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== Motivation

» Benefits: double the spectral efficiency, reduce the latency, enhance the reliability/coverage due to the
transmission and reception at the same resource block (time/frequency), and reduction of the number of
antennas by a factor of 2 (e.g., shared TX and RX arrays of full-duplex transceivers).

» Applications: machine-to-machine, cellular systems, integrated access and backhaul.
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~ Problems/Challenges

* Vulnerable to the loop-back self-interference (Sl).

» Sl signal power can be up to x1000-10000 times the received signal power.
* In cellular systems, the Sl is large with the cell-edge users.

» ADCs saturation by the Sl resulting in low spectral efficiency.

» Without S| cancellation, full-duplex systems are dysfunctional.

» Requires robust beamformers to cancel the Sl.

« Beamforming design is complex and subject to different constraints.

» Design suboptimal beamformers to reduce the complexity at the expense of the performance.




== System Model Node#s  <—Farfield——=  Node#2

w

tl

* Analog-only architecture, i.e., supports a single stream.
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« The sum rate (cost function) is expressed by
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== Zero-Forcing Max-Power

« The optimization problem can be formulated as
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» The unconstrained solution (without accounting for the Constant Amplitude (CA) Constraint) consists of two projections:
1. Projection 1: w,; = H,, Wy, Wy, = HipWyq, Wy = Hpp Wy, wy, = HyPw,, (maximize the received power).
2. Projection 2: Project the beamformers on the Zero-Forcing null-space.
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« Third projection into the subspace of the CA constraint, i.e., each entry of the solution must satisfy

jon
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== Beam Steering

« The beamformers are expressed in terms of the array response as

Wi = arx(6y)
Wiy = aRX(Qb#)

Wi = atx(0)

Wi = aRX(¢m)




== Angle Search

Consider a set of feasible angles for each beamformers

Perform exhaustive search over all the set of feasible phase shifters to maximize the sum rate.

The feasible set are subject to quantization.

Increasing the angles resolution will improve the sum rate but with higher complexity.




== |_ower Bound MMSE
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== Performance Results
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Unconstrained ZF outperforms the other approaches.

The CA constraint completely degrades the performances since it violates the ZF constraint.

The angle between the TX and RX arrays at the full-duplex nodes may mitigate the self-interference.

With a careful choice of angle, the TX and RX arrays can be isolated to suppress the self-interference

Z. Xiao, P. Xia and X. Xia, "Full-Duplex Millimeter-Wave Communication," in IEEE Wireless Communications, vol. 24, no. 6, pp. 136-143, Dec. 2017



Extension to Hybrid Architecture

Consists of digital and analog parts. : E j t 3
Supports multiple spatial streams. : - - j T - - :
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The digital beamformers (without normalization) are given by (iteratively)
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Systems and Emergent Technologies (IC_ASET), 2020, pp. 344-34



== Extension to Hybrid Architecture

Parameter Value Parameter Value
Carrier frequency 28 GHz Bandwidth 850 MHz
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Number of clusters 6 Rays per cluster 8
» The proposed method completely suppress the self-interference, Angular spread 20° || Transceivers gap (d) 2)
while the residual loss is incurred by the CA (minimized). Drapeengmindine () | 5 Risianifactor 3 dB
SI power (7) 30 dB Antenna separation %
» The proposed approach beats the lower bound MMSE method. SEStElRea e () ’ RFchaing (Ner) 4
30 — 1
YPperiEoung g 'i Going to Massive
| — — Fully-Digital #g 1 Kb g
w

~— - — Hybrid Beamforming 0.8

— — = Without SI Cancelling

0.6

SNR =10dB

550 VO
CDF

0.4

Sum Rate (bit/s/Hz)

il

!H-Blue: Approximated
“' by Central Limit
I-, Theorem

I

2
/l

7 T Cross Over
0 1 . snh sun sun gun fun w @= =) 1 J
—30 —20 —10 0 10

1 | L |

144
&
o
i
144 ]
S
=

-10 -5 0

Average SNR (dB) SINR Threshold (dB)

E. Balti and N. Mensi, "Zero-Forcing Max-Power Beamforming for Hybrid mmWave Full-Duplex MIMO Systems," 2020 4th International Conference on Advanced Systems and Emergent
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== Gradient Search Approach
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« Evaluate the gradients of the sum rate with respect to the beamformers. s:
» Adapt the step-size to adjust the fluctuation of the cost function 6:

during the optimization cycle.

E. Balti, "Adaptive Gradient Search Beamforming for Full-Duplex mmWave MIMO Systems," arxiv, 2020
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Algorithm 1 Adaptive Gradient Ascent

Input: 6, ¢, H,,,, Hyy,, H,,, Hy, (u, v € {0, 1}, u #v)
Output: w}, £

1: Initialize w, = w.’, f, = f.")

2. while [Z("+1) — Z(™)| > ¢ do

3: WS’H_I) — wf,") LoV L)
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9. if Z("*+1) < Z(") then
10: Adapt &

11: end if

12: end while

13: return wj, f

wntD) > CA constraint




== Gradient Search Approach
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The gradient achieves better sum rate than the conventional approach.

For low SIR, half-duplex provides the uplink user with better rate but at the expense of the downlink UE.

Hybrid duplex can be adapted with the SIR.

= Upper Bound
—= Full-Digital Gradient
== CA-Constrained Gradient

-
o

Rate (bits/s/Hz)

—10 -5 0 5

SNR (dB)

Analog-only two-node system

15 —

Upper Bound

Duplex Switching
Hybrid — Full

Full-Duplex
== Hybrid-Duplex (50% FD, 50% HD)

—40 —20

SIR (dB)

Analog-only cellular system

E. Balti, "Adaptive Gradient Search Beamforming for Full-Duplex mmWave MIMO Systems," arxiv, 2020

0

Simulation parameters

Carrier frequency 28 GHz
Bandwidth 850 MHz
Number of transmit antennas 16
Number of receive antennas 16
Antenna separation %
Antenna correlation None
Number of clusters 6
Number of rays per cluster 8
Angular spread 20°
Distance between FD node arrays | 2\
Angle between FD node arrays &
Self-interference power 0 dB
Rician factor 5 dB
Step size (9) 1
Convergence criterion (€) le-5




== Appendix

1. Extension to wideband full-duplex cellular systems:
« E. Balti and B. L. Evans, "Hybrid Beamforming Design for Wideband MmWave Full-Duplex Systems," arxiv, 2021

2. Application of adaptive LMS for self-interference cancellation:

« E. Balti and B. L. Evans, "Adaptive Self-Interference Cancellation for Full-Duplex Wireless Communication
Systems," arxiv, 2021

» Reproducible research: : https://github.com/ebalti/Full-Duplex-Steepest-Descent



https://github.com/ebalti/Full-Duplex-Steepest-Descent

==_ Extensions

1. Multiuser single-cell systems
« Additional constraints to account for the multiuser interference or intra-cell interference.

2. Multiuser multicell systems

» More constraints relative to the inter-cell interference.
3. Conducting link level simulation based on 3 GPP Release 17 for Integrated Access and Backhaul.
4. Low resolution ADCs

5. Comparison with the intelligent reflecting surfaces

« Establishing trade-off between spectral and energy efficiency.




