Sharpening caused by a correlated error image

[Knox, 1992]



**Error images** 

Halftones

Floyd-Steinberg

Jarvis

#### **Compensation of Sharpening**

#### Threshold modulation equalivent to prefiltering

 Pre-distortion becomes prefiltering with a finite impulse response (FIR) filter with the transfer function

#### G(z) = 1 + L(1 - H(z))



 Useful if the error diffusion method cannot be altered, e.g. it belongs to another company's intellectual property

#### Compression of Error Diffused Halftones

#### **Grayscale Visual Quality Measures**



- Model degradation as linear filter plus noise
- Decouple and quantify linear and additive effects
- Contrast sensitivity function (CSF) C @ @
  - Linear shift-invariant model of human visual system
  - Weighting of distortion measures in frequency domain

### **Grayscale Visual Quality Measures**

- Estimate linear model by Wiener filter
- Weighted Signal to Noise Ratio (WSNR)
  - Weight noise D(u, v) by CSF C(u, v)

WSNR = 
$$10 \log_{10} \left( \frac{\sum_{u} \sum_{v} |X(u, v)C(u, v)|^2}{\sum_{u} \sum_{v} |D(u, v)C(u, v)|^2} \right)$$

#### Linear Distortion Measure

- Weight distortion by input spectrum X(u, v) and CSF C(u, v)

$$\mathrm{LDM} = \frac{\sum_{u} \sum_{v} |1 - H(u, v)| |X(u, v)C(u, v)|}{\sum_{u} \sum_{v} |X(u, v)C(u, v)|}$$

## Lossy Compression of Error Diffused Halftones

• Results for 512 x 512 Floyd-Steinberg Halftone

| Prefilter | L   | Μ | Ν  | θ                       | LDM   | WSNR    | Ratio |
|-----------|-----|---|----|-------------------------|-------|---------|-------|
| Х         | 0.0 | 4 | 17 | $0^{\mathrm{o}}$        | 0.163 | 15.4 dB | 6.1   |
| Y         | 0.0 | 4 | 17 | $0^{\mathrm{o}}$        | 0.181 | 16.5 dB | 7.5   |
| Y         | 0.5 | 4 | 17 | $0^{\mathrm{o}}$        | 0.091 | 16.0 dB | 6.4   |
| Y         | 1.5 | 4 | 17 | $0^{\mathrm{o}}$        | 0.292 | 14.8 dB | 5.2   |
| Y         | 0.5 | 6 | 19 | $45^{\circ}$            | 0.116 | 18.7 dB | 6.6   |
| Y         | 0.5 | 8 | 33 | $45^{\circ}$            | 0.155 | 15.7 dB | 8.2   |
| Y         | 0.5 | 8 | 16 | $\overline{45^{\circ}}$ | 0.158 | 14.0 dB | 9.9   |

### **Optimum Color Noise Shaping**

#### • Vector color error diffusion halftone model

- We use the matrix gain model [Damera-Venkata and Evans, 2001]
- Predicts signal frequency distortion
- Predicts shaped color halftone noise

#### • Visibility of halftone noise depends on

- Model predicting noise shaping
- Human visual system model (assume linear shift-invariant)

#### • Formulation of design problem

 Given human visual system model and matrix gain model, find color error filter that minimizes average visible noise power subject to certain diffusion constraints

#### **Generalized Optimum Solution**

- Differentiate scalar objective function for visual noise shaping w/r to matrix-valued coefficients  $\frac{d\left\{E\left[\|\mathbf{b}_{n}(\mathbf{m})\|^{2}\right]\right\}}{d\mathbf{h}(\mathbf{i})} = \mathbf{0} \quad \forall \mathbf{i} \in \mathbf{O} \qquad \|\mathbf{x}\| = Tr(\mathbf{x}\mathbf{x}')$
- Write norm as trace and differentiate trace using identities from linear algebra

$$\frac{d\left\{Tr\left(\breve{A}\breve{X}\right)\right\}}{d\breve{X}} = \breve{A}' \qquad \frac{d\left\{Tr\left(\breve{X}'\breve{A}\breve{X}\breve{B}\right)\right\}}{d\breve{X}} = \breve{A}\breve{X}\breve{B} + \breve{A}'\breve{X}\breve{B}'$$
$$\frac{d\left\{Tr\left(\breve{A}\breve{X}\breve{B}\right)\right\}}{d\breve{X}} = \breve{A}'\breve{B}' \qquad Tr\left(\breve{A}\breve{B}\right) = Tr\left(\breve{B}\breve{A}\right)$$

### **Generalized Optimum Solution (cont.)**

• Differentiating and using linearity of expectation operator give a generalization of the Yule-Walker equations

$$( \breve{v}'(k)\breve{r}_{an}(-i-k) = ( \breve{v}'(s)\breve{v}(q)\breve{h}(p)\breve{r}_{nn}(-i-s+p+q)$$

where

 $\mathbf{a}(\mathbf{m}) = \mathbf{\breve{v}}(\mathbf{m}) * \mathbf{n}(\mathbf{m})$ 

- Assuming white noise injection  $\mathbf{r}_{nn}(\mathbf{k}) = E[\mathbf{n}(\mathbf{m}) \mathbf{n}'(\mathbf{m} + \mathbf{k})] \approx \delta(\mathbf{k})$  $\mathbf{r}_{an}(\mathbf{k}) = E[\mathbf{a}(\mathbf{m}) \mathbf{n}'(\mathbf{m} + \mathbf{k})] \approx \mathbf{v}(-\mathbf{k})$
- Solve using gradient descent with projection onto constraint set

## **Implementation of Vector Color Error Diffusion**

$$\vec{\mathbf{H}}(\mathbf{z}) = \begin{pmatrix} H_{rr}(\mathbf{z}) & H_{rg}(\mathbf{z}) & H_{rb}(\mathbf{z}) \\ H_{gr}(\mathbf{z}) & H_{gg}(\mathbf{z}) & H_{gb}(\mathbf{z}) \\ H_{br}(\mathbf{z}) & H_{bg}(\mathbf{z}) & H_{bb}(\mathbf{z}) \end{pmatrix}$$



# Color Error Diffusion Linear CIELab Space Transformation

[Flohr, Kolpatzik, R.Balasubramanian, Carrara, Bouman, Allebach, 1993]

#### • Linearized CIELab using HVS Model by

| Yy = 116 Y/Yn - 116    | L = 116 f (Y/Yn) - 116          |
|------------------------|---------------------------------|
| Cx = 200[X/Xn - Y/Yn]  | a = 200[ $f(X/Xn) - f(Y/Yn)$ ]  |
| Cz = 500 [Y/Yn - Z/Zn] | b = 500 [ $f(Y/Yn) - f(Z/Zn)$ ] |
| where                  |                                 |
| f(x) = 7.787x + 16/116 | 0<= x <= 0.008856               |
| f(x) = (x)1/3          | 0.008856 <= x <= 1              |

• Linearize the CIELab Color Space about D65 white point Decouples incremental changes in Yy, Cx, Cz at white point on (L,a,b) values

 $\nabla_{(Y_y,C_x,C_z)}(L,a,b) = (1/3)\mathbf{I}$ 

*T* is sRGB  $\rightarrow$  CIEXYZ  $\rightarrow$ Linearized CIELab

### **Spatial Filtering**

- **Opponent** [Wandell, Zhang 1997]
  - Data in each plane filtered by 2-D separable spatial kernels

$$f = k \sum_{i} w_i E_i$$
  $E_i = k_i \exp[-(x^2 + y^2)/\sigma_i^2].$ 

– Parameters  $(w_i, \sigma_i)$  for the three color planes are

| Plane       | Weights $w_i$ | Spreads $\sigma_i$ |
|-------------|---------------|--------------------|
| Luminance   | 0.921         | 0.0283             |
|             | 0.105         | 0.133              |
|             | -0.108        | 4.336              |
| Red-green   | 0.531         | 0.0392             |
|             | 0.330         | 0.494              |
| Blue-yellow | 0.488         | 0.0536             |
|             | 0.371         | 0.386              |

#### Spatial filtering contd....

• Spatial Filters for Linearized CIELab and YUV, YIQ based on: Luminance frequency Response [Nasanen and Sullivan – 1984]

$$W_{(Y_v)}(\widetilde{p}) = K(L) \exp[-\alpha(L)\widetilde{p}]$$

L – average luminance of display,  $\tilde{p}$  the radial spatial frequency and

$$\alpha(L) = \frac{1}{c\ln(L) + d} \qquad K(L) = aL^b \qquad \qquad \widetilde{p} = \frac{p}{s(\phi)}$$

where 
$$p = (u^2 + v^2)^{1/2}$$
 and  $s(\phi) = \frac{1 - w}{2} \cos(4\phi) + \frac{1 + w}{2}$ 

w – symmetry parameter = 0.7 and  $\phi = \arctan(\frac{v}{u})$ 

 $S(\phi)$  effectively reduces contrast sensitivity at odd multiples of 45 degrees which is equivalent to dumping the luminance error across the diagonals where the eye is least sensitive.

#### Spatial filtering contd...

**Chrominance Frequency Response [Kolpatzik and Bouman – 1992]** 

$$W_{(C_x,C_z)}(p) = A \exp[-\alpha p]$$

Using this chrominance response as opposed to same for both luminance and chrominance allows more low frequency chromatic error not perceived by the human viewer.

- The problem hence is of designing 2D-FIR filters which most closely match the desired Luminance and Chrominance frequency responses.
- In addition we need zero phase as well.

The filters ( $5 \times 5$  and  $15 \times 15$  were designed using the frequency sampling approach and were real and circularly symmetric).

Filter coefficients at: http://www.ece.utexas.edu/~vishal/halftoning.html

• Matrix valued Vector Error Filters for each of the Color Spaces at

http://www.ece.utexas.edu/~vishal/mat\_filter.html

#### **Subjective Testing**

#### Binomial parameter estimation model

- Halftone generated by particular HVS model considered superior if picked over another 60% or more of the time
- Need 960 paired comparison of each model to determine results within tolerance of 0.03 with 95% confidence
- Four models would correspond to 6 comparison pairs, total
   6 x 960 = 5760 comparisons needed
- Observation data collected from over 60 subjects each of whom judged 96 comparisons

• Data resulted in unique rank order of four models