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Millimeter Wave Massive MIMO |

Overview

* lLarge bandwidth to achieve multi-gigabit data rates
* Small antenna sizes due to high carrier frequency

" Large antenna arrays to compensate large pathloss
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" Reduce uplink power consumption at base station

Approach

* Exploit beamspace sparsity in mmVWave MIMO channels
= Apply ADC:s after analog beamforming (preprocessing)

* ADC bit allocation subject to a total power constraint

* Some ADCs will be turned off to save power

e Other ADCs will have a variable number of bits

Models & Assumptions

Multiuser massive MIMO uplink

" M users, each having a single Tx antenna
* Narrowband channel

" Base station has N Rx antennas (N >> M) and

knows channel state information H

" Received signals in vector form
y = HX—|—I1 with HNCN(O,N@IN)
E[z;] =0 and E[jz;|*] = 1

Millimeter wave channel
" b major scattering paths (limited scattering)

= Virtual channel representation under ULA

H = /N/pla(61), - ,a(0n)|[ho, - hy ]
= /N/p AH;, = AG

where
a(6;) : array response vector with 0; € [0, 27]

hy,; : beamspace channel vector of i-th user
(p major elements + N-p minor elements)

" ULA: Uniform linear array

https://sites.google.com/site/jinseokchoi89/

B Need to reduce power consumption at ADCs

Massive MIMO Communications

Additive quantization noise model

* Optimal scalar minimum mean square error quantizer

" Variable number of quantization bits for each ADC
Yq=Qy)=Wa.y+nq

= W,Hx + W, n + nq
where
W, = diag(a, - ,an) )
B . o o Ellys — yal?]
a; = 1 — (;: quantization gain with 8; = Ef7i[7]

Ilq: quantization noise

UE: user equipment -y
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Multi-user massive MIMO uplink communication

Convex optimization

Global optimal

Power Constrained ADC Bit Allocation

RF Preprocessing: Beamspace projection
" Exploits the mmWave channel sparsity

* Uses an analog combiner Frr (Frr = A; FT matrix)
¥ =Fgrpy = Frp Hx + Fgpn

= Applies quantization after the projection
yq = W,Gx +W,n+n,

Includes negativity

v
b e RY (i) Papc(b) = cW2° for b € R

Relaxed MSQE™ minimization problem
» Relaxes (i) b e zZY

N
~ b= argmin D;(b;)
b:[bla"' abN]T ZZZ]_

with Quantization bits for i-th ADC

N D;(b;) = E[|; — §qil”]
P b;,) < NPapc(b), b e RN 3
s.t. Z ADC( z) = ADC( )7 < . _ T g2 9~ 2bi
i=1 :

» Power Constraint: total power of N h-bit ADCs
* Solution using Karush-Kuhn-Tucker conditions:

N RF \ 3
. _ 1 1+ SNR ith
N b =b—logy [ = J W
52 (N . { 1 + SNR* } ) SNRIF — [Gl,:([Gl;:

=1
J 0

“MSQE: Mean square quantization error

Validation & Contributions

Performance measure

Map solution to non-negative integers
(i) bi < 0: map to 0 because Papc(b) =0 for b <0
(ii) bi > 0: map using either floor or ceiling

* Achieve best trade-off in MSQE vs. Power Consumption

(i) = A Di(l}i) - Dz'(UA)z'J)A |
APapc(bi)| | Papc(bi) — Papc([bi])
* T(i): MSQE increase/unit power savings afterb; — |0, |
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‘—Full Resolution ||
" Error vector magnitude (EVM) for all users 30{ S pniformp = 1
— X — -G Uniform p = 2
VM (%) = X=X 100 (%) & 255 ek SN
Ix]] = i
* Signal-to-noise ratio (SNR) for each user at Rx input = i
_ Eflif?] 1 b =2
SNR = No TN
Tx/Rx Settings Channel Settings imomasi) b=3
= ' : -10 -5 0 5 10
QPSK modulation = Channel: | cluster & 4 subpaths SR (aB)

* M ={8, 16} users
= N =256 Rx antennas

= Transmission band 72-74 GHz
* Antenna spacing \/4

Contributions

* Low-complexity near-optimal ADC bit allocation technique

* Consumes lower or equal power vs. all ADCs use b bits

= Simulations show EVM reduction at all Rx input SNR values

* 50% reduction in EVM at high SNR
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