Full-Duplex Communications

Presenter: Elyes Balti (ebalti@utexas.edu)

Advisor: Prof. Brian L. Evans (bevans@ece.utexas.edu)

Aug 9, 2021

The University of Texas at Austin

Wireless Networking & Communications Group (WNCG)

Embedded Signal Processing Laboratory (ESPL)

The University of Texas at Austin what starts here changes the world

G Wireless Networking & Communications Group

2

Motivation

- Benefits: double the spectral efficiency, reduce the latency, enhance the reliability/coverage due to the transmission and reception at the same resource block (time/frequency), and reduction of the number of antennas by a factor of 2 (e.g., shared TX and RX arrays of full-duplex transceivers).
- Applications: machine-to-machine, cellular systems, integrated access and backhaul.

• Currently proposed in 3GPP Release 17.

Integrated Access and Backhaul

https://www.qualcomm.com/news/onq/2019/12/13/3gpp-charts-next-chapter-5g-standards

E. Balti and N. Mensi, "Zero-Forcing Max-Power Beamforming for Hybrid mmWave Full-Duplex MIMO Systems," 2020 4th International Conference on Advanced Systems and Emergent Technologies (IC_ASET), 2020, pp. 344-349

E. Balti and B. L. Evans, "Hybrid Beamforming Design for Wideband MmWave Full-Duplex Systems," *arxiv*, 2021

Machine-to-Machine

Problems/Challenges

- Vulnerable to the loop-back self-interference (SI).
- SI signal power can be up to x1000-10000 times the received signal power.
- In cellular systems, the SI is large with the cell-edge users.
- ADCs saturation by the SI resulting in low spectral efficiency.
- Without SI cancellation, full-duplex systems are dysfunctional.
- Requires robust beamformers to cancel the SI.
- Beamforming design is complex and subject to different constraints.
- Design suboptimal beamformers to reduce the complexity at the expense of the performance.

System Model

- Analog-only architecture, i.e., supports a single stream.
- The received signal at the nodes 1 and 2 are:

$$y_{1} = \mathbf{w}_{r1}^{H}(\sqrt{\epsilon_{21}} \mathbf{H}_{21}\mathbf{w}_{t2} s_{2} + \sqrt{\epsilon_{11}} \mathbf{H}_{11}\mathbf{w}_{t1} s_{1} + \mathbf{n}_{1})$$

$$y_{2} = \mathbf{w}_{r2}^{H}(\sqrt{\epsilon_{12}} \mathbf{H}_{12}\mathbf{w}_{t1} s_{1} + \sqrt{\epsilon_{22}} \mathbf{H}_{22}\mathbf{w}_{t2} s_{2} + \mathbf{n}_{2})$$

• The sum rate (cost function) is expressed by

$$R = \log_2 \left(1 + \frac{\epsilon_{21} |\mathbf{w}_{r1}^H \mathbf{H}_{21} \mathbf{w}_{t2}|^2}{1 + \epsilon_{11} |\mathbf{w}_{r1}^H \mathbf{H}_{11} \mathbf{w}_{t1}|^2} \right) + \log_2 \left(1 + \frac{\epsilon_{12} |\mathbf{w}_{r2}^H \mathbf{H}_{12} \mathbf{w}_{t1}|^2}{1 + \epsilon_{22} |\mathbf{w}_{r2}^H \mathbf{H}_{22} \mathbf{w}_{t2}|^2} \right)$$

• Channel from node *u* to node *v* is given

$$\mathbf{H}_{uv} = \sqrt{\frac{N_{TX}N_{RX}}{N_{cl}N_{ray}}} \sum_{k=1}^{N_{cl}} \sum_{\ell=1}^{N_{ray}} \alpha_{k,\ell} \mathbf{a}_{RX}(\phi_{k,\ell}) \mathbf{a}_{TX}^{H}(\theta_{k,\ell})$$

• The *p*-th and *q*-th entry of the LOS self-interference channel is given by

$$[\mathbf{H}_{\rm los}]_{pq} = \frac{1}{d_{pq}} e^{-j2\pi \frac{d_{pq}}{\lambda}}$$

d

• The aggregate self-interference channel at the node *u* is expressed by

$$\mathbf{H}_{uu} = \sqrt{\frac{\kappa}{\kappa+1}} \mathbf{H}_{\text{los}} + \sqrt{\frac{1}{\kappa+1}} \mathbf{H}_{\text{nlos}}$$

X. Liu, Z. Xiao, L. Bai, J. Choi, P. Xia, and X.-G. Xia, "Beamforming based full-duplex for millimeter-wave communication," Sensors, vol. 16, no. 7, 2016.

Zero-Forcing Max-Power

• The optimization problem can be formulated as

$$\max_{\mathbf{w}_{t1}, \mathbf{w}_{t2}, \mathbf{w}_{r1}, \mathbf{w}_{r2}} \left| \mathbf{w}_{r1}^{H} \mathbf{H}_{21} \mathbf{w}_{t2} \right|^{2}, \left| \mathbf{w}_{r2}^{H} \mathbf{H}_{12} \mathbf{w}_{t1} \right|^{2} \text{ (received power)}$$
Subject to $\|\mathbf{w}_{t1}\|^{2} = \|\mathbf{w}_{r1}\|^{2} = 1$
 $\|\mathbf{w}_{t2}\|^{2} = \|\mathbf{w}_{r2}\|^{2} = 1$
 $\mathbf{w}_{r1}^{H} \mathbf{H}_{11} \mathbf{w}_{t1} = \mathbf{w}_{r2}^{H} \mathbf{H}_{22} \mathbf{w}_{t2} = 0 \text{ (zero-forcing constraint)}$

- The unconstrained solution (without accounting for the Constant Amplitude (CA) Constraint) consists of two projections:
- 1. Projection 1: $\mathbf{w}_{r1} = \mathbf{H}_{21}\mathbf{w}_{t2}, \mathbf{w}_{r2} = \mathbf{H}_{12}\mathbf{w}_{t1}, \mathbf{w}_{t1} = \mathbf{H}_{12}^{H}\mathbf{w}_{r2}, \mathbf{w}_{t2} = \mathbf{H}_{21}^{H}\mathbf{w}_{r1}$ (maximize the received power).
- 2. Projection 2: Project the beamformers on the Zero-Forcing null-space.
- The solutions are given by

$$\mathbf{w}_{r1} = \mathbf{H}_{21}\mathbf{w}_{t2} - \left\langle \mathbf{H}_{21}\mathbf{w}_{t2}, \frac{\mathbf{H}_{11}\mathbf{w}_{t1}}{\|\mathbf{H}_{11}\mathbf{w}_{t1}\|} \right\rangle \frac{\mathbf{H}_{11}\mathbf{w}_{t1}}{\|\mathbf{H}_{11}\mathbf{w}_{t1}\|} \\ \mathbf{w}_{r2} = \mathbf{H}_{12}\mathbf{w}_{t1} - \left\langle \mathbf{H}_{12}\mathbf{w}_{t1}, \frac{\mathbf{H}_{22}\mathbf{w}_{t2}}{\|\mathbf{H}_{22}\mathbf{w}_{t2}\|} \right\rangle \frac{\mathbf{H}_{22}\mathbf{w}_{t2}}{\|\mathbf{H}_{22}\mathbf{w}_{t2}\|} \\ \mathbf{w}_{t1} = \mathbf{H}_{12}^{H}\mathbf{w}_{r2} - \left\langle \mathbf{H}_{12}^{H}\mathbf{w}_{r2}, \frac{\mathbf{H}_{11}^{H}\mathbf{w}_{r1}}{\|\mathbf{H}_{11}^{H}\mathbf{w}_{r1}\|} \right\rangle \frac{\mathbf{H}_{11}^{H}\mathbf{w}_{r1}}{\|\mathbf{H}_{11}^{H}\mathbf{w}_{r1}\|} \\ \mathbf{w}_{t2} = \mathbf{H}_{21}^{H}\mathbf{w}_{r1} - \left\langle \mathbf{H}_{21}^{H}\mathbf{w}_{r1}, \frac{\mathbf{H}_{22}^{H}\mathbf{w}_{r2}}{\|\mathbf{H}_{22}^{H}\mathbf{w}_{r2}\|} \right\rangle \frac{\mathbf{H}_{22}^{H}\mathbf{w}_{r2}}{\|\mathbf{H}_{22}^{H}\mathbf{w}_{r2}\|}$$

• Third projection into the subspace of the CA constraint, i.e., each entry of the solution must satisfy

 $[\mathbf{w}]_n = \frac{e^{j\phi_n}}{\sqrt{N}}, \phi_n$: drawn from the feasible set of the phase shifter.

• The beamformers are expressed in terms of the array response as

$$\mathbf{w}_{t1} = \mathbf{a}_{TX}(\theta_{\ell})$$
$$\mathbf{w}_{r2} = \mathbf{a}_{RX}(\phi_{\ell})$$
$$\mathbf{w}_{t2} = \mathbf{a}_{TX}(\theta_m)$$
$$\mathbf{w}_{r1} = \mathbf{a}_{RX}(\phi_m)$$

- Consider a set of feasible angles for each beamformers
- Perform exhaustive search over all the set of feasible phase shifters to maximize the sum rate.
- The feasible set are subject to quantization.
- Increasing the angles resolution will improve the sum rate but with higher complexity.

Lower Bound MMSE

• The sum rate can be lower bounded as

$$R \geq \log_2 \left(\frac{\epsilon_{21} \mathbf{w}_{r1}^H \mathbf{H}_{21} \mathbf{w}_{t2} \mathbf{w}_{t2}^H \mathbf{H}_{21}^H \mathbf{w}_{r1}}{\mathbf{w}_{r1}^H (\mathbf{I} + \epsilon_{11} \mathbf{H}_{11} \mathbf{w}_{t1} \mathbf{w}_{t1}^H \mathbf{H}_{11}^H) \mathbf{w}_{r1}} \frac{\epsilon_{12} \mathbf{w}_{r2}^H \mathbf{H}_{12} \mathbf{w}_{t1} \mathbf{w}_{t1}^H \mathbf{H}_{12}^H \mathbf{w}_{r2}}{\mathbf{w}_{r2}^H (\mathbf{I} + \epsilon_{22} \mathbf{H}_{22} \mathbf{w}_{t2} \mathbf{w}_{t2}^H \mathbf{H}_{22}^H) \mathbf{w}_{r2}} \right) = R_1$$

• The optimal \mathbf{w}_{r1} and \mathbf{w}_{r2} (before normalization) are given by

$$\mathbf{w}_{r1} = \left(\mathbf{I} + \boldsymbol{\epsilon}_{11}\mathbf{H}_{11}\mathbf{w}_{t1}\mathbf{w}_{t1}^{H}\mathbf{H}_{11}^{H}\right)^{-1}\mathbf{H}_{21}\mathbf{w}_{t2} (*)$$
$$\mathbf{w}_{r2} = \left(\mathbf{I} + \boldsymbol{\epsilon}_{22}\mathbf{H}_{22}\mathbf{w}_{t2}\mathbf{w}_{t2}^{H}\mathbf{H}_{22}^{H}\right)^{-1}\mathbf{H}_{12}\mathbf{w}_{t1} (**)$$

- A new lower bound can be derived using (*) and (**) $R_{1} \ge \log_{2} \left(\epsilon_{12} \epsilon_{21} \frac{\mathbf{w}_{t2}^{H} \mathbf{H}_{21}^{H} \mathbf{H}_{21} \mathbf{w}_{t2}}{\mathbf{w}_{t2}^{H} (\mathbf{I} + \epsilon_{22} \mathbf{H}_{22}^{H} \mathbf{H}_{22}) \mathbf{w}_{t2}} \frac{\mathbf{w}_{t1}^{H} \mathbf{H}_{12}^{H} \mathbf{H}_{12} \mathbf{w}_{t1}}{\mathbf{w}_{t1}^{H} (\mathbf{I} + \epsilon_{11} \mathbf{H}_{11}^{H} \mathbf{H}_{11}) \mathbf{w}_{t1}} \right) = R_{2}$
- Generalized Rayleigh quotient problem with respect to \mathbf{w}_{t1} , \mathbf{w}_{t2} . The solutions are given by

$$\mathbf{w}_{t1} = \text{pEigVect}\left(\left(\mathbf{I} + \boldsymbol{\epsilon}_{11}\mathbf{H}_{11}\mathbf{H}_{11}^{H}\right)^{-1}\mathbf{H}_{12}^{H}\mathbf{H}_{12}\right)$$
$$\mathbf{w}_{t2} = \text{pEigVect}\left(\left(\mathbf{I} + \boldsymbol{\epsilon}_{22}\mathbf{H}_{22}\mathbf{H}_{22}^{H}\right)^{-1}\mathbf{H}_{21}^{H}\mathbf{H}_{21}\right)$$

• pEigVect(A) is the principal eigenvector of A.

Performance Results

- Unconstrained ZF outperforms the other approaches.
- The CA constraint completely degrades the performances since it violates the ZF constraint.
- The angle between the TX and RX arrays at the full-duplex nodes may mitigate the self-interference.
- With a careful choice of angle, the TX and RX arrays can be isolated to suppress the self-interference

Z. Xiao, P. Xia and X. Xia, "Full-Duplex Millimeter-Wave Communication," in IEEE Wireless Communications, vol. 24, no. 6, pp. 136-143, Dec. 2017

Extension to Hybrid Architecture

- Consists of digital and analog parts.
- Supports multiple spatial streams.
- To avoid the violation of the ZF constraint, we properly handle the CA constraint to minimize the rate losses.
- We propose to enhance the ZF max-power approach.
- We refer to *alternating projection* method to design the beamformers:
 The first handles the ZF constraint and the second deals with the CA constraint.
- We construct two nested iterative processes: Outer cycle for ZF and inner cycle for CA.
- In the *n*-th ZF cyclic maximization, the generic analog solution is expressed as $\mathbf{w}^{(n)} = \left(\mathbf{I} \frac{\alpha \alpha^{H}}{\|\alpha\|^{2}}\right) \mathbf{w}^{(n-1)}$
- The digital beamformers (without normalization) are given by (iteratively)

 $W_{BB,1} = W_{RF,1}^{H} H_{21} F_{RF,2} F_{BB,2} (Fix F_{BB,2})$ $W_{BB,2} = W_{RF,2}^{H} H_{21} F_{RF,1} F_{BB,1} (Fix F_{BB,1})$ $F_{BB,1} = F_{RF,1}^{H} H_{12}^{H} W_{RF,2} W_{BB,2} (Fix W_{BB,2})$ $F_{BB,2} = F_{RF,2}^{H} H_{21}^{H} W_{RF,1} W_{BB,1} (Fix Fix W_{BB,1})$

Machine-to-Machine

E. Balti and N. Mensi, "Zero-Forcing Max-Power Beamforming for Hybrid mmWave Full-Duplex MIMO Systems," 2020 4th International Conference on Advanced Systems and Emergent Technologies (IC_ASET), 2020, pp. 344-349

Extension to Hybrid Architecture

- The self-interference becomes more critical in hybrid architecture.
- The proposed method completely suppress the self-interference, while the residual loss is incurred by the CA (minimized).
- The proposed approach beats the lower bound MMSE method.

Simulation parameters

Parameter	Value	Parameter	Value
Carrier frequency	28 GHz	Bandwidth	850 MHz
TX antennas	16	RX antennas	16
Number of clusters	6	Rays per cluster	8
Angular spread	20°	Transceivers gap (d)	2λ
Tranceivers incline (ω)	$\frac{\pi}{6}$	Rician factor	5 dB
SI power (au)	30 dB	Antenna separation	$\frac{\lambda}{2}$
Spatial streams (N _s)	2	RF chains (N _{RF})	4

E. Balti and N. Mensi, "Zero-Forcing Max-Power Beamforming for Hybrid mmWave Full-Duplex MIMO Systems," 2020 4th International Conference on Advanced Systems and Emergent Technologies (IC_ASET), 2020, pp. 344-349

Gradient Search Approach

- Evaluate the gradients of the sum rate with respect to the beamformers.
- Adapt the step-size to adjust the fluctuation of the cost function during the optimization cycle.

Analog-only cellular system

Gradient Search

Algorithm 1 Adaptive Gradient Ascent

Input: δ , ϵ , \mathbf{H}_{uv} , \mathbf{H}_{vu} , \mathbf{H}_{vv} , \mathbf{H}_{uu} $(u, v \in \{0, 1\}, u \neq v)$ Output: w_u^* , f_u^* 1: Initialize $\mathbf{w}_v = \mathbf{w}_v^{(0)}, \ \mathbf{f}_u = \mathbf{f}_u^{(0)}$ 2: while $|\mathcal{I}^{(n+1)} - \mathcal{I}^{(n)}| > \epsilon \ \mathbf{do}$ $\mathbf{w}_{v}^{(n+1)} \leftarrow \mathbf{w}_{v}^{(n)} + \delta \nabla_{\mathbf{w}_{v}} \mathcal{I}^{(n)}$ 3: ▷ Unit-norm constraint $\mathbf{w}_v^{(n+1)}$ $\frac{|v_v|}{\sqrt{N_{r,v}}|\mathbf{w}_v^{(n+1)}|} \triangleright CA \text{ constraint}$ 5: $\mathbf{f}_{u}^{(n+1)} \leftarrow \mathbf{f}_{u}^{(n)} + \delta \nabla_{\mathbf{f}_{u}} \mathcal{I}^{(n)}$ 6: 7: $\mathbf{f}_{u}^{(n+1)}$ 8: if $\mathcal{I}^{(n+1)} < \mathcal{I}^{(n)}$ then 9: Adapt δ 10: end if 11: 12: end while 13: return \mathbf{w}_{v}^{\star} , \mathbf{f}_{u}^{\star}

Gradient Search Approach

- The gradient achieves better sum rate than the conventional approach.
- For low SIR, half-duplex provides the uplink user with better rate but at the expense of the downlink UE.
- Hybrid duplex can be adapted with the SIR.

Simulation parameters

28 GHz
850 MHz
16
16
$\frac{\lambda}{2}$
None
6
8
20°
2λ
$\frac{\pi}{6}$
0 dB
5 dB
1
1e-5

Appendix

- 1. Extension to wideband full-duplex cellular systems:
- E. Balti and B. L. Evans, "Hybrid Beamforming Design for Wideband MmWave Full-Duplex Systems," arxiv, 2021

2. Application of adaptive LMS for self-interference cancellation:

- E. Balti and B. L. Evans, "Adaptive Self-Interference Cancellation for Full-Duplex Wireless Communication Systems," *arxiv*, 2021
- Reproducible research: : <u>https://github.com/ebalti/Full-Duplex-Steepest-Descent</u>

Extensions

- 1. Multiuser single-cell systems
- Additional constraints to account for the multiuser interference or intra-cell interference.

2. Multiuser multicell systems

- More constraints relative to the inter-cell interference.
- 3. Conducting link level simulation based on 3 GPP Release 17 for Integrated Access and Backhaul.

4. Low resolution ADCs

- 5. Comparison with the intelligent reflecting surfaces
- Establishing trade-off between spectral and energy efficiency.