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*GAMP: generalized approximate message passing

= Overview
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*GAMP: generalized approximate message passing

= Overview

J Receiver Design 3-4

Antenna Selection

Robust Learning-based 1-Bit Detection
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= Overview

1 User Scheduling

: To mitigate quantization error by effectively scheduling users

= Keyidea

* Derive new scheduling criteria that reduce quantization error

= Optimization results
* Maximum sum rate user scheduling

New criteria

*Angle of arrivals

I. Unique *AoAs for channel paths of each scheduled user

2. Equal power spread across complex path gains

*GAMP: generalized approximate message passing

Uplink user scheduling
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.-Channel under new criteria:

I. Unique AoAs
2. Equal power spread

» minimize ||[Hp];.. 2

Reduce quantization error




One-bit MIMO Detection
with Coding Theoretical Approach

Related publications:

[I]-Yunseong Cho, Seonho Kim, and Songnam Hong, “Successive Cancellation Soft-Output Detector for Uplink MIMO system with One-bit
ADCGCs”, IEEE ICC 2018, Kansas city, MO, USA.

[2]. Songnam Hong, Seonho Kim, and Namyoon Lee,“A Weighted Minimum Distance Decoding for Uplink Multiuser MIMO Systems With
Low-Resoultion ADCs”, IEEE Transactions on Communications, 201 8.




== System Model

=} Multiuser MIMO uplink system
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== System Model

1 Channel Input Effective Model
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== System Model

Q Effective Channel

= Composed of N, parallel BSCs e -
. % -
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== System Model

Q Effective Channel
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== Detection Phase

1 Soft-Output
* Log-likelihood ratio (LLR)

 Distance between two subsets

Ly—i—y(x[t]) = min  dyy(r[t], ce: {logeg; })

k
ce€B; 1y

—  min dwh(r[ ] Cr. {log EE 1,1})
CgEBk

=  Associated subcodes

* Divides space in terms of the specific bit

k
By = U Cl{welt)=[bl,}
be{0,1}P:b;=j

(0 = [000] )
true 1= [001](2)
codeword 2 = [010](2)
codeword ‘ €9 '
\ J
There are 2"« noiseless outputs among all possible 2" vectors




== Detection Phase

J Successive Cancellation

= Enhanced LLR

* Using a previously detected message

i do (e o)

(«;,IMi"_l[t])

_ min dwh (1' 1], ce: {log i })

= Refined subcodes

* Decreases the size by half
* Removes an ambiguity

k
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SO and SCSO detectors

SO detector: User 2 OSS detector: User 1 = User 2
true
codeword
codeword -
L=dyn(1) — dyn(0) L =dyy(1) — dypn(0)
There are 2"« noiseless outputs among all possible 2" vectors




== Ovrdering

J Efficient order

= Distance between Centroids
* Measures strength for each user
* Larger gap leads to more reliable LLR

User 1 User 2

1 Centroid of B, ) 3(21,0)

N
d.(C1,Co) 2 | _
“.G) |cl|c€ZC o

ceCo

= Order

* Sorts in terms of the strength
* Can be done during the training phase
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== Simulation Results

 Polar encoding and decoding with 128 length is used
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Uplink Antenna Selection
for Low-Resolution ADC Systems

Related publications:

[I]. Jinseok Choi, Junmo Sung, Brian L. Evans, and Alan Gatherer,“Antenna selection for large-scale MIMO systems with low-resolution
ADCs”, IEEE ICASSP 2018, Calgary, Alberta, Canada.

[2]. Jinseok Choi and Brian L. Evans,“Analysis of ergodic rate for transmit antenna selection in low-resolution ADC systems”, submitted to
IEEE Transactions on Vehicular Technology, 2018.




== Wideband Extension

d MIMO-OFDM Systems

* Mutual information (Ml) for subcarrier n

Mi: R, (K) = log, |Ix + poi(oilx + anqn)‘lGn,chf,zc

* Maximum sum Ml problem

* All subcarriers share same subset of antennas

N
I = argmax C(KC here C(K) — NS~ R (K
clremax () where C(K) Ve 2 Rl




= MIMO-OFDM Greedy Antenna Selection
1 Greedy approach

» Greedy selection problem can reduce to simpler form

Greedy problem Simplified greedy problem
Qp :
J = arg max Rul (K U J = arg max lo 1+ 'O—c
JES\KtZ U {5}) - gjes\mz:: g nt ()
:f ul . ul P . \i . -1
i 7?"n, (’Ct U {} }) - Rn (,Ct) + 10g2 (1 + TCTL,T»(J)> i where Cn,t (7) - fn WJ (INMC; —l_pabGn ICtDTL Kt GTL ’Cf) f"v]"
\ ! '

------------------------------------------------------------------

(J Complexity Reduction

= For each subcarrier, avoid matrix inversion in ¢, (j)

. . . _ L dG) T .
Cn,t—l—l(.]) — fn (])H(Qn,t — aaH)fn (]) where a= (Cn’t(]) + puoz> Qun.ifn () »
= Cn,t — |fn (J)Ha‘Q Qnk, = (I+puO‘H£KtDﬁjctHn,lct>

Linear complexity increase by # of subcarrier compared to narrowband channel




== Performance Bounds

(] Theoretical Lower Bound

The performance of solving simplified greedy problem is lower bounded by

ZR (Kg) > (1——)ZR (K*)

Proof: submodularity is closed under non-negative linear sum

1 Numerical Upper Bound
* Markov Chain Monte Carlo (MCMC) method

(+) Provides approximation of optimal solution
(+) Converges with iterations
(-) High Complexity (sampling and iterations)



== Performance Bounds

Normalization factor

d MCMC Antenna Selection F- Y exp (@)
c T
* Problem reformulation /
C(K
max C(K) » max exp K) /T
,CQS|IC|:K2NMS KCS:|K|=K>Nwums T
‘ \ Rate ?onstant
1
= Proposal distribution [Liu 2009] W(IC) : Original distribution
W : binary codeword vector with ones and zeros
1—[ p[ q]z( . p-)l_[""q]i g: codebook index from all possible combinations
. _ 1=1 1" 1
g(wq’ p) - T Pi: probability of antenna i to be selected
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== Performance Bounds

(1 MCMC Antenna Selection
= Stepl: Sampling by Metropolized independence sampler

(new)

. Given current sample w'”, draw candidate sample w from proposal distribution g(wgq;Pp)

(new)

2. Accept w, depending on accepting probability: {1 (W(Wénew))> ( (W) )}
min ¢ 1, 0
)

m(Wy

g(wi"™)

3. If not accepted, use current sample wff) as accepted sample

4. Repeat until collecting NmMcvc samples

= Step 2: Parameter update [Liu 2009]

* Maximizing Kullback-Leibler divergence between original and proposal distributions

(1) @ ( : 1 Nueme ) )
\ =\ 4 t+1 [w mn ] P {
Pi Pi Nueme HZ::I 15 Pi

» Step3:update maximum objective function if W(wé”)) > (W)



== Simulation Results

|6 BS antennas

4 selected antennas
4 users

2-bit ADCs

2.4 GHz fc

|0 MHz bandwidth,
4 delay taps

64 subcarriers
Rayleigh fading
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== Simulation Results

Average Mutual Information vs. Transmit Power

(16 BS antennas, 4 selected antennas) @ (32 BS antennas, 8 selected antennas)

Low sampling / iteration (10, 10) Medium sampling / iteration (50, 50) Large sampling / iteration (100, 100)
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Robust Learning-Based One-Bit ADC Detection

Related publications:

[1]. Jinseok Choi, Yunseong Cho, Brian L. Evans, and Alan Gatherer, "Robust Learning-Based ML Detection for Massive MIMO Systems with
One-Bit Quantized Signals", submitted to IEEE Int. Conf. on Communications, 2019.




== Other Approaches

/ Empirical ML Detection \ /Minimum Mean-Distance Detection\ /Minimum Center-Distance Detectioh
) © Trained vector in V; 1 © Trained vector in Y © Trained vector in Y ;
M Trained vector in yt,z O M Trained vector in yt,z B Trained vector in yt,g
A Trained vector in ); 3 Weighted distance O ® A Trained vector in V; 3 Distz\nce A Trained vector in )V; 3
% Received signal vector ‘\: . @ % Received signal vector \1 S 2 O‘ R Y Received signal vector
Minimum distance \\\ A N N \\\
\\,\’O - ‘Q\‘ \ A A \\\ ~ \\\
.\‘* IA .' ,,,,,,,,,,, \\\ * \\
Nearest neighbors A | '
m [ v
0 . A N
~__ _ Representative
vectors ‘
2D representation 2D representation 2D representation
of R2N: of R2MN: of R2N:
(a) Empirical-maximum-likelihood detection (eMLD) (b) Minimum-mean-distance detection (MMD) (¢) Minimum-center-distance detection (MCD)
= Set generation » Detection rule = Set generation
N(yln)) = {3:| Iy[] =yl = Rui[n), ye € %} Fok & By lydx = xi] = 5
‘ : tk = By [yelx = x¢] = yeP(¥e|Xk).
Smmp(y[n]) = afglimnEy([HY["] = yillp [x = x¢ ] . y:eZJ/;,k
= Detection rule , . = Detection rule
- . =argmin ) [ly[n] = illo p (vlx0),
fouwn (yln]) = argmax > p(yfxi). = futeo(¥ln]) = argmin]jyln] - Fu]l,
\_ yeN(y n]) A\ AN k

Robust, but far from ML detection with high complexity




== Comparison

U Proposed method
= Main goal
* how to learn transition probability well

= Advantages
* can be directly applied for ML detection

* can be directly applied for other approaches (ex. eMLD, MMD, MCD) Proposed  Others

= Disadvantages focuses focus
* depends on dithering variance 1~ N Y

. . t " 4 N
* needs to estimate SNR value Rl N il Vg T |

: S iy

Processin I} i .: ! 51[n] :
Q Other approaches H% )
. ‘ [ I
= Main goal - : l bl
. . difn] ~CN (0,77 ! . | { Maximum |
* how to design detection method well . . I . 1 | Likelihood |+
= Advan tages ' . : ’ | | detection .1
* need trained transition probability only Ref} >+ )i TR +N“[T¥
. 0—»] - : kN, learning El I
= Disadvantages Processin n{} X | I
) g PN o, [n) | ®)  learni i I
* not ML detection 0—>|- PN :
I - 1] )

* high complexity

dy. [n] ~ CN(0,0%) { I




== Simulation Results

Symbol Error Rate vs. Transmit Power

Training length: Ntr = 30 Training length: Ntr = 30
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Future Work

Extension of Robust-Learning |-Bit Detection

Deterministic Channel Estimation




== | earning-Based One-Bit Detection (Extension 1)

1 Weighted minimum distance detection (wMDD)

* Weighted hamming distance ML detection
A N ari = —1log(l —€7;) | € :error probability
dwn(x,y; {ai}, {Bi}) = Zail{x,:yi} Zﬂil{xz';é,vi}a C: 75 r.
i—1 i—1 [ﬁg,i = —log Ef’,',] g i
= Scalable to any number of bits wMMD
" More robust than conventional ML detection
e \
R Effective channel |
tl = C{’,l _ \ N
Pl =cn) ] Need to estimate during training phase\
t2i= Cop P 2 I
Pelralts = cea) [ e =gy (Wx@(@). .. 8 (Whx(2(©))]
w Efil(l’tdoi;lg | Dococe| w By using majority rule
| function P g function |— NG 4 8 ] Y Y,
Lo : - (D)
©) P P : bt ~
T | Need to estimate during training phase
= : i (1) _ 1 Ner (- T —
f tN C{w; Pe(rylty = con) = pibz = P \1' 2 Ml =0+ =0
7 LU S L% P;;._il) =1—-pp,i
Channel & Quantization T Noise - /




== | earning-Based One-Bit Detection (Extension 1)

1 Weighted minimum distance detection (wMDD)

= Extension with dithering
* decreases estimation accuracy of ¢ & increase estimation accuracy of p
* provides tradeoff between estimating ¢ and p
* needs to maximize tradeoff by finding optimal dithering variance

e \
» i ........ Effective channel
tl =Cpq \“\ "
- P,(ry|t, = ¢ ' : ; ini
e(ralty = o) Need to estimate during training phase
ti=Cpp T2 I
Py(r;1t; = Co2) | cr = hix(g(¢)),. .., hlx(g(¢
R | p \ 1 X(8 p \RNyX(8
E utdo_' 5 Decoding| . . ..
w_|Encodingl i | function |- By using majority rule
function § g (D)
& SN 5 o
Need to estimate during training phase
_ 1 _ 1 Nir 4/, T
tyi= Pl T /= 1 A — —
Ia N CPN l PeOwlty =cen) IS = ) = {pk.z N 2i=1 LWil(k = DN +1] = 1)
H FAN ’ (-1) 1
R g D > { Pri = 1— P
Channel & Quantization T T\l\oise - -




== | earning-Based One-Bit Detection (Extension 1)

1 Channel coded system

" Proposes soft matric operation
* To use state-of-the-art channel codings
* Proper low-complexity scheme

Myess, , T2 (010000 = D + 5521010 = —1)

Llrinn—(p—l) (y[n]) = log

erc;zgp 5 [T {ﬁl(c’li)l(yz' [n] = 1) + ﬁl(c,_il)l(yi [n] = _1)}
u€{l,.., N}
o) = U {k:S" = f(b)} e f:+M — QAM modulation
b =j m = log, M
€{0,1}™, bp=j
p €{1,..,m}



== Channel Estimation (Extension)

Deterministic hybrid beamformer design for channel estimation

Phase
Shifters

Analog
Precoder

Jauiguo)

Extension covers:

* Compressed sensing based algorithms
* Millimeter wave frequencies

* Frequency-selective channels

* Phase shifter based architecture

* Low-resolution ADCs

* Uplink
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