Massive MIMO Power Reduction

Jinseok Choi, Junmo Sung, Yunseong Cho, and Brian L. Evans

December 13, 2018

The University of Texas at Austin
Wireless Networking & Communications Group
Embedded Signal Processing Laboratory

Overview Selected Topics from Sept. 2017 – Dec. 2018

Receiver Design

- I. Resolution-Adaptive ADC
- 2. Two-stage analog combining
- 3. Antenna selection
- 4. Learning-based one-bit detection

Channel Estimation

- I. MmWave One-bit ADC
- 2. Deterministic beamforming design

User Scheduling

- I. New user scheduling criteria
- 2. Partial CSI-based scheduling

□ Channel Estimation

Compressive-sensing (CS)-based millimeter wave channel estimation in hybrid beamforming systems

Hybrid Beamforming with One-bit ADCs

System

- PS Hybrid Architecture w/ I-bit ADC
- Frequency-Flat Channels
- Beamformer w/ Random Configuration
- Downlink

Key Technique

Modified one-bit GAMP*

Universal and Deterministic Beamformer Design

System

- PS/SW/Lens Hybrid Architecture
- Frequency-Flat Channels
- Beamformer w/ Deterministic Configuration
- Downlink

Key Technique

Deterministic optimal beamformer design

☐ Receiver Design I-2

☐ Receiver Design 3-4

Dithering-and-learning

- Maximum likelihood detection
 - Add dithering to robustly learn likelihood probability

$$k^* = \underset{k \in \mathcal{K}}{\operatorname{argmax}} \prod_{i=1}^{2N_r} p_{k,i}^{(b)} = \begin{cases} p_{k,i}^{(1)} = \frac{1}{N_{tr}} \sum_{t=1}^{N_{tr}} \mathbb{1}(y_i[(k-1)N_{tr} + t] = 1) \\ p_{k,i}^{(-1)} = 1 - p_{k,i}^1 \end{cases}$$

☐ User Scheduling

:To mitigate quantization error by effectively scheduling users

- Key idea
 - Derive new scheduling criteria that reduce quantization error
- Optimization results
 - Maximum sum rate user scheduling

New criteria

*Angle of arrivals

- I. Unique *AoAs for channel paths of each scheduled user
- 2. Equal power spread across complex path gains

One-bit MIMO Detection with Coding Theoretical Approach

Related publications:

- [1]. Yunseong Cho, Seonho Kim, and Songnam Hong, "Successive Cancellation Soft-Output Detector for Uplink MIMO system with One-bit ADCs", IEEE ICC 2018, Kansas city, MO, USA.
- [2]. Songnam Hong, Seonho Kim, and Namyoon Lee, "A Weighted Minimum Distance Decoding for Uplink Multiuser MIMO Systems With Low-Resoultion ADCs", IEEE Transactions on Communications, 2018.

- Multi-user MIMO uplink system
- Single cell environment
- Serves K users w. single antenna
- **BS** is equipped with N_r antennas
- Quantized signal
 - *M*-QAM constellation
 - Encoded input τ for a given sequence \mathbf{b}
- Corresponding symbol

$$w_k[t] = \left[\tau_k[pt], \dots, \tau_k[pt - p + 1]\right]_{(p)}$$
$$x_k[t] = f(w_k[t]) \in \mathcal{S}$$

Quantized signal

$$\mathbf{r}[t] = \operatorname{sign}(\mathbf{H}\mathbf{x}(\mathbf{w}[t]) + \mathbf{z}[t]) \in \{1, -1\}^{2N_r}$$

Real-valued channel

Channel Input

- Maps all possible combinations into code
- Fully characterized by H

$$c_l = \left[\operatorname{sign} \left(\mathbf{h}_1^{\mathsf{T}} f(\mathbf{w}[\mathsf{t}]) \right), \dots, \operatorname{sign} \left(\mathbf{h}_N^{\mathsf{T}} f(\mathbf{w}[\mathsf{t}]) \right) \right]^{\mathsf{T}}$$

[Example]

Consider a system with N=1, K=1 and m=2 (QPSK) with a channel realization $\widehat{H}=0.1+i1$

$$c_{0} = Q \begin{pmatrix} \begin{bmatrix} 0.1 & -1 \\ 1 & 0.1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$c_{1} = Q \begin{pmatrix} \begin{bmatrix} 0.1 & -1 \\ 1 & 0.1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$c_{2} = Q \begin{pmatrix} \begin{bmatrix} 0.1 & -1 \\ 1 & 0.1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$c_{3} = Q \begin{pmatrix} \begin{bmatrix} 0.1 & -1 \\ 1 & 0.1 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

- ☐ Effective Channel
 - Composed of N_r parallel BSCs
 - Each sub-channel has cross probability

$$\epsilon_i = Q(\left|\mathbf{h}_i^{\mathsf{T}} f(\mathbf{w}[\mathsf{t}])\right|)$$

- Effective Channel
- Composed of N_r parallel BSCs
- Each sub-channel has cross probability

$$\epsilon_i = Q(\left|\mathbf{h}_i^{\mathsf{T}} f(\mathbf{w}[\mathsf{t}])\right|)$$

- Detector
 - Introduces weighted Hamming distance

$$d_{wh}(\mathbf{x}, \mathbf{y}; \boldsymbol{\alpha}) \equiv \sum_{i=1}^{N} \alpha_i 1_{\{\boldsymbol{x}_i \neq \boldsymbol{y}_i\}}$$

$$\hat{l} = \underset{l}{\operatorname{argmin}} d_{wh}(\mathbf{r}, \mathbf{c}_l; \log \frac{1}{\epsilon_l})$$

Detection Phase

- ☐ Soft-Output
- Log-likelihood ratio (LLR)
 - Distance between two subsets

$$L_{pt-(i-1)}^{k}(\mathbf{r}[t]) = \min_{\mathbf{c}_{\ell} \in \mathcal{B}_{(i,1)}^{k}} d_{\text{wh}}(\mathbf{r}[t], \mathbf{c}_{\ell}; \{\log \epsilon_{\ell,i}^{-1}\})$$
$$- \min_{\mathbf{c}_{\ell} \in \mathcal{B}_{(i,0)}^{k}} d_{\text{wh}}(\mathbf{r}[t], \mathbf{c}_{\ell}; \{\log \epsilon_{\ell,i}^{-1}\}).$$

- Associated subcodes
 - Divides space in terms of the specific bit

$$\mathcal{B}_{(i,j)}^{k} = \bigcup_{\mathbf{b} \in \{0,1\}^{p}: b_{i} = j} \mathcal{C}_{|\{w_{k}[t] = [\mathbf{b}]_{p}\}}$$

Detection Phase

- Successive Cancellation
- Enhanced LLR
 - Using a previously detected message

$$\tilde{L}_{pt-(i-1)}^{k}(\mathbf{r}[t], \, \hat{\mathbf{w}}_{1}^{k-1}[t]) = \\
\min_{\mathbf{c}_{\ell} \in \mathcal{B}_{\binom{i,1}{\hat{\mathbf{w}}_{1}^{k-1}[t]}}^{k}} d_{\text{wh}}\left(\mathbf{r}[t], \mathbf{c}_{\ell}; \left\{\log \epsilon_{\ell,i}^{-1}\right\}\right) \\
- \min_{\mathbf{c}_{\ell} \in \mathcal{B}_{\binom{i,0}{\hat{\mathbf{w}}_{1}^{k-1}[t]}}^{k}} d_{\text{wh}}\left(\mathbf{r}[t], \mathbf{c}_{\ell}; \left\{\log \epsilon_{\ell,i}^{-1}\right\}\right)$$

- Refined subcodes
 - Decreases the size by half
 - Removes an ambiguity

$$\mathcal{B}_{(i,j|\hat{\mathbf{w}}_{1}^{k-1}[t])}^{k} = \bigcup_{\mathbf{b} \in \{0,1\}^{p}: b_{i}=j} \mathcal{C}_{|\{w_{k}[t]=[\mathbf{b}]_{p}, \mathbf{w}_{1}^{k-1}[t]=\hat{\mathbf{w}}_{1}^{k-1}[t]\}}$$

SO and **SCSO** detectors

SO detector: User 2

OSS detector: User $1 \rightarrow$ User 2

$$\tilde{L} = d_{\rm wh}(1) - d_{\rm wh}(0)$$

There are 2^{N_u} noiseless outputs among all possible 2^{N_r} vectors

Ordering

- ☐ Efficient order
- Distance between Centroids
 - Measures strength for each user
 - Larger gap leads to more reliable LLR

$$d_{s}(\mathcal{C}_{1}, \mathcal{C}_{2}) \triangleq \left| \frac{1}{|\mathcal{C}_{1}|} \sum_{\mathbf{c} \in \mathcal{C}_{1}} \mathbf{c} - \frac{1}{|\mathcal{C}_{2}|} \sum_{\mathbf{c} \in \mathcal{C}_{2}} \mathbf{c} \right|^{2}$$

- Order
 - Sorts in terms of the strength
 - Can be done during the training phase

$$k_i = \underset{k \in \langle K \rangle \backslash \{k_1, \dots, k_{i-1}\}}{\operatorname{argmax}} d^k$$

Simulation Results

☐ Polar encoding and decoding with 128 length is used

Uplink Antenna Selection for Low-Resolution ADC Systems

Related publications:

[1]. Jinseok Choi, Junmo Sung, Brian L. Evans, and Alan Gatherer, "Antenna selection for large-scale MIMO systems with low-resolution ADCs", IEEE ICASSP 2018, Calgary, Alberta, Canada.

[2]. Jinseok Choi and Brian L. Evans, "Analysis of ergodic rate for transmit antenna selection in low-resolution ADC systems", submitted to IEEE Transactions on Vehicular Technology, 2018.

Wideband Extension

- MIMO-OFDM Systems
 - Mutual information (MI) for subcarrier n

MI:
$$\mathcal{R}_n(\mathcal{K}) = \log_2 \left| \mathbf{I}_K + \rho \alpha_b^2 (\alpha_b^2 \mathbf{I}_K + \mathbf{R}_{\mathbf{q}_n \mathbf{q}_n})^{-1} \mathbf{G}_{n, \mathcal{K}} \mathbf{G}_{n, \mathcal{K}}^H \right|$$

- Maximum sum MI problem
 - All subcarriers share same subset of antennas

$$\mathcal{K}^{\star\star} = \underset{\mathcal{K}\subseteq\mathcal{S}: |\mathcal{K}|=K \geq N_{\mathrm{MS}}}{\operatorname{arg\,max}} \mathcal{C}(\mathcal{K}) \qquad \text{where } \mathcal{C}(\mathcal{K}) = \frac{1}{Nc} \sum_{n=1}^{N_c} \mathcal{R}_n(\mathcal{K})$$

MIMO-OFDM Greedy Antenna Selection

☐ Greedy approach

Greedy selection problem can reduce to simpler form

Greedy problem $J = \arg\max_{j \in \mathcal{S} \setminus \mathcal{K}_t} \sum_{n=1}^{N_c} \mathcal{R}_n^{\mathrm{ul}} \left(\mathcal{K}_t \cup \{j\} \right) \qquad J = \arg\max_{j \in \mathcal{S} \setminus \mathcal{K}_t} \sum_{n=1}^{N_c} \log_2 \left(1 + \frac{\rho \alpha_b}{d_j} c_{n,t}(j) \right)$ $\mathcal{R}_n^{\mathrm{ul}} \left(\mathcal{K}_t \cup \{j\} \right) = \mathcal{R}_n^{\mathrm{ul}} (\mathcal{K}_t) + \log_2 \left(1 + \frac{\rho \alpha_b}{d_j} c_{n,t}(j) \right) \qquad \text{where } c_{n,t}(j) = \mathbf{f}_{n,j}^H \left(\mathbf{I}_{N_{\mathrm{MS}}} + \rho \alpha_b \mathbf{G}_{n,\mathcal{K}_t}^H \mathbf{D}_{n,\mathcal{K}_t}^{-1} \mathbf{G}_{n,\mathcal{K}_t} \right)^{-1} \mathbf{f}_{n,j}.$

☐ Complexity Reduction

For each subcarrier, avoid matrix inversion in $c_{n,t}(j)$ $c_{n,t+1}(j) = \mathbf{f}_n(j)^H (\mathbf{Q}_{n,t} - \mathbf{a}\mathbf{a}^H) \mathbf{f}_n(j)$ $= c_{n,t} - |\mathbf{f}_n(j)^H \mathbf{a}|^2$

where
$$\mathbf{a} = \left(c_{n,t}(j) + \frac{d(j)}{p_u \alpha}\right)^{-1/2} \mathbf{Q}_{n,t} \mathbf{f}_n(j)$$
$$\mathbf{Q}_{n,\mathcal{K}_t} = \left(\mathbf{I} + p_u \alpha \mathbf{H}_{n,\mathcal{K}_t}^H \mathbf{D}_{n,\mathcal{K}_t}^{-1} \mathbf{H}_{n,\mathcal{K}_t}\right)^{-1}$$

Linear complexity increase by # of subcarrier compared to narrowband channel

Performance Bounds

☐ Theoretical Lower Bound

Theorem

The performance of solving simplified greedy problem is lower bounded by

$$\sum_{n=1}^{N_c} \mathcal{R}_n(\mathcal{K}_G) \ge \left(1 - \frac{1}{e}\right) \sum_{n=1}^{N_c} \mathcal{R}_n(\mathcal{K}^*)$$

Proof: submodularity is closed under non-negative linear sum

- ☐ Numerical Upper Bound
 - Markov Chain Monte Carlo (MCMC) method
 - (+) Provides approximation of optimal solution
 - (+) Converges with iterations
 - (-) High Complexity (sampling and iterations)

Performance Bounds

- ☐ MCMC Antenna Selection
 - **Problem reformulation**

$$\max_{\mathcal{K}\subseteq\mathcal{S}:|\mathcal{K}|=K\geq N_{\mathrm{MS}}}\mathcal{C}(\mathcal{K}) \qquad \qquad \max_{\mathcal{K}\subseteq\mathcal{S}:|\mathcal{K}|=K\geq N_{\mathrm{MS}}}\exp\left(\frac{\mathcal{C}(\mathcal{K})}{\tau}\right)/\Gamma$$
Proposal distribution [Liu 2009]
$$\pi(\mathcal{K}): \text{Original distribution}$$

Proposal distribution [Liu 2009]

 $oldsymbol{\omega}_q$: binary codeword vector with ones and zeros

$$g(\boldsymbol{\omega}_q; \mathbf{p}) = \frac{\prod_{i=1}^{M_R} p_i^{[\boldsymbol{\omega}_q]_i} (1 - p_i)^{1 - [\boldsymbol{\omega}_q]_i}}{\Gamma'}$$
$$\propto \prod_{i=1}^{M_R} p_i^{[\boldsymbol{\omega}_q]_i} (1 - p_i)^{1 - [\boldsymbol{\omega}_q]_i}$$

q: codebook index from all possible combinations

Normalization factor

 p_i : probability of antenna i to be selected

Performance Bounds

☐ MCMC Antenna Selection

Step I: Sampling by Metropolized independence sampler

- I. Given current sample $\omega_q^{(i)}$, draw candidate sample $\omega_q^{(\mathrm{new})}$ from proposal distribution $g(\omega_q;\mathbf{p})$
- 2. Accept $\boldsymbol{\omega}_q^{(\text{new})}$ depending on accepting probability: $\min \left\{ 1, \left(\frac{\pi(\mathbf{w}_q^{(\text{new})})}{\pi(\mathbf{w}_q^{(i)})} \right) \left(\frac{g(\mathbf{w}_q^{(i)})}{g(\mathbf{w}_q^{(\text{new})})} \right) \right\}$
- 3. If not accepted, use current sample $\overline{\omega_q^{(i)}}$ as accepted sample
- 4. Repeat until collecting Nmcmc samples

■ Step 2: Parameter update [Liu 2009]

• Maximizing Kullback-Leibler divergence between original and proposal distributions

$$p_{j}^{(t+1)} = p_{j}^{(t)} + r^{(t+1)} \left(\frac{1}{N_{ ext{MCMC}}} \sum_{n=1}^{N_{ ext{MCMC}}} \left[\boldsymbol{\omega}_{q}^{(n)} \right]_{j} - p_{j}^{(t)} \right)$$

- Step3: update maximum objective function if $\pi(m{\omega}_q^{(n)}) > \pi(\hat{m{\omega}})$

Simulation Results

Average Mutual Information vs. Transmit Power

Settings 16 BS antennas 4 selected antennas 4 users

- 2-bit ADCs
- 2.4 GHz fc
- 10 MHz bandwidth.
- 4 delay taps
- 64 subcarriers

Rayleigh fading

Ikm cell radius

Simulation Results

Average Mutual Information vs. Transmit Power

(16 BS antennas, 4 selected antennas)

(32 BS antennas, 8 selected antennas)

Robust Learning-Based One-Bit ADC Detection

Related publications:

[1]. Jinseok Choi, Yunseong Cho, Brian L. Evans, and Alan Gatherer, "Robust Learning-Based ML Detection for Massive MIMO Systems with One-Bit Quantized Signals", submitted to IEEE Int. Conf. on Communications, 2019.

Other Approaches

Detection rule

 $f_{\text{eMLD}}(\mathbf{y}[n]) = \operatorname{argmax} \quad \sum$

 $\hat{p}(\mathbf{y}|\mathbf{x}_k)$.

 $\mathbf{y} \in \mathcal{N}(\mathbf{y}[n])$

Minimum Mean-Distance Detection

(b) Minimum-mean-distance detection (MMD)

of $\mathbb{R}^{2N_{
m r}}$

Detection rule

$$f_{\text{MMD}}(\mathbf{y}[n]) = \underset{k}{\operatorname{argmin}} \mathbb{E}_{\mathbf{y}_{t}} [\|\mathbf{y}[n] - \mathbf{y}_{t}\|_{2} |\mathbf{x} = \mathbf{x}_{k}]$$
$$= \underset{k}{\operatorname{argmin}} \sum_{\mathbf{y}_{t} \in \mathcal{Y}_{t,k}} \|\mathbf{y}[n] - \mathbf{y}_{t}\|_{2} \hat{p}(\mathbf{y}_{t}|\mathbf{x}_{k}),$$

- (c) Minimum-center-distance detection (MCD)
- Set generation

$$\bar{\mathbf{y}}_{t,k} \triangleq \mathbb{E}_{\mathbf{y}_t}[\mathbf{y}_t|\mathbf{x} = \mathbf{x}_k] = \sum_{\mathbf{y}_t \in \mathcal{Y}_{t,k}} \mathbf{y}_t \hat{p}(\mathbf{y}_t|\mathbf{x}_k).$$

Detection rule

$$f_{\text{MCD}}(\mathbf{y}[n]) = \underset{k}{\operatorname{argmin}} \|\mathbf{y}[n] - \bar{\mathbf{y}}_{t,k}\|_{2}$$

Robust, but far from ML detection with high complexity

of $\mathbb{R}^{2N_{ ext{r}}}$

Comparison

- Proposed method
 - Main goal
 - how to learn transition probability well
 - Advantages
 - can be directly applied for ML detection
 - can be directly applied for other approaches (ex. eMLD, MMD, MCD)
 - Disadvantages
 - depends on dithering variance
 - needs to estimate SNR value
- ☐ Other approaches
 - Main goal
 - how to design detection method well
 - Advantages
 - need trained transition probability only
 - Disadvantages
 - not ML detection
 - high complexity

Simulation Results

Symbol Error Rate vs. Transmit Power

Future Work

Extension of Robust-Learning I-Bit Detection Deterministic Channel Estimation

Learning-Based One-Bit Detection (Extension I)

☐ Weighted minimum distance detection (wMDD)

Weighted hamming distance

$$d_{\text{wh}}(\mathbf{x}, \mathbf{y}; \{\alpha_i\}, \{\beta_i\}) \stackrel{\Delta}{=} \sum_{i=1}^N \alpha_i \mathbf{1}_{\{x_i = y_i\}} + \left(\sum_{i=1}^N \beta_i \mathbf{1}_{\{x_i \neq y_i\}}, \frac{1}{\beta_i}\right)$$

- Scalable to any number of bits
- More robust than conventional ML detection

ML detection

 ϵ : error probability $c_i
eq r_i$

WMMD

Learning-Based One-Bit Detection (Extension I)

- ☐ Weighted minimum distance detection (wMDD)
 - Extension with dithering
 - decreases estimation accuracy of c & increase estimation accuracy of p
 - provides tradeoff between estimating c and p
 - needs to maximize tradeoff by finding optimal dithering variance

Learning-Based One-Bit Detection (Extension II)

- ☐ Channel coded system
 - Proposes soft matric operation
 - To use state-of-the-art channel codings
 - Proper low-complexity scheme

$$L_{mn-(p-1)}^{u}(\mathbf{y}[n]) = \log \frac{\prod_{k \in \mathcal{A}_{(p,0)}^{u}} \prod_{i=1}^{2N_r} \left\{ \hat{p}_{k,i}^{(1)} \mathbf{1}(y_i[n] = 1) + \hat{p}_{k,i}^{(-1)} \mathbf{1}(y_i[n] = -1) \right\}}{\prod_{k \in \mathcal{A}_{(p,1)}^{u}} \prod_{i=1}^{2N_r} \left\{ \hat{p}_{k,i}^{(1)} \mathbf{1}(y_i[n] = 1) + \hat{p}_{k,i}^{(-1)} \mathbf{1}(y_i[n] = -1) \right\}}$$

$$\mathcal{A}^{u}_{(p,j)} = \bigcup_{\mathbf{b} \in \{0,1\}^m, \ b_p = j} \{k : \mathcal{S}^u = f(\mathbf{b})\} \qquad \text{where} \qquad \begin{aligned} u &\in \{1, \dots, N_u\} \\ f &: M - \text{QAM modulation} \\ m &= \log_2 M \\ p &\in \{1, \dots, m\} \end{aligned}$$

Channel Estimation (Extension)

Related Reference

- [1] Junmo Sung and Brian L. Evans, "Deterministic Hybrid Beamformer Design to Improve Compressed Sensing Narrowband mmWave Channel Estimation Algorithm Performance," *IEEE Trans. Wireless Comm.* (submitted)
- [2] Junmo Sung, Jinseok Choi, and Brian L. Evans, "Narrowband Channel Estimation for Hybrid Beamforming Millimeter Wave Communication Systems with One-bit Quantization," *IEEE ICASSP* 2018
- [3] Jinseok Choi, Gilwon Lee, and Brian L. Evans, "Two-Stage Analog Combining in Hybrid Beamforming Systems with Low-Resolution ADCs", *IEEE Trans. Commun.* (under revision)
- [4] Jinseok Choi, Gilwon Lee, and Brian L. Evans, "A Hybrid Combining Receiver with Two-Stage Analog Combiner and Low-Resolution ADCs", *IEEE ICC* 2019, (submitted)
- [5] Jinseok Choi, Yunseong Cho, Brian L. Evans, and Alan Gatherer, "Robust Learning-Based ML Detection for Massive MIMO Systems with One-Bit Quantized Signals", *IEEE ICC* 2019, (submitted)
- [6] Jinseok Choi and Brian L. Evans, "Analysis of Ergodic Rate for Transmit Antenna Selection in Low-Resolution ADC Systems", IEEE Trans. Veh. Techonol.
- [7] Jinseok Choi, Brian L. Evans, and Alan Gatherer "Antenna Selection for Large-Scale MIMO Systems with Low-Resolution ADCs", IEEE ICASSP 2018
- [8] Jinseok Choi, Brian L. Evans, and Alan Gatherer, "Resolution-Adaptive Hybrid MIMO Architecture for Millimeter Wave Communications", IEEE Trans. Signal Process.
- [9] Jinseok Choi, Junmo Sung, Brian L. Evans, and Alan Gatherer, "ADC Bit Optimization for Spectrum- and Energy-Efficient Millimeter Wave Communications", *IEEE GLOBCOM* 2017
- [10] Jinseok Choi, Gilwon Lee, and Brian L Evans, "User Scheduling for Millimeter Wave Hybrid Beamforming Systems with Low-Resolution ADCs", *IEEE Trans. Wireless Commun.* (under revision)
- [11] Jinseok Choi and Brian L. Evans, "User Scheduling for Millimeter Wave MIMO Communications with Low-Resolution ADCs", IEEE ICC 2018
- [12] Yunseong Cho, Seonho Kim, and Songnam Hong, "Successive Cancellation Soft-Output Detector for Uplink MIMO system with One-bit ADCs", IEEE ICC 2018, Kansas city, MO, USA.
- [13] Songnam Hong, Seonho Kim, and Namyoon Lee, "A Weighted Minimum Distance Decoding for Uplink Multiuser MIMO Systems With Low-Resoultion ADCs", IEEE Transactions on Communications, 2018.