Bi-Level Image Compression

EECE 545: Data Compression

by Dave Tompkins

Overview

- Introduction to Bi-Level Image Compression
- Existing Facsimile Standards:
 - G3 (MR)
 - G4 (MMR)
 - JBIG[1]
- New Bi-Level Standards:
 - JBIG2

EECE 545: Bi-Level Image Compression. By Dave Tompkins

© 1999 The Signal Processing and Multimedia Group – The University of British Columbia

Introduction: Meet Dave

Dave and his Mom:

EECE 545: Bi-Level Image Compression. By Dave Tompkins© 1999 The Signal Processing and Multimedia Group – The University of British Columbia

Definition: Bi-Level

Multi-Level (Gray Scale)

Bi-Level (Black & White)

EECE 545: Bi-Level Image Compression.
By Dave Tompkins
© 1999 The Signal Processing and Multimedia Group – The University of British Columbia

Properties of Bi-Level Images

- Mostly High Frequency
- Often Very High Resolutions:
 - Computer Monitor: 96dpi
 - Fax Machine: 200dpi
 - 1 page fax (8.5" x 11" x 200dpi) ~= .5 Meg
 - Laser Printer: 600dpi (1 page = 4.2 Megs)
 - High-End Printing Press: 1600dpi (30 Megs!)
- Will often contain text, halftoned images and line-art (graphs, equations, logos, etc.)

EECE 545: Bi-Level Image Compression. By Dave Tompkins © 1999 The Signal Processing and Multimedia Group – The University of British Columbia

• T.6 (Group 4) MMR (Modified Modified Read): Huffman Coding & Modified RLE

EECE 545: Bi-Level Image Compression.

Page 7

By Dave Tompkins © 1999 The Signal Processing and Multimedia Group – The University of British Columbia

• T.4 (Group 3)

- MH Modified Huffman (and RLE)
- MR Modified Read
 - Uses information from previous line
 - Uses MH mode every k lines for error correction
- T.6 (Group 4)
 - MMR Modified Modified Read
 - Uses information from previous line
 - Assumes Error-Free Environment

EECE 545: Bi-Level Image Compression.
By Dave Tompkins
© 1999 The Signal Processing and Multimedia Group – The University of British Columbia

- JBIG[1] (T.82 -- March, 1993)
- Joint Bi-Level Image Experts Group
 - Committee with Academic & Industrial members:
 - ISO (International organization of National Bodies)
 - ITU-T (Regulatory body of the United Nations)
- Arithmetic Coding (QM Coder)
- Context-based prediction
- Progressive Compression (Display)

EECE 545: Bi-Level Image Compression. By Dave Tompkins© 1999 The Signal Processing and Multimedia Group – The University of British Columbia

Standard JBIG1 Context:

• ? = Pixel to be coded

- A = <u>A</u>daptive pixel (which can be moved)
- Example: = 17% = 83%

EECE 545: Bi-Level Image Compression. By Dave Tompkins © 1999 The Signal Processing and Multimedia Group – The University of British Columbia

• JBIG1: Progressive Compression (Display)

Standard defines how to reduce the image

 Predictive context uses information from previous resolution level

EECE 545: Bi-Level Image Compression.
 By Dave Tompkins
 © 1999 The Signal Processing and Multimedia Group – The University of British Columbia

- Arithmetic Q Coder
 - Numerous variations: Q, QM, MQ
 - Used by JBIG[1], JPEG, JBIG2 & J2K
 - Different probability tables, byte markers, etc.
- Adaptive Coder
- 16-bit Precision (32-bit C register)
- Uses numerous Approximations:
 - Fixed Probability Table
 - No Multiplication

EECE 545: Bi-Level Image Compression. By Dave Tompkins © 1999 The Signal Processing and Multimedia Group – The University of British Columbia

New Standards

- JBIG2 (T.88 -- February 2000)
- First "lossy" bi-level standard
- Supports Three basic coding modes:
 - Generic (MMR or JBIG[1]-like arithmetic)
 - Halftone
 - Text
- Image can be *segmented* into regions
 - Each region can be coded with a different method

EECE 545: Bi-Level Image Compression. Pa *By Dave Tompkins* © 1999 The Signal Processing and Multimedia Group – The University of British Columbia

JBIG2 - Compound Documents

• Segmentation is performed on compound documents to detect different regions

Text

SPMG

EECE 545: Bi-Level Image Compression. By Dave Tompkins Page 14

© 1999 The Signal Processing and Multimedia Group – The University of British Columbia

JBIG2 - Generic Coding

- The core coding method of JBIG2 has not changed that much from previous methods
- There are two methods available in generic coding:
 - MMR (Group 4)
 - MQ Arithmetic Coding (similar to JBIG[1]) larger contexts are available:

EECE 545: Bi-Level Image Compression. By Dave Tompkins

© 1999 The Signal Processing and Multimedia Group – The University of British Columbia

JBIG-2 Halftone Coding

 A halftone is coded as a multi-level image, along with a pattern and grid parameters

- The decoder constructs the halftone from the multi-level image and the pattern
- The multi-level image is coded as bi-level bit-planes, with the generic coder

EECE 545: Bi-Level Image Compression. By Dave Tompkins © 1999 The Signal Processing and Multimedia Group – The University of British Columbia

JBIG2 - Text Coding

 Each symbol is encoded in a dictionary with generic coding:

ABDS

 And then, the image is constructed by adding images from the dictionary:

 The symbol ID and the (relative) co-ordinates are coded

EECE 545: Bi-Level Image Compression. By Dave Tompkins © 1999 The Signal Processing and Multimedia Group – The University of British Columbia

JBIG2 - Text Coding

- In actual documents, many symbols are very similar -often due to scanning or spacial quantization errors
 - Lossy Coding: Hard Pattern Matching

Lossless Coding:
 Soft Pattern Matching

EECE 545: Bi-Level Image Compression. By Dave Tompkins © 1999 The Signal Processing and Multimedia Group – The University of British Columbia

JBIG2 - Soft Pattern Matching

 Soft Pattern Matching (*refinement* coding) is when a symbol is coded using a similar, previously coded symbol to provide additional context information.

By Dave Tompkins

© 1999 The Signal Processing and Multimedia Group – The University of British Columbia