
EMBEDDED SIGNAL PROCESSING

ON MICROCONTROLLERS

APPROVED BY

SUPERVISING COMMITTEE:

Brian L. Evans, Supervisor

Lizy K. John

I dedicate this report to my Mom and Dad, without whose inspiration and

support this report would have been a dream.

EMBEDDED SIGNAL PROCESSING

ON MICROCONTROLLERS

by

AMEY ARUN DEOSTHALI, B.E.

REPORT

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Ful�llment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

May, 1998

Acknowledgments

I would like to thank my parents for providing me support and boost-

ing my con�dence when I needed most. They have played an instrumental role

in making me what I am now.

I would like to thank my advisor Dr. Brian L. Evans for guiding me in

my research area and providing me �nancial assistance. He has been extremely

motivating and helped me realize the meaning of perfection and professionalism.

His idea of holding seminars for the Embedded Signal Processing Laboratory

(ESPL) group meeting helped me develop my presentation skills. I am also

grateful to him for assigning me the responsibility of organizing departmental

DSP seminars.

I would like to thank Mr. Shawn McCaslin, Cicada Semiconductor

Corp., for letting me work on his ideas. I feel myself extremely lucky for

getting the opportunity to work with someone having 15 years of industrial

experience. His practical suggestions and hints on my projects were extremely

valuable.

I would like to express my gratitude to my committee members- Dr.

Lizy John and Dr. Brian L. Evans, for thoroughly reading my report. I would

like to thank Dr. Alan C. Bovik, who is the director of Laboratory for Vision

Systems, for teaching excellent courses on Digital Signal Processing and Digital

Image Processing. I would like to express my thanks to Dr. Jack Lee for o�ering

me a teaching assistantship in Spring 1997 semester, and relieving me of any

iv

�nancial burden during my �rst semester at The University of Texas at Austin.

I would like to thank Srikanth Gummadi for working with me and

helping me in one of my projects for the report. I also enjoyed the food he

used to cook (especially chicken dishes). I would like to thank G�uner Arslan

for helping me with the microcontroller implementation issues related to my

projects. I would also like to thank Biao Lu and Wade Schwartzkopf for proof-

reading my chapters. I am also grateful to Marios Pattichis, Thomas Kite,

Dong Wei, Kartick Suriamoorthy, Jong-il Kim and Niranjan Damera-Venkata

for their helpful suggestions. I would like to show my appreciation towards my

friends Arindam Nag, Amit Apte, Suhrud Atre, Razak Mohammedali, Rajeev

Mahajan, Ritu Chaba, and Shylaja Katakam. I enjoyed the debates we had on

some strange topics.

I would also like to express my thanks to my brother, Ajit, and my

sister-in-law, Rina, for their words of wisdom. I would like to thank my cousin,

Swati, and her husband, Vasudeo, who live in Austin, for making my stay in

Austin memorable.

AMEY ARUN DEOSTHALI

The University of Texas at Austin

May, 1998

v

EMBEDDED SIGNAL PROCESSING

ON MICROCONTROLLERS

AMEY ARUN DEOSTHALI, M.S.E.

The University of Texas at Austin, 1998

Supervisor: Brian L. Evans

The use of microcontrollers for embedded applications has become

commonplace. Microcontrollers provide single-chip, low-cost solutions for low-

bandwidth, low-power applications. In this report, I present two communica-

tions applications and two new approaches to realize these applications on a

PIC microcontroller from Microchip Technology Inc.

I present a new approach to decode the WWVB broadcast time in-

formation transmitted by National Institute of Science and Technology (NIST)

and generate an accurate frequency reference calibrated to the NIST primary

standard. The key innovations are new, zero-bu�ering algorithms and micro-

controller implementations to decode WWVB time code information and the

use of a pulse-width modulator to generate an accurate frequency reference.

In this report, I also present a new, low-complexity ITU-compliant al-

gorithm for Dual Tone Multiple Frequency (DTMF) touchtone signal detection.

The key innovations include the use of adaptive notch �ltering, accurate fre-

quency estimation techniques, and new sophisticated validation logic to check

whether a detected DTMF digit satis�es the ITU requirements. The proposed

method is the �rst zero-bu�ering, ITU-compliant method that can be imple-

mented on an 8-bit microcontroller.

vi

Table of Contents

Acknowledgments iv

Abstract vi

Table of Contents vii

List of Tables x

List of Figures xi

1. Introduction 1

1.1 Embedded Systems : 3

1.1.1 Digital Signal Processors : : : : : : : : : : : : : : : : : : 4

1.1.2 Microcontrollers : 5

1.1.3 Hybrid DSP/Microcontrollers and ASICs : : : : : : : : : 6

1.2 Algorithm Development for Microcontrollers : : : : : : : : : : : 7

1.2.1 Microcontroller Features : : : : : : : : : : : : : : : : : : 7

1.2.2 Algorithm Development : : : : : : : : : : : : : : : : : : 11

1.3 PIC Microcontroller : 13

1.4 Scope of the Report : 14

2. Real-time Low-cost Decoding of Broadcast Time and Frequency

Standard 16

2.1 Introduction : 16

vii

2.2 Background : 18

2.2.1 WWVB Time Code : 19

2.2.2 Friedman Interpolator : : : : : : : : : : : : : : : : : : : 21

2.2.3 Microchip PIC16C7X Microcontroller Family : : : : : : 22

2.3 Decoding of Broadcast Time : : : : : : : : : : : : : : : : : : : 24

2.3.1 Signal Processing Front-end : : : : : : : : : : : : : : : : 25

2.3.2 Decision Logic Back-end : : : : : : : : : : : : : : : : : : 29

2.4 Generating a Frequency Reference : : : : : : : : : : : : : : : : : 30

2.5 Decoder Algorithms and Implementations : : : : : : : : : : : : 31

2.5.1 Decoding of Time Standard : : : : : : : : : : : : : : : : 32

2.5.2 Obtaining a Frequency Reference : : : : : : : : : : : : : 36

2.6 Conclusions : 38

3. Dual Tone Multiple Frequency (DTMF) Decoding 40

3.1 Introduction : 40

3.1.1 Generating DTMF Signals : : : : : : : : : : : : : : : : : 40

3.1.2 Standards for DTMF Detection : : : : : : : : : : : : : : 41

3.2 Previous DTMF Decoders : 43

3.3 Proposed Method : 46

3.3.1 Signal Processing Front-end : : : : : : : : : : : : : : : : 47

3.3.2 Decision Logic Back-end : : : : : : : : : : : : : : : : : : 55

3.4 Design and Implementation : 56

3.5 Experimental Results : 60

3.6 Conclusions and Future Work : : : : : : : : : : : : : : : : : : : 64

viii

A. Multiplication Routines for PIC Microcontroller 66

A.1 Multiplication between two Variables : : : : : : : : : : : : : : : 66

A.2 Multiplication between a Variable and a Constant : : : : : : : 70

B. Division Routine for PIC Microcontroller 73

BIBLIOGRAPHY 79

Vita 83

ix

List of Tables

1.1 Embedded systems products : 4

2.1 Worst case analysis of memory requirements and computational

power for implementing the WWVB decoder. : : : : : : : : : : 38

3.1 ITU requirements for a DTMF decoder : : : : : : : : : : : : : : 42

3.2 Timing test results for our DTMF decoder : : : : : : : : : : : : 61

3.3 Twist test results for our DTMF decoder : : : : : : : : : : : : : 62

3.4 Talk-o� test results for our DTMF decoder : : : : : : : : : : : : 63

x

List of Figures

1.1 Block diagram of a digital signal processing system : : : : : : : 2

2.1 A sample time code format broadcast by radio station WWVB : 20

2.2 Frequency estimation by zero-crossing detection : : : : : : : : : 22

2.3 Spectrum of a (a) sinusoidal signal, and (b) complex signal : : : 26

2.4 Sampling of a sinusoid signal of frequency Fc at a frequency Fs

which is less than the Nyquist rate i.e. Fs < 2Fc. The dotted

lines show the spectrum of a lowpass �lter to extract the sinusoid

of lowest frequency. : 27

2.5 The WWVB power estimator output for synthetic data sequence. 33

2.6 Program ow for phase 1 of the WWVB time code decoder : : : 34

3.1 Dual-Tone Multiple Frequency (DTMF) scheme for touchtone

dialing. When a key is pressed, two sinusoids at the row and

column frequencies are added together. : : : : : : : : : : : : : : 41

3.2 Block diagram of the DTMF detector : : : : : : : : : : : : : : : 47

3.3 Frequency response characteristics of FIR and IIR notch �lters : 48

3.4 Frequency estimator outputs for DTMF digit '9' : : : : : : : : : 49

3.5 Transfer function of the low frequency data path : : : : : : : : : 52

3.6 The power estimator in the DTMF detector : : : : : : : : : : : 53

xi

3.7 Decision logic for DTMF detection : : : : : : : : : : : : : : : : 54

xii

Chapter 1

Introduction

The past two decades have witnessed tremendous growth in the digital

computer industry and integrated circuit fabrication. Due to the availability

of inexpensive, relatively fast digital circuitry, a trend has been to replace as

much analog circuitry with digital circuitry as possible. Of course, not all

analog circuitry can be replaced by digital circuits. Some wide bandwidth and

ultra-low power applications are better served by analog circuitry. However,

where digital circuits are available and have su�cient speed for the desired

tasks, they are usually preferable for several reasons.

Digital systems provide better accuracy control than analog systems.

Accuracy control is very di�cult in analog systems because it depends on the

tolerance of the components that are used in the system. In a digital system,

increasing accuracy is as simple as adding bits to data words. When a signal is

sampled and quantized to N bits, its output signal-to-noise ratio (SNR), which

is expressed as 10 log10

�
signal power
noise power

�
, is proportional to 6:02N . SNR can be

increased by increasing the number of bits used for quantization. In analog

systems, increasing the signal-to-noise ratio requires boosting the signal power

and/or replacing analog circuits with those of lower tolerance.

In communication systems, the analog and digital system performance

is related to the available bandwidth. Analog system performance is propor-

1

2

Analog

Digital

Converter

Processing

Unit

to

Analog

Digital

Converter

 to

Figure 1.1: Block diagram of a digital signal processing system

tional to the square of the available bandwidth, whereas digital system perfor-

mance is exponentially related to the available bandwidth because bandwidth

is directly proportional to the number of bits. Thus, digital communications

systems generally outperform analog communications systems.

Digital implementation provides increased exibility for modi�cation,

as compared to analog implementation. Analog data can be stored on analog

media (e.g. cassette tape). However, digital data can be stored using a error

resilient format, e.g. Reed-Solomon codes for audio compact disks. In addition,

digital implementation is generally cheaper than analog implementation.

A simple model of a digital signal processing system is shown in Fig-

ure 1.1 [1]. Analog signals are converted into digital form by an Analog-to-

Digital (A/D) converter. A Digital-to-Analog (D/A) converter performs the

dual task of converting a digital signal to analog signal. The processing unit

implements a set of operations on a signal using a mixture of hardware and

software. The function of the processing unit is to transform the digital signal

in the desired manner (e.g. �lter the signal to remove noise). Since the process-

ing unit operates on a digital signal, the entire system is called a digital signal

processing system. The operations that are performed by the processing unit

(by hardware and/or software) are called digital signal processing algorithms.

The term digital signal processing (DSP) has become a common term.

3

The increasing supply of faster and better chips to support DSP algorithms has

fueled an explosive growth of signal processing applications in various �elds such

as communications, networking, and consumer electronics. In the late 1970s,

programmable DSP processors were developed to match the data-intensive

vector-oriented computations in DSP algorithms. Over the past �fteen years,

DSP processor performance has increased at the rate of approximately forty

percent per year [2]. It is expected that the current $3 billion market for

DSP processors will reach $50 billion over the next ten years [3]. However,

it is important to note that not all DSP applications need DSP processors.

Microcontrollers and general purpose processors are su�cient for many signal

processing applications [4].

1.1 Embedded Systems

An embedded system is a part of a product with which an end user

does not directly interact or control [5]. Another feature that characterizes

embedded systems is that they are designed to perform a speci�c task. In

embedded applications, hardware is unique to a given system, and software

has to be speci�cally written so as to make optimum use of available resources.

Codesigning the hardware and software for the system instead of committing

too early to a particular hardware design and writing the software later is an

important aspect of embedded systems [6].

The embedded systems market is large and diverse. Table 1.1 surveys

products that have embedded systems in them. Flexibility and modularity

are important in embedded system implementation. Most embedded systems

4

Alarm clocks Pagers Video disk players AM/FM radios
Car stereos CD players Cellular phones Music synthesizers
Calculators Telephones Video telephones Computer scanners
Video games Modems Microwaves Credit card readers
Disk drives Smart cards Digital cameras Answering machines

Table 1.1: Embedded systems products

are heterogeneous. That is, they use di�erent implementation technologies

for various subsystems of an embedded system. Next, we pro�le some of the

commonly used embedded processor technologies.

1.1.1 Digital Signal Processors

Digital signal processors are fast computer chips capable of doing

complex mathematical operations. Most DSP processors have the ability to

perform a single cycle multiply-accumulate operation, which is a commonly

found operation in signal processing applications. The multiply-accumulate

operation may be used to compute vector dot products. Accumulation is typi-

cally maintained at double the data word width to reduce truncation e�ects in

a running summation.

Almost all DSP processors have distinct data paths for parallel access

of instructions and operands. This allows the processor to perform multiple

operations in a single instruction cycle (e.g. up to 11 RISC instructions can be

performed in one DSP instruction cycle). DSP processors also provide special

addressing modes, such as modulo addressing (for circular bu�ers in digital

�lters) and bit-reversed addressing (for the fast Fourier transform). Most DSP

5

processors have specialized hardware features, such as zero-overhead looping

and low-latency deterministic interrupt handling, which improve processor per-

formance. Additionally, some of the processors also incorporate peripheral and

I/O handling mechanism such as Direct Memory Access (DMA). For a more

detailed study of the features of digital signal processors, we refer the reader

to [7].

Programmable DSP processors provide real-time performance which

is critical in certain products such as modems, audio CD players, and cellular

phones. DSP processors are available in compact sizes and have relatively

low power dissipation for the amount of available computational power. DSP

processors can perform many of the tasks which are currently being performed

by general-purpose processors. DSP processors can manipulate digital signals

in a variety of ways. As a result of these advantages, the DSP processor market

has grown tremendously. Research shows that the DSP processors will continue

to penetrate not only the embedded systems market but also the one currently

being occupied by general purpose processors [8]. The leading manufacturers

of DSP processors by revenue are Texas Instruments, Lucent Technologies,

Analog Devices, and Motorola [7]. DSP processors range in cost from $6 in

volume (of 1,000 units) to $200 in volume, excluding the Texas Instruments

TMS320C80 which costs $400 in volume.

1.1.2 Microcontrollers

A controller is a device that is used to control some process or aspect

of an environment. A microcontroller is a highly integrated programmable chip

which is ideally suited for control applications. By only including features spe-

6

ci�c to the task (control), cost is generally low. Usually, microcontrollers are

not used as standalone processors. They are used in embedded systems with

many di�erent peripherals. Hence, all microcontrollers provide general pur-

pose I/O ports for peripheral interfacing. Some microcontrollers, however, also

provide enhanced peripheral features such as pulse-width modulators, RS232

interfaces, and LCD drivers. Microcontrollers are a one-chip solution which

can enable a reduction in part counts and design costs [9].

The next question that immediately comes to mind is: \What is really

an embedded microcontroller"? Simply stated, an embedded microcontroller is

a controller which is embedded into a larger system for purposes other than

general purpose computing. To make a more rigid de�nition is di�cult, but

one way to de�ne it is that embedded microcontrollers are highly integrated

chips customized according to the requirements of the application in which they

are used. They usually have limited on-chip memory, e.g. 1000 words of pro-

gram memory (1000 � 14 bits) and 36 bytes of data memory on a PIC16C71.

Increasingly, microcontrollers are now being used in a broader range of applica-

tions. They are typically used where high throughput is not required. Some of

the leading manufacturers of microcontrollers by revenue are Motorola, Philips,

Intel, and IBM. Microcontrollers range in cost from $0.50 to $15 in volume.

1.1.3 Hybrid DSP/Microcontrollers and ASICs

The �rst phase of a design cycle for any new product starts with the

formulation of speci�cations and requirements for realizing a product. It is

then followed by algorithm design and simulation. The �nal phase of the de-

sign cycle concerns the implementation of individual subsystems using speci�c

7

programmable, con�gurable, and dedicated technologies.

In engineering projects, cost is very important. The consumer de-

mand is for better, smaller and cheaper products. The �rst generation of

consumer electronics products are often built using available commercial o�-

the-shelf components. In products like cellular phones, however, the available

power, area, and volume are limited. As a result, industries are trying to put

more hardware and software features speci�c to the application onto a single

chip. One trend is towards hybrid processors that have microcontroller and

DSP processor features, e.g. the Motorola MC56800 processor. An even higher

level of system integration is possible by using processor cores as the basic

building blocks for Application Speci�c Integrated Circuits (ASICs). Design-

ers can tailor these ASICs to the exact requirements and requisite functionality

of the products. Core-based ASICs provide system-on-a-chip solutions, thus en-

hancing the capabilities of the product [10]. The system-on-a-chip integrates

the functions of multiple individual integrated circuits (e.g. microprocessor,

memory, DSP, and I/O) onto a single piece of silicon.

1.2 Algorithm Development for Microcontrollers

1.2.1 Microcontroller Features

Today's microcontrollers come in various avors. Even in a particular

microcontroller family, many variations may exist. For example, the Motorola

MC68HC11 microcontroller has more than 50 members. Microcontrollers have

all or some of the following features.

1. Architecture: Two types of architecture are Princeton and Harvard.

8

(a) Princeton architecture uses a single data bus for accessing both

instructions and operands. Thus, it is structured for sequential

execution and stores both instructions and operands in the same

memory. This potentially slows down program execution. Exam-

ples of processors using this type of architecture are the Motorola

MC68HC11 and Intel 8051.

(b) Harvard architecture is oriented towards parallel architecture. It

has separate data buses for instructions and operands. Thus, it

has distinct program and data memories. This type of architecture

speeds up execution but requires more silicon. PIC microcontrollers

from Microchip Technology Inc. use this type of architecture.

2. Instruction Set: Instruction sets can be classi�ed into Complex In-

struction Set Computers (CISC) and Reduced Instruction Set Computers

(RISC).

(a) CISC is the traditional organization used for microcontrollers. The

processors having this type of organization typically have a large

number of instructions targeted towards speci�c control tasks, and

many di�erent addressing modes. An advantage of the CISC organi-

zation is that many of the instructions are macro-like, allowing one

instruction to be used for many other simpler ones. A key advantage

is the packing of bits in the opcodes to reduce program word length,

which reduces program length in bytes and ultimately yields lower

power consumption.

9

(b) RISC organization is slowly penetrating the microcontroller mar-

ket. A processor with this structure provides very few instructions.

Operations are, however, register-to-register with only LOAD and

STORE accessing memory. The instruction size is uniform and

hence RISC architecture is better suited for pipelining. The ad-

vantages of this type of organization is that it reduces chip size and

pin count. RISC is better matched to compiler technology and bet-

ter suited for higher clock rates. The RISC instruction set is more

orthogonal, permitting each instruction to use any register or ad-

dressing mode.

3. Memory: Almost all microcontrollers have on-chip memory (either pro-

gram or data or combined). The various types of memories found on-chip

are listed below

(a) Electrically Erasable Programmable Read Only Memories

(EEPROM) can be erased and programmed without ever removing

them from a circuit.

(b) Erasable Programmable Read Only Memories (EPROM)

can be programmed electrically and can be erased using ultraviolet

light.

(c) FLASH PROM provides a better solution than regular EEPROM

whenever there is a requirement for large amounts of non-volatile

program memory. It is faster and permits more erase/write cycles

than EEPROM.

10

(d) One Time Programmable (OTP)memories can be programmed

only once. These types are good for limited production runs in

industries having short product design cycles.

4. Power management: Microcontrollers are relatively low-power proces-

sors primarily because their clock rates are low and their word lengths

are short. Some microcontrollers also have brownout protection circuitry

which resets the device when the operating voltage (Vcc) is lower than the

brownout voltage. Optionally, some of them may have a SLEEP/WAKEUP

mode. This mode is very helpful in reducing the power consumption

when the processor is idle.

5. I/O interface: All microcontrollers have one or more bi-directional ports

for peripheral interfacing. Occasionally they may also have an on-chip

Universal Asynchronous Receiver Transmitter (UART) or a Universal

Synchronous Asynchronous Receiver Transmitter (USART).

6. Analog Interface: Some more expensive versions of microcontrollers

also have Analog-to-Digital (A/D) and Digital-to-Analog (D/A) convert-

ers on chip. This greatly reduces the peripheral access time. Some micro-

controllers also have a pulse-width modulator (PWM) unit for generating

waveforms.

7. Timer: Almost all microcontrollers have at least one timer. Some of

them have a watchdog timer. A watchdog timer is a programmable timer,

which when activated, resets the processor after a speci�ed interval. Such

11

a mechanism provides a means of graceful recovery from a system prob-

lem.

8. Miscellaneous features: Some of the other features included on the

microcontrollers are interrupt handling capabilities, code protection bits

and bit manipulation instructions such as bit set, bit clear and bit test

instructions.

1.2.2 Algorithm Development

All microcontrollers come with a combination of some of the previ-

ously described features. It is important to understand the features available

on the processor selected for algorithm implementation. Even though many

microcontrollers can run on a high frequency clock (as high as 20 MHz), they

do not necessarily execute an instruction in a single clock cycle. Some RISC

microcontrollers employ pipelining, but still require few clock cycles to execute

a single instruction cycle. This instruction cycle speed is necessary to �nd the

MIPS (million instructions per second) power of the processor.

Timing plays an important role in peripheral interfacing. Most of the

peripherals run at lower speeds than the processors. Some DSP processors, such

as the Analog Devices SHARC processors, have automatic wait state insertion

to interface with the slow running peripherals [7]. However, microcontrollers do

not have this feature, so wait states need to be implemented by the developer in

software. Other aspects of timing that need to be taken into consideration are

the interrupt latency and subroutine call latency. These aspects will play a role

in deciding how to implement algorithms on a microcontroller and whether to

12

use macros or subroutine calls (provided that enough code space is available).

Multiplication is one of the most common operations found in sig-

nal processing applications. Most microcontrollers do not have a multiply in-

struction (except the ones which have DSP capabilities added to them). In

this case, multiplication needs to be emulated in software (for an example see

Appendix A.1). This severely restricts the scope of microcontrollers to appli-

cations requiring lower processing power (in terms of the number of multiply-

accumulate operations). However, it is often possible to optimize multiplication

operations for a particular application at hand, thus indirectly increasing the

processing power. For example, a multiplication between a variable and a

constant can often be implemented faster than a multiplication between two

variables (refer to Appendix A.2 for an example). Also, a multiplication result

may only be needed to a few bits of precision which reduces the number of

instructions required.

Most microcontrollers also do not have a divide instruction, so a di-

vide operation would also need to be emulated in software. This can prevent

an implementation from satisfying the timing requirements of the target ap-

plication (see Appendix B for an example). So, it is desirable to eliminate as

many divides as possible. But if division is required, then it may be possible

to optimize the divide routine in much the same way as a multiply routine.

Another feature characteristic of many signal processing applications

is the repeated execution of a section of a code. Many DSP processors provide

hardware looping, thus eliminating the overhead associated with updating a

loop index and the pipeline ushes associated with branching. Microcontrollers,

13

on the other hand, do not provide such features. They do, however, provide

special control instructions (such as branching on a bit change) which can be

used to reduce the looping overhead. These instructions play a crucial role

during program ow control.

1.3 PIC Microcontroller

When deciding which microcontroller to use in a particular design,

we need to consider many issues. Some of them are listed below:

1. Fixed-point processor or a oating-point processor [11]

2. The processing power required for a particular application

3. Acceptable interrupt and subroutine latency

4. Peripherals integrated on chip (e.g. an A/D converter)

5. Available programming languages and software tools

6. Availability of development support for a particular processor

7. Accessibility of documentation

All of the above criteria were critical in our selection process for the

appropriate microcontroller. Our applications can be implemented on a �xed-

point processor. We decode a broadcast time and frequency standard using

on the order of 25,000 multiplications per second, so a low-end microcontroller

can be used. The decoding of Dual Tone Multiple Frequency (DTMF) signals

14

requires on the order of 250,000 multiplications per second, so a high-end micro-

controller will be required. A detailed analysis of the required processing power

for each application is performed at the end of each chapter. We selected the

PIC microcontroller, which is a RISC microcontroller from Microchip Tech-

nology Inc. This processor has high processing power for a microcontroller

(5 MIPS at 20 MHz). Because timing was critical for decoding of broadcast

time and frequency standard, we selected the PIC16C7x series with an inter-

nal A/D converter for this application. Also there is a mailing list for PIC

programmers where one can �nd useful hints and solutions to their problems

(PICLIST@MITVMA.MIT.EDU). In addition, Microchip provides a software

library for these processors containing useful routines such as binary coded

decimal (BCD) to binary conversion, 16-bit divide/multiply, and notch �lter,

which dramatically reduces prototyping time and cost.

1.4 Scope of the Report

In this report, I develop two low-cost systems to decode standardized

transmitted signals: broadcast time/frequency signals, and Dual Tone Multiple

Frequency signals. I implement each decoder on a PIC microcontroller from

Microchip Technology Inc. [12]. These applications show how microcontrollers

can be used in low-bandwidth applications to reduce the system cost.

Chapter 2 describes the WWVB US time and frequency standard.

We present our new, low-complexity decoding algorithm for obtaining global

time information and describe our novel method for generating a frequency ref-

erence. We also present the microcontroller implementations for both decoders.

15

Chapter 3 focuses on decoding of Dual Tone Multiple Frequency (DTMF) sig-

nals. It summarizes the international standard for DTMF signals established

by the International Telecommunication Union (ITU). We describe our new,

e�cient, ITU-compliant DTMF decoding algorithm. A detailed analysis of

the memory requirements and the computational complexity for a microcon-

troller implementation and a DSP processor implementation is also presented

in Section 3.4 of Chapter 3.

Chapter 2

Real-time Low-cost Decoding of Broadcast Time and

Frequency Standard

2.1 Introduction

The notion of time and frequency is very important to us. Without

even realizing it, we use time and frequency in our day-to-day lives. We need

to be on time to catch a ight. Parking meters need to keep track of the time

that has expired since the insertion of coins. Power companies supply power

at 60 Hz. The telephone dial tone is a 400 Hz tone added to a 350 Hz tone.

Time and frequency are in fact very much interrelated. The rate at

which events (pulses) occur is called frequency. One pulse (event) per second

has a frequency of 1 Hz. An interval over which these events occur is called

time. Wristwatches maintain the notion of a second by counting oscillations of

a quartz crystal.

For most of us, high-precision accuracy of time and frequency informa-

tion is not so important. Some businesses, however, need precise frequency and

global time information, including power companies, radio and television sta-

tions, astronomical observatories, the aerospace industry, and telephone com-

panies. These industries need to calibrate timing to a reliable, internationally

recognized standard.

The Time and Frequency Division of the National Institute of Science

16

17

and Technology (NIST), which is located in Boulder, Colorado, is responsi-

ble for maintaining and distributing the time and frequency standard for the

United States. The NIST time standard is a highly accurate standard based

on a Cesium atomic clock. NIST makes this standard available to the public

by telephone and radio services. The time of day, frequency reference and time

interval are broadcast from radio stations WWV located in Ft. Collins, Col-

orado, WWVH located in Kauai, Hawaii, and WWVB located in Ft. Collins,

Colorado, as well as GOES (Geostationary Operational Environmental Satel-

lite) satellites [13]. Note that WWV, WWVH and WWVB are names of radio

stations and not acronyms. The transmitted time is Coordinated Universal

Time (UTC) a.k.a. Greenwich Mean Time (GMT). UTC of course di�ers from

the local time usually by a speci�c number of hours.

WWV and WWVH are high-frequency services while WWVB is a

low-frequency service. WWV transmits time and frequency information at 2.5,

5, 10, 15 and 20 MHz. WWVH transmits time and frequency information at

2.5, 5, 10 and 15 MHz. WWVB uses a 60 kHz carrier for transmitting the time

and frequency information. Existing WWVB time decoders are commercially

available in the form of integrated circuits. The integrated chips o�er a single

chip solution with or without an RS232 interface. Clocks using such integrated

receivers range in price from $30 to $100. Some wristwatches such as the

Atomic wristwatch from Arckon use the WWVB signal to maintain accurate

time. However, they are rather expensive and range in price from $150 to $200.

In our decoder, we �rst convert the 60 kHz analog signal into a digital

signal and then track the power of the digital signal to decode the time infor-

18

mation. We also obtain an accurate frequency reference synchronized to the

NIST primary frequency standard. This frequency reference can be used as a

secondary standard to calibrate other frequency sources since it is referenced to

the NIST primary standard. The key innovations are new, zero-bu�ering algo-

rithms and microcontroller implementations to (1) decode WWVB time code

information and (2) generate an accurate frequency reference using a pulse-

width modulator, from the WWVB signal. The key to the microcontroller

implementation is to use bandpass sampling of the WWVB signal to reduce

the sampling rate (and hence the data rate) by a factor of 20. A key for the

frequency reference generation is the Friedman interpolator which is explained

in Section 2.2.2.

Our technique has low complexity and is ideal for an implementation

on a microcontroller which range in price from $2 to $15 in volume of 100.

We prototype the time information decoder on a 10 MHz, 2.5 MIP PIC16C71

and the frequency reference generator on a 10 MHz, 2.5 MIP PIC16C72 mi-

crocontroller, which cost $4 and $6 respectively in volumes of 100 units. The

total cost of the decoder including the antenna should be approximately $15 to

$20. Our decoder provides a cost-e�ective alternative to the existing WWVB

decoders.

2.2 Background

We use the 60 kHz pulse-width modulated WWVB signal to obtain

global time and an accurate frequency reference. The power of WWVB sig-

nal carries the time code information. We explain WWVB time code in Sec-

19

tion 2.2.1. Section 2.2.2 explains the Friedman interpolator. We use the Fried-

man interpolator to obtain the phase information of the incoming 60 kHz signal

and generate a reference frequency.

2.2.1 WWVB Time Code

Radio station WWVB is located near Ft. Collins, Colorado. WWVB

continuously broadcasts time and frequency signals at 60 kHz, primarily for

the continental United States. The WWVB signal carries only the time code

and no voice announcements. The transmitted accuracy of WWVB is normally

better than 1 part in 100 billion (1 � 10�11). Day-to-day deviations are less

than 5 parts in 1000 billion (5 � 10�12). The BCD time code can be received

and used with an accuracy of approximately 0.1 ms. When proper receiving

and averaging techniques are used, the received accuracy of WWVB should be

nearly as good as the transmitted accuracy [14].

The WWVB time code is synchronized with the 60 kHz carrier and

is broadcast continuously at a rate of 1 pulse per second using pulse-width

modulation. Each pulse is generated by reducing the carrier power 10 dB at

the start of the second, so that the leading edge of every negative-going pulse

is on time. Full power is restored either 0.2, 0.5, or 0.8 seconds later to convey

either a binary \0", binary \1", or a position marker, respectively [15].

The WWVB time code is sent in a Binary Coded Decimal (BCD)

format (see Figure 2.1). The binary-to-decimal weighting is 8-4-2-1. The most

signi�cant bit is sent �rst. The decimal number is obtained by multiplying

each bit in the binary group by its weight and then adding the four products

20

Figure 2.1: A sample time code format broadcast by radio station WWVB

together. For example, the binary group 0101 is equal to 5 which comes from

(0� 8) + (1� 4) + (0� 0) + (1� 1).

Every minute, the WWVB station transmits a time code that contains

the current minute, hour, day of year, 2 digits of the current year, a UT1

correction, and Daylight Savings Time (DST) and leap year indicators. UT1

is a time scale derived by astronomers who monitor the speed of the Earth's

rotation [14]. UT1 corrections are to the nearest 0.1 s and show if UT1 is

positive or negative with respect to UTC. A BCD group of four bits is used to

represent a decimal number from 0{9. Some bits in the BCD groups are unused,

21

but may provide additional information in the future. Two BCD groups are

needed to express the hour (00 to 23), minute (00 to 59), and year (00-99); and

three groups are needed to express the day of year (001 to 366). To represent

units, tens, or hundreds, the basic 8-4-2-1 weights are simply multiplied by 1,

10, or 100 as appropriate. The coded information refers to the time at the start

of the one-minute frame. Seconds are determined by counting pulses within

the frame. Each minute begins with a frame reference pulse lasting for 0.8

seconds. A position identi�er pulse lasting for 0.8 seconds is transmitted every

10 seconds.

2.2.2 Friedman Interpolator

Our WWVB decoder for the frequency reference is based on the Fried-

man interpolator. The Friedman interpolator is an algorithm to estimate the

frequency of a single sinusoid in white noise, based on the computation of the

interval between zero crossings [16]. In the following analysis, only the negative

to positive going zero crossings of the sinusoid are considered.

At the arrival of the �rst positive sample following the zero crossing,

the estimate of the period of the sinusoid Te(n) is computed as

Te(n) = [K(n)� �(n) + �(n� 1)]Ts (2.1)

where K(n) is the number of sampling intervals between the positive samples

following the (n � 1)th and nth zero crossings, and �(n)Ts and �(n � 1)Ts are

the time intervals between these zero crossings and the next positive samples

(Figure 2.2).

22

 (n-1)Ts

K(n)Ts

Ts

Te (n)

t z (n-1) t z (n)

e(n-1)

y

t

e(n-1)

 (n)Ts

Figure 2.2: Frequency estimation by zero-crossing detection

If e(n) is the error made in the computation of the nth zero crossing,

it can be shown [16] that

Te(n) = Tsin + e(n)� e(n� 1) (2.2)

where Tsin is the actual period of the sinewave. The spectrum of Te(n) contains

a DC component which is equal to the period of the incoming signal, and

the spectrum of the error signal which is concentrated in the high-frequency

region. Thus, by using an appropriate lowpass �lter, the period, and thus the

frequency, can be computed to an arbitrary degree of accuracy (of the order of

10�4 to 10�6).

2.2.3 Microchip PIC16C7X Microcontroller Family

We implement the Friedman interpolator and the rest of our WWVB

decoders using 8-bit PIC microcontrollers. The PIC microcontrollers are avail-

23

able in four families{ the 8-bit 8-pin microcontroller family (PIC12CXXX), the

8-bit base-line microcontroller family (18, and 28 pin PIC16C5X), 8-bit mid-

range microcontroller family (18, 20, 28, 40, and 44 pin PIC16CXXX) and the

8-bit high-end microcontroller family (40, 44, 64, and 68 pin PIC17CXXX).

The PIC12CXXX microcontrollers are well-suited for low-end control applica-

tions. The mid-range microcontrollers are better suited for WWVB decoders

than the base-line family because of the advanced peripheral options available

on the mid-range family. Since peripheral interface latency is an important

issue, we choose PIC16C7XX series for implementation of the decoder. The

PIC17CXXX microcontrollers o�er a single instruction multiplication opera-

tion, but have far more computational power than we need for our WWVB

decoders.

The PIC16C7XX microcontrollers contain a high-performance RISC

CPU. They have only 35 single word instructions. All the instructions are

single cycle, except for program branches which require two cycles. Operating

speed is 200 ns per instruction cycle when the CPU is running on a 20 MHz

clock (5 MIPS) or 400 ns per instruction cycle when the CPU is running on

a 10 MHz clock (2.5 MIPS). On the PIC16C7XX microcontrollers, the length

of 1 word is 14 bits. Other features included on the microcontrollers are a

watchdog timer, an 8-bit analog-to-digital converter, a timer module, and a

power saving SLEEP mode. Some microcontrollers of the PIC16C7XX series

also have a pulse-width modulator (PWM) unit. The WWVB decoder needs a

PWM to generate a frequency reference.

We used the PIC16C71 microcontroller for decoding the broadcast

24

time standard. The PIC16C71 has 1000 words of internal program memory

and 36 bytes of data memory. It does not have a PWM unit and has one

timer module. The program memory is UV erasable. The microcontroller

additionally has a 4-channel 8-bit A/D converter. The cost of PIC16C71 is

about $5 in volume (of 100 units).

Generation of a frequency reference requires a PWM unit, and hence

we choose PIC16C72 for this application. PIC16C72 has 2000 words (2000 �

14 bits) of internal memory and 128 bytes of data memory. It has a PWM unit

and a 5-channel 8-bit A/D converter. It also has 3 timer modules. The cost of

PIC16C72 is about $6 in volume (of 100 units).

2.3 Decoding of Broadcast Time

The power level of the 60 kHz transmitted signal carries the WWVB

time code information. We need to track the 60 kHz signal power levels to

extract the time code. Our decoder has two parts| a signal processing front-

end and a decision logic back-end. The signal processing front-end is composed

of a sampler, which samples the continuous-time analog signal to convert it

into a discrete-time digital signal, and a power estimator, which estimates the

power of the received signal. The decision logic back-end makes decisions on

the bits that are supplied by the signal processing front-end. The back-end is

responsible for calculating the correct local time from the transmitted UTC.

25

2.3.1 Signal Processing Front-end

Although we will be focusing on the signal processing algorithms per-

formed by the microcontroller in this report, we consider the analog receiver

to be a part of the signal processing front-end. The receiver consists of a loop

antenna for receiving the low-frequency band, and a high-Q ampli�er for se-

lecting and amplifying the 60 kHz signal. We use this analog modulated signal

as an input to the analog-to-digital converter. Below, we discuss the operations

performed by the microcontroller on this analog signal.

Sampling and quantization

In our application, broadcast time decoding only needs estimation

of the power level of the signal, and frequency reference generation requires

estimation of the signal phase. For estimating the power of the 60 kHz signal,

we convert the analog signal into a digital signal. We use a PIC microcontroller

with an 8-bit A/D converter to do the conversion. An 8-bit converter has a

dynamic range of approximately 48 dB. When decoding WWVB signals, the

phase estimation algorithm for generating the reference frequency is robust and

gives good performance at low SNR (such as 10 dB). Hence the dynamic range

provided by 8 bits is su�cient and the use of an 8-bit converter is justi�ed.

The Nyquist theorem [17] states that if xc(t) is a bandlimited signal

with

Xc(j
) = 0 for j
 j >
N (2.3)

then xc(t) is uniquely determined by its samples x[n] = xc(nT); n = 0;�1;�2; ::,

if and only if

s =
2�

T
> 2
N : (2.4)

26

- Fc Fc
f

Amplitude

- Fc Fc
f

Amplitude

(a) (b)

Figure 2.3: Spectrum of a (a) sinusoidal signal, and (b) complex signal

where Xc(j
) is the Fourier transform of xc(t),
s is the sampling frequency,

and
N is the maximum frequency in the signal. The frequency
N is com-

monly referred as the Nyquist frequency, and the frequency 2
N that must

be exceeded by the sampling frequency is called the Nyquist rate. Sampling

at any frequency at or below the Nyquist rate will cause aliasing, which is

a phenomenon which causes high analog frequencies to appear as low digital

frequencies.

The WWVB signal is a pulse-width modulated (PWM) message which

is in turn modulated by a 60 kHz sinusoid. The PWM message consists of 1

pulse per second (1 Hz). Since the WWVB signal is extremely narrowband,

we model it as a pure sinusoid. According to the Nyquist criterion, we need

to sample this signal at more than 120 kHz. This frequency is too high for an

application to be implemented on a microcontroller. However, in this applica-

tion, we show that aliasing is actually bene�cial and allows the application to

be realized on a microcontroller.

Figure 2.3 shows the di�erence in the spectral content between a

complex signal and a pure sinusoidal signal. Sampling a pure sinusoid at a

27

f

Amplitude

-F c -F s Fs Fc

Figure 2.4: Sampling of a sinusoid signal of frequency Fc at a frequency Fs

which is less than the Nyquist rate i.e. Fs < 2Fc. The dotted lines show the
spectrum of a lowpass �lter to extract the sinusoid of lowest frequency.

frequency which is lower than the Nyquist rate and following it by a lowpass

�lter would result in another sinusoid but of a di�erent frequency [18], as shown

in Figure 2.4. Since our aim is to track the changes in signal power, the

frequency of the digitized signal is irrelevant. Hence it is possible to sample

the 60 kHz signal at a frequency lower than the Nyquist rate.

The sampling frequency is restricted by the following �ve constraints:

1. The transmitted frequency must not be an integer multiple of the sam-

pling frequency. Otherwise, the lowpass component of the aliased signal

would be the DC component. Thus, all the information about the signal

would be lost.

2. The sampling frequency should be low enough that we can perform all

28

the required calculations on the present sample before the next sample

arrives.

3. The sampling frequency should high so that we receive as many samples

as possible to achieve a more accurate estimate of the power.

4. The sampling frequency should map as an integer timer count on a mi-

crocontroller.

5. The sampling frequency should be greater than 2 Hz, which is twice the

bandwidth of the message signal.

The �rst condition eliminates all frequencies whose integer multiple is

60 kHz, e.g. 1, 2, and 4 kHz, from being used as sampling frequencies. We could

use 16 kHz for sampling, but it violates the second condition because it only

gives 62.5 �s to perform the calculations between incoming samples. Taking

all of these factors into consideration, we choose 6.25 kHz for the sampling

frequency. Details about the choice of 6.25 kHz will be covered in Section 2.5.

Power estimation

Accurate estimation of the power of the received 60 kHz signal is a

critical task in the decoding of the WWVB signal. Each pulse is generated by

reducing the carrier power by 10 dB at the start of each second. Depending

on the restoration of power 0.2, 0.5, or 0.8 seconds later, a binary \0", binary

\1", or a position marker, respectively, is conveyed.

The signal power estimator has to be simple, e�cient, accurate, and

fast. Since microcontrollers do not have a multiply instruction, we want to

reduce the number of multiplications in our power estimator. Hence, we cannot

29

use a high-order �lter. In our implementation, we have used a single-pole

in�nite impulse response (IIR) �lter to estimate the signal power [19]. For a

real pole located at �, the relation between the estimated power P (n) and the

received signal x(n) is

P (n) = � P (n� 1) + (1� �) x2(n) (2.5)

where 0 < � < 1. For stability, j � j < 1. When � is close to 1, the current

estimate of the power depends more on the previous estimate of the power than

on the instantaneous value of signal power (like a weighted average). When �

is close to 0, the power estimate depends heavily on the instantaneous value of

the signal amplitude, causing large uctuations in the power estimate. Thus,

value of � is selected somewhere between 0 and 1. We use a value of 0.875 for

� which has an exact representation as an 8-bit fractional number. This value

of � gives a very fast and accurate estimate of the power.

Initially, the power estimator tracks the signal to �nd two signal power

levels{ one corresponding to high power and another corresponding to low

power. Once the two power levels have been established, we set a threshold

midway between these values. As soon as the estimator �nds the power below

the threshold, it starts a timer to count the duration of the low power level.

Based on the timer count, the estimator then decodes either bit 0, 1, or a

position marker.

2.3.2 Decision Logic Back-end

The output of the signal processing front-end is a binary \0" or binary

\1". After obtaining the binary bits, we have to decode them so as to obtain

30

the correct time. This would include adjusting the day and time depending on

the following bits:

1. daylight savings time

2. UT1 correction

3. leap year

Since the transmitted time is UTC, the product which implements this WWVB

decoder also needs to adjust the displayed time depending on which time zone

(Eastern, Central, Mountain or Paci�c) was selected.

The control logic needed to implement the decoder is large, but it is

manageable due to the type of instructions on the PIC microcontroller. For

example, the PIC microcontroller has branch on bit test instructions. These

instructions can test any bit in any register and can branch accordingly to a

given destination.

2.4 Generating a Frequency Reference

Many techniques exist for frequency calibration [20]. One such tech-

nique uses a time interval counter to measure the frequency di�erence with

a high degree of precision (on the order of 10�12 s). Another technique for

comparing two signals involves measuring the change in phase between the two

signals. Both signals are applied to a linear phase comparator and the dif-

ference is used to calibrate the frequency source. In our novel technique, we

use a pulse-width modulator (PWM) which is available on some of the PIC

31

microcontrollers to generate an accurate frequency reference. We maintain the

accuracy of the PWM frequency generator by calibrating it with the WWVB

signal which is referenced to the primary frequency standard at NIST.

The Time and Frequency Division of NIST also maintains a primary

frequency standard. The 60 kHz signal which carries the WWVB code is cali-

brated to the NIST primary frequency standard. Thus, it is extremely accurate.

It is possible to obtain a secondary frequency reference calibrated to the NIST

primary frequency standard with the help of a Friedman interpolator [16]. We

use a new technique for generating a frequency reference. The Friedman algo-

rithm is modi�ed for estimating the phase information of the received signal.

By knowing the phase of the sinusoid, we can know the exact time that has

elapsed from the previous zero crossing. We have generated a frequency refer-

ence of 1250 Hz with a relative frequency of at least 10�4 to 10�6 using this

phase information. Details about the implementation are discussed in the next

section.

2.5 Decoder Algorithms and Implementations

We implement the time information decoder and the reference fre-

quency generator, based on WWVB signal, using PIC microcontrollers from

Microchip Technology Inc. The software for broadcast time decoder and fre-

quency reference generator was initially tested on a simulator from Microchip

Technology Incorporation. The broadcast time decoder was also prototyped

on a hardware demonstration board provided by Sirius Microsystems which is

connected to a loop antenna tuned to 60 kHz.

32

As discussed in Section 2.3, a sampling frequency of 6.25 kHz was

used to sample the 60 kHz signal. This is equivalent to a sampling interval of

160 �s so that we can execute up to 400 instructions between incoming samples

(when run on a 10 MHz clock which delivers 2.5 MIPS). The timer needs to be

loaded with a speci�c value, so that it generates an interrupt every 160 �s. The

following calculations show how to compute the timer value. The PIC16C71

and PIC16C72 were run at 10 MHz for this application.

1 instruction cycle = 400 ns (at 10 MHz)

sampling interval = 160 �s

timer value =
160� 10�6 s

400� 10�9 s
= 400

Both PIC16C71 and PIC16C72 have 8-bit timers which can hold val-

ues up to 256. The timer, however, is provided with a prescaler. Adjusting

the prescaler value to n decrements the timer every n cycles. Here, we set the

prescaler value to 2, so that the timer decrements every 2 cycles. Thus, the

original timer value of 400 is now equivalent to 200, which �ts into 8 bits.

2.5.1 Decoding of Time Standard

The decoder works in three distinct phases. Phase 1 is the power

tracking phase. The decoder enters this phase on power-up. In this phase, the

decoder tracks the 60 kHz signal to �nd two distinct power levels. The power

estimator is a �rst-order IIR �lter as described by (2.5). Figure 2.5 shows

output of the estimator for an input test data sequence. When the power level

changes, the power estimator tracks the power change as shown in Figure 2.5.

33

0 100 200 300 400 500 600 700 800 900
−10

−8

−6

−4

−2

0

2

4

6

8

10

signal
power
threshold

Figure 2.5: The WWVB power estimator output for synthetic data sequence.

Figure 2.6 shows the program ow in phase 1. In state A, the program

waits for the timer interrupt. Upon timer interrupt, the program enters the

interrupt service routine (ISR). ISR reloads the timer with the value 200 and

sets the interrupt status bit. After the program returns from the ISR, the main

program enters the data processing module. The power estimator estimates

the current power (CP) according to (2.5). The current power is then checked

with the previous power to determine whether the di�erence is within a �xed

tolerance level. If the di�erence is less than the tolerance level, the power has

stabilized. The program then checks whether the �rst power level has been

established. If it has not been established, the program waits until the power

has stabilized for certain period, and then equates the �rst power level P1 to

this level. It also sets P1 detect indicating that the �rst power level has been

established. The program then waits for the power level to change to a second

level. When the power level changes, the power estimator tracks this change.

Once the power has stabilized to the new level, the second power level P2 is

34

?

| CP - PP |

?

< P1_TOL

?

?
T_C - -

T_C = 0

?

P2 = CP

THR = P1+P2
2

T_C = x

EOP = 1

?
T_C = - -

T_C = 0

?

P1 = CP

T_C = x

P1_TOL = 0.2*P1

A

A B

NO

YES

NO YES

YES

NO

NOYES

YES

NO

NOYES

YES

NO

Estimate
Power

CP = Current power
PP = Previous power
P1 = First stabilized power level
P2 = Second stabilized power level

P1_TOL = Variation of power
= 0.2 * CP

about P1
= 0.1 * P1

TOL = Variaton of power about the current power

T_C = Timer count
x = Variable to which T_C is initialized

(fixed by the programmer)
THR = Threshold for determining the power dip

EOP = End of phase 1

| CP - P1 |

< TOL

P1_detect = 1

P1_detect = 1

P_stable = 1

P_stable = 1

P_stable = 1

P_stable = 1

P_stable = 1

P_stable = 1

P_stable = Indicates that the power has stabilized
P1_detect = Indicates that the first power level

has been established

Figure 2.6: Program ow for phase 1 of the WWVB time code decoder

set equal to this new level. The program then exits from phase 1.

Once the two power levels have been established, the decoder sets a

threshold to determine the dip in power. The threshold is set to half the sum of

the two power levels P1 and P2, as shown by the dashed line in Figure 2.5. The

program then enters phase 2, which is the start of minute tracking. Figure 2.1

shows that WWVB time code transmits a position marker of 0.8 seconds in

duration every 10 seconds. It also transmits a position marker of 0.8 seconds

in duration at the start of each minute. Thus, the start of a minute can

be uniquely identi�ed by two consecutive position markers of 0.8 seconds in

35

duration. The decoder tracks the power and decodes the bits until it lands on

two consecutive position markers. This indicates the start of minute.

BCD decoding begins in phase 3. Once the decoder enters this phase,

it remains in it until power loss is detected. In phase 3, the decoder decodes

the BCD time code sent on the 60 kHz carrier to obtain accurate global time

information. If the decoder loses track of the signal, it keeps updating the clock

by calculating seconds from the available clock cycles. Every few minutes, the

decoder wakes up and tries to track the signal. If it locks onto the signal, then

it resumes its normal operation.

Our technique has very low computational complexity. A maximum

of three multiplications per sample is required in phase 1, while phase 2 and

phase 3 require two multiplications per sample. The program does not require

any divisions. We replace the square of the input sample in (2.5) by the absolute

value of the input sample. By doing so, the power estimator does not track

the exact power of the incoming signal. However, the power estimator still

tracks the signal strength accurately. Hence, converting the square of the input

sample to the absolute value does not a�ect the performance of the decoder.

It, however, removes a multiplication operation in the data path. Thus, all

the multiplications are between a variable and a constant and are optimized

for length and run time (See Appendix A.2). The proposed technique is not

only computationally e�cient, but also requires signi�cantly less program and

data memory. Table 2.1 shows the analysis for the required memory and the

number of multiply and divide operations.

36

2.5.2 Obtaining a Frequency Reference

We use the Friedman interpolator to extract the phase information

of the 60 kHz signal. The Friedman interpolator accurately estimates the fre-

quency and hence the period of a sinusoid in white noise. This means we can

accurately determine the phase, or the distance from the previous zero crossing,

of the current sample (refer to Figure 2.2). This information can be used to

generate a frequency reference. Next, we describe the method for generating

the frequency reference.

The PWM unit of the PIC16C72 microcontroller generates a square

wave of speci�ed period and duty cycle. The period and duty cycle counts are

stored in two PWM registers. Timer 2 is an 8-bit register associated with the

PWM unit. It has a prescaler and a postscaler. Depending on the prescaler

value n, the timer is incremented every n cycles, until it matches the PWM

period count. The timer starts counting from 0 and the PWM outputs high.

When the timer value equals the duty cycle count, the PWM output is made

low. When the timer value equals the period count, the PWM output is again

made high and the timer is reset to zero.

Once the Friedman interpolator locks onto the signal and the fre-

quency estimate stabilizes, the PWM unit is started at the �rst sample after

a positive going zero crossing. At each positive going zero crossing, �(n)Ts

(refer to Figure 2.2) is calculated. Since we know the period of the sinusoid

accurately, we can calculate the time that this sample occurs from the last

zero crossing time. This time can then be converted into an appropriate timer

count by diving it by prescaler value n times the instruction cycle speed. This

37

timer value is compared with the actual timer 2 value. Any di�erence between

the two is stored. The di�erence may not be accurate per cycle because of the

phase jitter. Phase jitter occurs due to the propagation delays of the WWVB

signal along the path from Ft. Collins. The phase shifts occur when sunrise

and sunset occur along the path from the transmitter to receiver [13]. In our

analysis, we assume that these phase changes are periodic over a period of 1

day. To remove the e�ects of phase shift, we keep a moving average of the

di�erence between the calculated timer value and the actual timer value. At

the end of one day, the di�erence is incorporated into the timer count. The

whole process is then repeated again.

For a better analysis of the phase shifts, a phase recording from a sta-

ble VLF and LF radio station can be used. The phase recording information

consists of monthly and weekly notices of the actual phase of the signal (mea-

sured in microseconds). NIST publishes data for WWVB, and the U.S. Naval

Observatory (USNO) publishes data for a number of LF and VLF stations [13].

We can also place limits on the absolute value of the di�erence between the cal-

culated timer value and the observed timer value. If the absolute value of the

instantaneous di�erence is greater than the limit, we can disregard it because

it most probably will be due to a large phase shift.

All applications involving microcontrollers or microprocessors usually

run on a quartz (crystal) oscillator. Stable crystal oscillators costing $1000

or more have a relative frequency of 10�13 per day. Relative frequency is

de�ned as
factual � fdesired

fdesired
. Cheaper crystal oscillators (as low as $1) have

a relative frequency of approximately 10�4 to 10�6 per day. This means that

38

Program Data Multiplications Divide

Memory Memory per sample per

sample

Decoding the 800 words 22 bytes 3 0
time standard
Generating a 500 words 15 bytes 1 1
frequency reference
Combined decoder 1300 words 40 bytes 4 1

Table 2.1: Worst case analysis of memory requirements and computational
power for implementing the WWVB decoder.

the oscillator frequency variations will be approximately 10�4 to 10�6 in a

day. Once the phase shift error has been compensated by one of the methods

described above, a frequency reference with a relative frequency of 10�7 to 10�9

can be generated.

Table 2.1 shows the approximate analysis of the program and data

memory required for generating a frequency reference. It also gives the number

of multiplications and divides required. The Friedman interpolator requires one

multiply and a divide per sample.

2.6 Conclusions

We present a new approach to decode WWVB broadcast time infor-

mation and generate an accurate frequency reference calibrated to the NIST

primary standard. This reference frequency has a relative frequency of at least

10�4 to 10�6 and can be used as a secondary standard for calibrating local

frequency sources. The key innovations are new, zero-bu�ering algorithms and

39

microcontroller implementations to decode the WWVB time code information

and to use a pulse-width modulator to generate an accurate frequency reference

from the WWVB signal. We implement the time information decoder and the

frequency reference generator on PIC microcontrollers. The microcontroller

based decoder is at least half the cost of the existing WWVB decoders.

The decoders were tested on separate microcontrollers of the same

family (PIC16C7X). A combined decoder can be implemented on a PIC16C72.

The combined decoder will require 1300 words of program memory and ap-

proximately 40 bytes of data memory, as shown in Table 2.1. The PIC16C72

has 2000 words of data, 128 bytes of data memory, 1 PWM module, and 3

timers. Our combined decoder for decoding the broadcast time information

and generating an accurate frequency reference is the �rst to be implemented

on a microcontroller.

Chapter 3

Dual Tone Multiple Frequency (DTMF) Decoding

3.1 Introduction

In the 1940's, engineers at Bell Labs �gured out a better alternative

than the dial pulse system for long distance dialing, interactive dialing, and

reliability. Using pulses, dialing a `0' digit requires 10 pulses which last for a

total of 1 second. Their research showed that tones could represent digits that a

person was dialing. They came out with a signaling system in which two tones

were used to represent a digit. They called this signaling system touchtone

a.k.a. Dual Tone Multiple Frequency (DTMF) signaling system. The initial

DTMF standard, developed by Bell Labs, supports a maximum dialing rate of

10 pulses per second for DTMF signaling. A more recent standard supports 20

digits per second.

3.1.1 Generating DTMF Signals

Dual Tone Multiple Frequency (DTMF) signaling system enables end-

to-end signaling. DTMF signals are commonly used in touchtone dialing ap-

plications such as telephone dialing in public and private exchanges, military

phone systems, digital answering machines, and interactive banking and reser-

vation systems. The DTMF dialing scheme is shown in Figure 3.1. A DTMF

signal is composed of two sinusoidal tones. Whenever a key is pressed, a DTMF

40

41

1 2 3

4 5 6

7 8 9

A

B

C

* 0 # D

 1209 Hz 1336 Hz 1477 Hz 1633 Hz

697 Hz

770 Hz

852 Hz

941Hz

Column
Row

Figure 3.1: Dual-Tone Multiple Frequency (DTMF) scheme for touchtone di-
aling. When a key is pressed, two sinusoids at the row and column frequencies
are added together.

signal consisting of a row frequency tone plus a column frequency tone is trans-

mitted. These frequencies lie in two mutually exclusive frequency groups of four

frequencies each. The row group of frequencies lie below 1 kHz and column

group of frequencies lie between 1 kHz and 2 kHz. The keys corresponding to

the fourth column (1633 Hz) are not implemented on telephone sets, but are

used in military applications.

3.1.2 Standards for DTMF Detection

The problem of decoding DTMF signals is essentially a problem of

spectral estimation. To decode the DTMF signals, we need to �nd out the two

frequencies in the signal. However, International Telecommunication Union

(ITU) has given speci�cations for decoding DTMF signals, which are shown in

42

Table 3.1. The ITU requirements state that the DTMF decoder should cor-

rectly decode all DTMF signals whose high and low frequency tones have a

tolerance of � 1.5% or less. If the tolerance is above � 3.5%, the DTMF signal

should be rejected as invalid. The ITU speci�cations also have very stringent

timing requirements and require that the DTMF detector should operate satis-

factorily with a worst-case SNR of 15 dB. The Bellcore speci�cations, however,

require that the detector should have 100% detection at 18 dB SNR and higher.

Bellcore also provides digit simulation test tapes to measure the performance of

the decoder against talk-o�. False detection of speech signals as DTMF signals

is called talk-o�. Bellcore speci�es the maximum number of false detects that

a DTMF detector should not exceed.

� Valid DTMF tones should have a frequency tolerance within � 1.5 %.
Tones that are o�set by � 3.5 % should not be detected.

� The DTMF tones should have a minimum length of 40 ms.
Tones of length less than 23 ms should be rejected.

� A DTMF signal with an interruption of less than 10 ms
should not be detected as two distinct tones.

� DTMF signals separated by a pause time of at least 40 ms
must be detected as two distinct digits.

� The receiver should work in a worst-case signal-to-noise ratio (SNR)
of 15 dB and with an attenuation of 26 dB.

� The receiver must operate with a maximum of 8 dB normal twist and
4 dB of reverse twist. Twist is de�ned to be the di�erence in decibels
in the amplitudes of the two fundamental tones of the DTMF signal.

� The receiver should operate in the presence of speech without
incorrectly identifying the speech signal as a valid DTMF tone.
Speech being detected as a DTMF signal is called as talk-o�.

Table 3.1: ITU requirements for a DTMF decoder

43

Many algorithms [21] [22] [23] [24] [25] have been reported for de-

coding DTMF signals. However, only a few of them [24] satisfy all of the ITU

requirements. In addition, almost all of them are computationally intensive and

necessitate the use of a 16-32 bit digital signal processor (DSP). This chapter

describes a new, low-complexity, ITU-compliant method for detecting DTMF

signals using an 8-bit microcontroller. The new technique requires zero bu�er-

ing. A unique feature of this decoder is the decoupling of the design of the

signal processing functions from the design of the decision logic functions. Our

decoder uses robust decision logic to check whether a DTMF digit satis�es the

ITU requirements. We use an extremely accurate timing measurement tech-

nique to ensure that our detector performs the best timing validation checks

from among the available DTMF decoders. The new method requires about

30 multiplications per sample. Our method is the �rst ITU-compliant method

for detecting DTMF signals on a microcontroller. On a DSP processor such

as the Texas Instruments TMS320C54x at 50 MIPS, our algorithm can decode

24 voice channels corresponding to a T1 time-division multiplexed telecommu-

nications line. The new method was developed in collaboration with Crystal

Semiconductor Corporation (Austin, TX). The initial development of the algo-

rithm was done by Shawn R. McCaslin when he was at Crystal Semiconductor

Corp. He is now with Cicada Semiconductor Corporation (Austin, TX).

3.2 Previous DTMF Decoders

There are many ways to decode DTMF digits. Most integrated circuit

decoders use eight sharp-tuned bandpass �lters to detect the presence of DTMF

tone frequencies [21]. A digital post-processor measures the tone durations and

44

provides correctly coded digital outputs. This scheme is usually implemented

on integrated circuits using switched capacitor technology. They also use a

350 Hz and a 440 Hz notch �lter to remove the dial tone interference from

the DTMF signal. We use these �lters in our decoder front-end. Some of

the manufacturers of such integrated DTMF receivers are Mitel Corp., Harris

Semiconductor Corp., and Teltone [26]. The other complementary approach

is to detect the DTMF digits digitally. Again, several techniques for digital

DTMF detection have been used. Below, we discuss some of these techniques.

The most popular method for digital DTMF detection is based on

the discrete Fourier transform (DFT) which is typically implemented using the

Goertzel DFT algorithm. The Goertzel algorithm formulates the computation

of DFT as an in�nite impulse response (IIR) �ltering operation. A bank of M

second-order IIR �lters can be used to calculate M DFT coe�cients [1]. For

DTMF detection, we are interested in eight frequencies, so there will be eight

parallel IIR resonators to calculate the eight values of the DFT.

The general approach of a Goertzel-based DTMF detector is to ex-

amine the energy of the received signal at the eight DTMF frequencies in order

to determine whether a valid DTMF tone pair was received [27]. The Goertzel

algorithm requires one real coe�cient and one complex coe�cient. For an N

length DFT, the Goertzel algorithm only uses the complex coe�cient on the

Nth input sample. By taking the absolute value of the square of the Goertzel

output, we can compute the power at a DTMF frequency and eliminate the

use of the complex coe�cient [22]. The Goertzel algorithm computes one DFT

coe�cient using N multiplications and 2 N additions [28].

45

Many modi�cations to the Goertzel algorithm have been applied to

DTMF detection. Most methods use a �xed window size of N samples for all

eight Goertzel algorithms. The choice of window length is a tradeo� between

the frequency resolution and timing requirements. Most DTMF decoders use

a window length that yields a window bandwidth that is too large to satisfy

the ITU frequency tolerance requirements. The window length is also used

to perform the timing checks. A typical window size used is 13.33 ms [28].

If a DTMF digit is valid across two or more windows a valid DTMF digit is

signaled. This approach, however, does not guarantee that the DTMF digit

meets the timing requirements [24].

Another DFT based approach is to use the non-uniform discrete

Fourier transform (NDFT) to decode the DTMF digits [23]. The NDFT algo-

rithm calculates the energy of a DTMF signal at the exact DTMF frequencies.

The original approach, however, does not meet the ITU frequency tolerance

and timing requirements. A modi�cation of the NDFT algorithm is applied

in [24]. The modi�ed NDFT method requires about 30 multiplications per

sample. It meets all the ITU and Bellcore recommendations. A US patent has

been submitted for the modi�ed NDFT method.

A di�erent approach for DTMF detection is to use adaptive digital

�ltering [21]. The DTMF signal is split into a low frequency tone and high

frequency tone. Two adaptive IIR �lters estimate the frequency and amplitude

parameters of these two tones. Another adaptive technique, an LMS-based

normalized direct adaptive frequency estimation technique, has been tested for

DTMF detection in [25]. Although the method is fast and easy to implement,

46

it has a poor frequency resolution. The method is not robust in noise and does

not satisfy the ITU SNR requirements.

In another linear prediction (LP) based algorithm, the DTMF signal

is split into two bands. The detector analyzes each band separately and tries to

adaptively estimate the roots of the second-order polynomial 1�a1z
�1
�a2z

�2.

The roots reveal the frequency content [22]. The algorithm, however, fails

to meet the ITU timing requirements since it uses a �xed frame length of

13.33 ms. The algorithm needs the computation of the covariance matrix.

The resolution of the LP algorithm is a function of the number of samples

in the covariance matrix [22]. Thus, frequency resolution increases with an

increase in the number of samples, but at the cost of a quadratic increase in

the computational complexity.

An entirely di�erent approach to DTMF detection uses subspace tech-

niques like Multiple Signal Classi�cation (MUSIC). MUSIC was tested for

DTMF detection in [25]. Although subspace techniques could meet ITU speci-

�cations, they are computationally intensive and di�cult to implement in real-

time. An excellent comparison between the subspace, adaptive, and Goertzel

DFT techniques for DTMF detection can be found in [25].

3.3 Proposed Method

The new, low-complexity DTMF detector is shown in Figure 3.2. A

unique feature of this decoder is the separation of signal processing functions

from the decision functions. The detector consists of two distinct sections{ a

signal processing front-end and a decision logic back-end. The signal processing

47

350 Hz

notch

440 Hz

notch

filterfilter

D
E
C
I
S
I
O
N

Semi-adaptive

notch

filter

notch

filter

Adaptive

Low

High

Semi-adaptive Adaptive

estimator

frequency

filter

notch

filter

notch

filter

notch

filter

notch

estimator

frequency

Power
estimator

DT

HF

LF

ValidInput
High

Low

LF = Low frequency estimate
HF = High frequency estimate
DT = Detect

 = 0 if signal power < threshold (noise only)

frequency
estimate

detectsignal frequency
estimate

 = 1 if signal power >= threshold (signal+noise)

1421 Hz

819 Hz

O
G
I
C

L

Figure 3.2: Block diagram of the DTMF detector

front-end estimates the frequencies in the incoming signal and also estimates

the signal and noise power. The decision logic back-end includes the decision

logic which determines whether a DTMF signal is ITU-compliant or not.

3.3.1 Signal Processing Front-end

The incoming signal on the input channel is sampled at the standard

telecommunications sampling rate of 8 kHz. The sampled signal is then passed

through a 350 Hz notch �lter and a 440 Hz notch �lters. These two notch

�lters remove the dial tone interference from the incoming signal. In the United

States, the dial tone frequencies are standardized at 350 Hz and 440 Hz. The

dial tone �ltered signal is passed through three distinct data paths { the low

frequency data path, the high frequency data path, and the power estimator

data path.

48

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

A
bs

ol
ut

e
m

ag
ni

tu
de

 r
es

po
ns

e
FIR notch filter
IIR notch filter

Figure 3.3: Frequency response characteristics of FIR and IIR notch �lters

A notch �lter is a �lter having a perfect null at the desired frequency in

the frequency response characteristics. A notch �lter can be created by placing

a pair of complex conjugate zeros on the unit circle at the desired frequency.

The system function for a �nite impulse response (FIR) notch �lter [1] is

H(z) = b0(1� 2 cosw0z
�1 + z�2) (3.1)

The FIR �lter has a relatively large bandwidth which attenuates other fre-

quency components near the null. On the other hand, an IIR notch �lter has

a very sharp notch. The transfer function for the IIR notch �lter is

H(z) = b0
1� 2 cosw0z

�1 + z�2

1� 2r cosw0z�1 + r2z�2
(3.2)

where j r j < 1. The IIR �lter has poles near the zeros which introduces

resonance near the null. The FIR �lter has poles at the origin. Figure 3.3

shows a comparison of the bandwidths of a FIR and an IIR notch �lter.

The large bandwidth of the FIR �lters creates problem for the fre-

quency estimators. We use IIR notch �lters in our decoder. The location of

49

0 50 100 150 200 250 300 350 400
500

1000

1500

2000

2500

3000

3500

Sample number

F
re

qu
en

cy
 e

st
im

at
e

(H
z)

Low frequency estimate
High frequency estimate

0 50 100 150 200 250 300 350 400
500

1000

1500

2000

2500

3000

3500

Sample number

F
re

qu
en

cy
 e

st
im

at
e

(H
z)

Low frequency estimate
High frequency estimate

FIR adaptive notch �lters IIR adaptive notch �lters

Figure 3.4: Frequency estimator outputs for DTMF digit '9'

the poles of the IIR �lter in (3.2) can be varied by changing the parameter r.

In our implementation, we have chosen the r value to be 0.866.

The adaptive notch �lters in each data path do not change their co-

e�cients to do adaptive �ltering. They take the frequency estimate from the

frequency estimator in the opposite data path and put a notch at that fre-

quency. Since the notch frequency is being adaptively changed depending on

the frequency estimate, we call the �lter an adaptive notch �lter. Once these

�lters converge, the adaptive �lter in the low frequency data path provides a

low frequency signal to the low frequency estimator. Similarly, the adaptive

�lter in the high frequency data path provides a high frequency signal to the

frequency estimator in the same data path.

We use IIR �lters for the adaptive notch �lters. Although the FIR

notch �lters converge faster than the IIR �lters, the large bandwidth of the FIR

�lters creates a lot of interference for the frequency estimators. Figure 3.4 shows

50

the outputs of the frequency estimators in two cases, one using FIR adaptive

notch �lters and the other using IIR adaptive notch �lters. In both cases, we

passed a DTMF digit '9' (852 Hz + 1477 Hz) with 20 dB signal-to-noise ratio

(SNR) through the detector. The FIR �lters fail to converge and hence the

frequency estimate does not stabilize. The IIR �lters converge, although slowly,

and hence the frequency estimate stabilizes to the desired frequencies.

Suppose the high frequency component of the DTMF signal lies in

the lower half of the high frequency group (less than 1400 Hz). If the high

frequency estimate of the frequency estimator is in the upper half of the high

frequency group (above 1400 Hz), the IIR adaptive �lter in the low frequency

data path will take a long time to converge to the actual frequency. Due to

this the detector will not be able to meet the ITU timing requirements. We

eliminated this drawback by introducing a semi-adaptive notch �lter in each

data path.

Since the low frequency data path and the high frequency data path

are essentially the same, we will explain only the low frequency data path. The

semi-adaptive notch �lter in the low frequency data path has a notch at one of

the corner frequencies of the DTMF high frequency group. The semi-adaptive

notch �lter takes the frequency estimate of the high frequency estimator as

a parameter. If the estimate is above 1400 Hz (approximately the center of

the high frequency group), the �lter sets its notch at 1209 Hz (low end of the

high frequency group). If the high frequency estimate is below 1400 Hz, the

semi-adaptive �lter sets the notch at 1633 Hz (high end of the high frequency

group). The semi-adaptive notch �lter aids the adaptive notch �lter in notching

51

the high frequency component from the DTMF signal. By putting a notch in

the opposite half of the high frequency group, the semi-adaptive �lter increases

the rate of convergence of the adaptive �lter. The semi-adaptive �lter in the

high frequency data path does a similar job in the DTMF low frequency group.

We introduced an additional �lter in each data path at the center

frequency of the opposite DTMF frequency group. Thus the low frequency

data path has a notch �lter at the center of the DTMF high frequency group

(1421 Hz). The high frequency data path has a notch �lter at the center of the

DTMF low frequency group (819 Hz). These �lters increase the convergence

rate of the adaptive notch �lters. By using these �lters we ensured that our

decoder meets the ITU timing requirements.

The frequency estimators use a highly accurate, frequency estimation

algorithm [16] based on zero crossings. The algorithm is explained briey in

Section 2.4. The spectrum of the estimated period of the incoming sinusoid

contains a DC component which is equal to the actual period of the signal.

To obtain this DC component, we need to lowpass �lter the period estimate.

In order to decrease the order of the lowpass �lter, we implemented the �lter

in two stages. The �rst stage is a simple averaging by two �lter, implemented

implicitly in the frequency estimation algorithm. The second stage uses a �rst

order IIR lowpass �lter of the form given in (3.3):

FE(n) = �� FE(n� 1) + (1� �)� FE(n): (3.3)

where FE stands for frequency estimate. In our implementation, we have used a

value of 0.875 for �. Experimentally, this value of � gives an accurate estimate

of the period and hence the frequency of the sinusoid.

52

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Frequency (Hz)

Ab
sol

ute
 am

plit
ude

Figure 3.5: Transfer function of the low frequency data path

Figure 3.5 shows the transfer function of the low frequency data path

after the frequency estimates have stabilized. The decoder was passed the

DTMF digit '8' which consists of 852 Hz and 1477 Hz tones. There are notches

at 350 Hz and 440 Hz and three more at 1209 Hz (semi-adaptive notch �lter),

1421 Hz and 1477 Hz (adaptive notch �lter). As can be seen from the transfer

function, the DTMF high frequency group is severely attenuated as compared

to the DTMF low frequency group. This emphasizes the low frequency signal

being fed to the low frequency estimator.

The power estimator tracks the power of the signal component and

the power of the noise component of the incoming noisy signal. It is di�cult

to separate the signal component from the noise component. However, since

the DTMF signal occurs in bursts, the signal power can be tracked as a short

term average of the power. The power estimator uses a �rst-order IIR �lter to

track the signal power.

P (n) = �� P (n� 1) + (1� �)� j s(n) j (3.4)

where P (n) is the current power and s(n) is the current signal sample. In

53

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
−25

−20

−15

−10

−5

0

5

10

15

20

25

Input signal
Signal power
Noise power
Threshold
detect

Figure 3.6: The power estimator in the DTMF detector

our implementation, we have used a value of 0.95 for �. The noise power is

computed as the long-term average of the power.

The estimator uses a variable threshold to detect the presence of the

signal component. The estimator weights the signal power and the noise power

to set the threshold for each iteration [29]. Figure 3.6 shows the working of

the power estimator. If the signal power is more than the threshold, detect

is made high to indicate the presence of a signal component. If the signal

power is less than the threshold, the detect signal is low indicating the presence

of noise. Since we adaptively set the threshold at each iteration, our power

estimator is extremely robust for detecting the presence of a signal component

in a noisy signal. By including this ability of detecting the presence of a signal

component in a noisy signal, we ensured that our detector has an outstanding

talk-o� performance as Section 3.5 explains.

54

A

YESNO

A

LF and HF
within tolerance

band
?

ND = 1:16

ND > 16

ND <= 16
&

DT = 1
?

?

T_C = 80

?
VD = PD

&
S_timer > 0

CT = CT + S_timer

S_timer = 0

?

T_C = 0

CT > 200

?

Output

DTMF

Digit

?

DT = 0

T_C = T_C -1

CT = 0

PD = 34

VD = 34

?

S_timer > 50

PD = ND

?
VD = PD

&
S_timer > 0

CT = CT + S_timer

S_timer = 0

T_C = 80

ND = PD

?

YES

YESNO

?

VD = ND

CT = CT + S_timerCT = S_timer

VD = ND

S_timer = 0

S_timer = S_timer + 1

YESNO

YESNO

YES

NO

YES

NO

YESNO

YESNO

YES

NO

ND = New digit

T_C = Timer count
DT = Detect VD = Valid digit

PD = Previous digit

S_timer = Signal timer
CT = Count

NO

Figure 3.7: Decision logic for DTMF detection

55

3.3.2 Decision Logic Back-end

The decision logic back-end performs decision checks to ensure that

the detected DTMF digit satis�es all the ITU requirements. We use a robust

decision logic for this purpose. Our key contribution in the decision logic is the

use of a counter which keeps track of the DTMF digit timing. Most DTMF

decoders use a �xed window size (such as 13.33 ms) [22] to perform the timing

check. If a DTMF digit is valid for 2 or more windows lengths, the DTMF

digit is assumed to have satis�ed the timing requirements. The time resolution

used here is very large and may lead to erroneous results. In our decision

logic, we start a counter as soon as we detect a DTMF digit. The counter

is updated every cycle if the same DTMF digit is detected. This approach

ensures that our timing estimate uses the smallest resolution available (125

�s). The decision logic performs the best timing validation checks from among

the available DTMF decoders.

The decision logic takes the low frequency estimate (LF), the high

frequency estimate (HF), and the detect signal as its inputs as shown in Fig-

ure 3.2. Figure 3.7 shows the control logic that it uses to determine whether or

not a DTMF digit is valid. DT is the detect signal coming from the power esti-

mator. ND represents the most recently detected DTMF digit. PD stores the

previously detected DTMF digit. If ND and PD are same for a pre-determined

amount of time, we can conclude that the frequency estimates have stabilized.

VD stores the detected DTMF digit after the frequency estimates have stabi-

lized. T C is the timer count. It is used to determine if the tone interruption

lasted more than 10 ms which indicates the presence of two DTMF digits. T C

56

is initialized to 80 samples since it corresponds to 10 ms with a sampling fre-

quency of 8 kHz. CT holds the actual time for which a DTMF digit is present.

It is updated every time S timer counts from 0 to 50.

Initially, the decision logic checks whether the low frequency estimates

LF and HF are within the DTMF tolerance band. If LF and HF satisfy the

frequency tolerance requirements, ND is assigned a DTMF digit between 1

and 16, corresponding to the detected frequencies. If detect is high, T C is

reinitialized and the previously detected DTMF digit (PD) is compared with

the recently detected DTMF digit (ND). If PD does not equal ND, the time

count CT is updated and S timer is reset to 0. If PD is equal to ND, the time

count CT is updated and VD is equated to ND. The logic assigns the most

recently detected DTMF digit ND to PD before exiting.

Whenever there is a pause greater than 10 ms after a DTMF tone

burst, the logic checks the actual time (CT) for which the DTMF digit was

detected. If the DTMF digit meets the ITU requirements (see Table 3.1), then

a valid DTMF digit detection is signaled.

3.4 Design and Implementation

Existing DTMF receivers are computationally intensive. The Goertzel-

based DFT algorithm requires a real coe�cient and a complex coe�cient. As

discussed previously, we can eliminate the complex coe�cient by taking the

absolute value of the energy. Still, the Goertzel algorithm requires N real mul-

tiplications, 2N real additions and 3 words of memory [24]. The DFT-based

DTMF detector uses 8 banks of Goertzel �lters. Thus, the detector requires

57

8N real multiplications, 16N real additions and 24 words of memory only for

the Goertzel �lters. The processing power required to decode DTMF signals

on one channel is of the order of 1 MIPS [24]. Our DTMF detector is e�-

cient from the point of view of memory and complexity. Below we present an

analysis of the memory requirement and the computational complexity of our

detector. The analysis is based on hand coding some of the key routines of

the DTMF detector such as the multiplications for the notch �lters and cosine

value computation on a PIC microcontroller. We present a separate analysis

for microcontrollers, primarily because multiplication is an expensive operation

on microcontrollers. We also present an analysis of the memory and processing

power required for a DSP processor implementation.

Each notch �lter requires 3 multiplications, except for the two fully

adaptive notch �lters which require 4 multiplications. We have 8 notch �lters

in our decoder. Each frequency estimator requires a divide operation which can

be converted to a multiplication operation in the following manner. We need to

calculate the fraction
�
a
b

�
in the frequency estimators where b � a. Both a and

b are positive numbers. Hence, we use a 0.8 binary fractional format for this

division. The binary 0.8 format puts the decimal point to the left of the most

signi�cant bit (MSB). Thus, all numbers range between 0 and 1. The division�
a
b

�
can be expressed as a�

�
1
b

�
. In 0.8 binary format, 1 is represented as the

number 255 (hex 0��). We propose to implement the operation
�
1
b

�
, which

is equivalent to
�
255
b

�
in binary 0.8 format, as a lookup table. Once we have

a lookup table, the binary number
�
255
b

�
can be obtained and multiplied by a

to implement the division operation
�
a
b

�
.

58

Since we implement the division operations as multiply operations,

each frequency estimator requires only one multiply operation. The power es-

timator and the lowpass �lters for �ltering the low frequency estimate and the

high frequency estimate as given in (3.3) require about 4 multiplications each.

The algorithm requires a total of about 35 multiplications per sample. However,

some of the multiplications can be implemented as shifts (e.g. the multiplica-

tion by � (0.875) in (3.4)). On average, we estimate 30 multiplications per

sample.

Besides the multiplication operations, each notch �lter requires about

15 microcontroller instructions. We assume a RISC microcontroller having sin-

gle cycle instruction execution, bit manipulation instructions such as bit set,

bit clear, and bit control instruction such as branch on bit change. Whenever

there is a zero crossing, each frequency estimator requires about 20 microcon-

troller instructions. Implementing two lowpass �lters as given in (3.4) requires

16 microcontroller instructions. The decision logic requires about 200 micro-

controller instructions. Based on the implementation of some of key kernels

required for the DTMF detector, we estimate that an additional 400 instruc-

tions per sample (without taking the multiply operations into account) will be

required.

Our analysis shows that the DTMF detector requires a maximum of

50 bytes of data memory. The detector requires the computation of a cosine

value which we implement as a lookup table. We propose to implement the

lookup tables for the divide operation and the cosine value computation in

program memory. Accordingly, the proposed DTMF detector requires about

59

2000 words of program memory.

The DTMF detector can be implemented on a high-end microcon-

troller such as the one from PIC17CXX series of microcontrollers from Mi-

crochip Technology Incorporation. PIC17C43 has 4000 words of erasable pro-

gram memory and 454 bytes of data memory. The instruction execution speed

is 121 ns at 33 MHz or 160 ns at 25 MHz. PIC17C43 has a hardware mul-

tiplier which computes an 8-by-8 signed multiplication operation in about 1

�s [12]. We can use PIC17C43 for single-channel DTMF detection. The cost

of PIC17C43 is $10 in volumes of 100 units.

For the DSP processor implementation, we assume a 16-bit �xed point

processor with single cycle multiply-accumulate capability and having simulta-

neous instruction execution and data access ability (such as Texas Instruments

TMS320C54x digital signal processors). Since the DSP processor can perform

the multiplication operation in a single cycle, we do not consider multiplica-

tion operations separately as we did for microcontroller implementation. The

detector requires about 1.6 MIPS per sample. We propose to implement the

lookup tables for division and cosine value computation in data memory. Sinu-

soid lookup tables come with many DSP processors. The remaining program

requires only 50 bytes of data memory. The estimated data memory and pro-

gram memory size is 600 words and 1000 words respectively. With a �xed

point processor such as the TMS320C54x running at 50 MIPS, our decoder

can decode 24 channels corresponding to a single T1 line.

60

3.5 Experimental Results

The ITU recommendations for a DTMF detector are given in Ta-

ble 3.1. We tested our detector performance for all the requirements using

oating-point precision. Below, we explain the tests performed and the detec-

tor performance.

The ITU requirements state that the DTMF detector should detect

all DTMF digits having a frequency tolerance of �1.5% or less. All digits

having a frequency tolerance of �3.5% or greater should be rejected. If the

frequency tolerance is between �1.5% and �3.5%, the digit may be detected

as valid or invalid. For each digit the high frequency tolerance was held at -4%

and the low frequency tolerance was varied from -4% to +4% in steps of 0.5%.

For each combination of frequency tolerance, the DTMF detector performance

was tested. Next, the high frequency tolerance was increased by 0.5% to -

3.5% and the whole process was repeated. The test was continued until the

high frequency tolerance was +4%. Our detector detected all digits having a

frequency tolerance of �1.5% or less. The detector showed 100% rejection for

digits with a frequency tolerance of �3.5%.

According to the ITU recommendations, a valid DTMF digit should

have a minimum tone length of 40 ms. All digits having a tone length of 23

ms or less should be considered invalid. If the tone length is between 23 ms

and 40 ms, it is up to the detector to consider the digit as valid or invalid. A

DTMF signal interrupted for less than 10 ms should not be detected as two

DTMF digits. Five tests were carried out for timing requirements. Guard time

is the minimum tone length of the DTMF digits that the detector accepts as

61

0 dBm -20 dBm 15 dB 40 dB

SNR SNR

Minimum accepted 36 ms 36 ms 36 ms 36 ms
tone length

Maximum rejected 35 ms 35 ms 33 ms 33 ms
tone length

Minimum tone 15 ms 15 ms 15 ms 15 ms
interruption

causing 2 detects

Maximum pause time 14 ms 14 ms 14 ms 14 ms
not causing 2 detects

Table 3.2: Timing test results for our DTMF decoder

valid. The proposed DTMF detector has a guard time of 35.6 ms. Table 3.2

shows the results of the other timing tests. DTMF digit '1' was used for all the

timing tests.

Twist is de�ned as the di�erence in decibels in the amplitudes of

the two fundamental tones of the DTMF signal. Usually, due to the lowpass

characteristics of the telephone channel, the high frequency tone will be received

at an amplitude lower than the low frequency tone. This is called normal twist.

When the low frequency tone is received at an amplitude lower than the high

frequency tone, the condition is called reverse twist. ITU recommendations

state that the decoder must operate properly with a maximum of 8 dB normal

twist and 4 dB reverse twist. All DTMF digits were tested by varying the twist

from -4 dB to +8 dB in steps of 0.1 dB. Table 3.3 shows results of the test.

ITU requires that the DTMF detector should should detect DTMF

digits with a worst-case signal-to-noise ratio (SNR) of 15 dB. Bellcore, requires

62

Digits Detector accuracy Detector accuracy

from -4dB to at +8 dB twist

+7.8 dB twist

1 100% 92%
2 100% 100%
3 100% 93%
4 100% 70%
5 100% 95%
6 100% 100%
7 100% 98%
8 100% 100%
9 100% 100%
0 100% 100%
* 100% 53%
100% 100%
A 100% 61%
B 100% 93%
C 100% 88%
D 100% 61%

Table 3.3: Twist test results for our DTMF decoder

the detector to have 100% detection for SNR of 18 dB or more. Our detector

showed 100% detection down to 16 dB. After that the percentage detection

starts decreasing. However, with Gaussian noise, 100% detect reliability cannot

be expected. Nonetheless, the error probability for the detector will be very

small (10�4 to 10�5).

Bellcore power level test measures the dynamic range and sensitivity

of the DTMF decoder. The test starts with the DTMF tone level at 0 dBm

(dBm is de�ned as 10 log10
signal power

1� 10�3
, where the denominator is the ref-

erence power). Every iteration the DTMF power level is decreased by 1 dBm.

63

Digits Allowed Detects Our Detector

Performance

0-9 333 2
0-9,*,# 500 2
0-9,*,#,A-D 600 2

Table 3.4: Talk-o� test results for our DTMF decoder

The test is stopped just before the DTMF detector fails for the �rst time. This

dBm level is de�ned as the sensitivity of the detector. The Bellcore require-

ments state that the decoder should have a minimum sensitivity of -25 dBm.

Our detector showed a sensitivity of -36 dBm.

The Bellcore decode test measures the detector performance for each

digit. For each DTMF digit, the test determines the minimum length for

which the detector has 100% detection. We passed 10 pulses of each digit to

the detector, starting with a 50 ms ON time and 50 ms OFF time. The ON

time was decreased by 1 ms till 100% detection was observed. The proposed

detector has 100% detection for each digit up to 38 ms ON time.

Speech being detected as a DTMF signal is called as talk-o�. Bellcore

provides audio test tapes containing 1 million calls to a central o�ce, including

50,000 speech samples to test the DTMF receiver performance against talk-o�.

The maximum allowable false detects are speci�ed by Bellcore. Our detector

showed excellent performance against talk-o�. Table 3.4 shows the detector

performance.

64

3.6 Conclusions and Future Work

We present a new, low-complexity algorithm for DTMF detection.

Our algorithm is one of the two known algorithms that satis�es all the ITU

recommendations. A unique feature of this detector is the decoupling of the

design of the signal processing functions from the design of the decision logic

functions. In the signal processing front-end, key innovations include the use

of adaptive notch �ltering and accurate frequency estimation techniques for

DTMF detection. Another key contribution in the signal processing front-

end is the use of semi-adaptive and fully adaptive notch �lters to increase

the convergence rate of the combined notch �lter. Our contribution in the

decision logic includes a new, accurate timing measurement technique that

uses the smallest available resolution and a new sophisticated decision logic to

check whether a DTMF digit satis�es the ITU requirements. The proposed

detector has excellent talk-o� performance. The proposed method is the �rst

ITU-compliant method that can be implemented on an 8-bit microcontroller.

The detector requires only 50 words of data memory. It requires about

2000 words of programmemory for a microcontroller implementation and about

600 words of program memory for a DSP processor implementation. A single

channel DTMF decoder can be implemented on a high-end microcontroller such

as PIC17C43 from Microchip Technology Incorporation. On a DSP processors,

our technique requires 1.6 MIPS per channel. On TMS320C54X running at 50

MIPS, we predict that the new method can detect 24 simultaneous telephone

channels corresponding to a T1 time-division multiplexed telecommunications

line.

65

In the future, we intend to test the algorithm at a decimated rate

of 4 kHz. If the algorithm satis�es all the ITU recommendations at the dec-

imated rate of 4 kHz, we plan to implement the algorithm on a cheaper mi-

crocontroller (not having a hardware multiplier) like the PIC16C63 mid-range

microcontroller from Microchip Technology Incorporation.

Appendix A

Multiplication Routines for PIC Microcontroller

Appendix A.1 shows a PIC16C71 microcontroller code for multipli-

cation between two 8-bit variables. The 16-bit result is stored in 2 bytes.

Appendix A.2 shows a modi�cation of the PIC16C71 microcontroller code for

multiplication between an 8-bit variable and an 8-bit constant. The routine has

been optimized for code length and run time. A division routine for dividing a

16-bit number by an 8-bit number is shown in Appendix B. The example codes

in Appendix A.1 and Appendix B are taken from CD-ROM technical library

provided my Microchip Technology Inc. The codes can also be found at Mi-

crochip website (http://www.microchip.com/10/Appnote/Listing/index.htm).

A.1 Multiplication between two Variables

; LIST P = 16C71, F = INHX8M, n = 66

;

;***

; 8x8 Software Multiplier

; (Fast Version : Straight Line Code)

;***

;

; The 16 bit result is stored in 2 bytes

66

67

;

; Before calling the subroutine " mpy ", the multiplier should

; be loaded in location " mulplr ", and the multiplicand in

; "mulcnd". The 16 bit result is stored in locations

; H_byte & L_byte.

;

; Performance :

; Program Memory : 35 locations

; # of cycles : 37

; Scratch RAM : 0 locations

;

;

; Program: MULT8x8F.ASM

; Revision Date: 12-12-95

;

; Compatibility with MPASMWIN 1.30

;

; This routine is optimized for speed efficiency

; (straight line code)

;***

;

Same equ 1

;

;

; include "mpreg.h"

68

;

; Define a macro for adding & right shifting

;

mult MACRO bit ; Begin macro

btfsc mulplr,bit

addwf H_byte,Same

rrf H_byte,Same

rrf L_byte,Same

ENDM ; End of macro

;

; ***************************** Begin Multiplier Routine

; Begin macro

;

mpy_F MACRO mulplr,mulcnd,H_byte,L_byte

clrf H_byte

clrf L_byte

movf mulcnd,w ; move the multiplicand to W reg.

bcf STATUS,C ; Clear the carry bit in the status Reg.

mult 0

mult 1

mult 2

mult 3

mult 4

mult 5

mult 6

69

mult 7

;

ENDM

;

; END

;

;**

70

A.2 Multiplication between a Variable and a Constant

; LIST P = 16C71, F = INHX8M, n = 66

;

;**

; 8x8 Software Multiplier

; (Fast Optimized Version : Straight Line Code)

;**

;

; The 16 bit result is stored in 2 bytes

;

; Before calling the subroutine " mpy ", the multiplier should

; be loaded in location " mulplr ", and the multiplicand in

; "mulcnd". The 16 bit result is stored in locations

; H_byte & L_byte.

;

; Performance :

; Program Memory : 14 locations

; # of cycles : 16

; Scratch RAM : 0 locations

;

;

; Program: MULT_OPT.ASM

; Revision Date: 2-10-98

; Author: Amey Deosthali

; Copyright: The University of Texas at Austin

71

;

; Compatibility with MPASMWIN 1.30

;

; This routine is optimized for speed

; efficiency (straight line code)

;**

;

Same equ 1

;

;

;

; ***

; Begin Multiplier Routine

mpy_48 MACRO mulcnd ;Begin macro

clrf H_byte

clrf L_byte

movf mulcnd,W ; move the multiplicand to W reg.

bcf STATUS,C ; Clear the carry bit in the status Reg.

;

; Multiply by 0.875. Using fixed point arithmetic

; (0.8 format) for fractional numbers, 0.875 maps the hex value

; of 0xE0.=> 0.875/LSB = 0.875/(1/256) = 224 => 0xE0

;

addwf H_byte,Same ; bit 4

rrf H_byte,Same

72

rrf L_byte,Same

;

addwf H_byte,Same ; bit 5

rrf H_byte,Same

rrf L_byte,Same

;

rrf H_byte,Same ; bit 6

rrf L_byte,Same

;

rrf H_byte,Same ; bit 7

rrf L_byte,Same

;

ENDM

**

Appendix B

Division Routine for PIC Microcontroller

; 16/8 Bit Signed Fixed Point Divide 16/8 -> 16.08

;

; Input: 16 bit signed fixed point dividend in AARG+B0, AARG+B1

; 8 bit signed fixed point divisor in BARG+B0

;

; Use: CALL FXD1608S

;

; Output: 16 bit signed fixed point quotient in AARG+B0, AARG+B1

; 8 bit signed fixed point remainder in REM+B0

; Result: AARG, REM < AARG / BARG

;

; Max Timing: 10+163+3 = 176 clks A > 0, B > 0

; 11+163+11 = 185 clks A > 0, B < 0

; 14+163+11 = 188 clks A < 0, B > 0

; 15+163+3 = 181 clks A < 0, B < 0

;

; Min Timing: 10+163+3 = 176 clks A > 0, B > 0

; 11+163+11 = 185 clks A > 0, B < 0

; 14+163+11 = 188 clks A < 0, B > 0

73

74

; 15+163+3 = 181 clks A < 0, B < 0

;

; PM: 15+42+10 = 67 DM: 6

;

;**

;

list r=dec,x=on,t=off,p=16C71

include <PIC16.INC>

;

; Define divide register variables

ACC equ 0x0D ; most significant byte of

; contiguous 4 byte accumulator

SIGN equ 0x13 ; save location for sign in MSB

TEMP equ 0x19 ; temporary storage

; Define binary operation arguments

;

AARG equ 0x0D ; most significant byte of argument A

BARG equ 0x16 ; most significant byte of argument B

REM equ 0x11 ; most significant byte of remainder

LOOPCOUNT equ 0x14 ; loop counter

; Note: (AARG+B0, AARG+B1) and (ACC+B0, ACC+B1)

; reference the same storage locations, and similarly for

75

; (REM+B0, REM+B1) and (ACC+B4, ACC+B5)

;***

;

; 16/08 BIT Division Macros

SDIV1608L macro

;

; Max Timing: 3+5+2+5*11+10+10+6*11+10+2 = 163 clks

; Min Timing: 3+5+2+5*11+10+10+6*11+10+2 = 163 clks

; PM: 42 DM: 5

;

MOVF BARG+B0,W

SUBWF REM+B0

RLF ACC+B0

RLF ACC+B0,W

RLF REM+B0

MOVF BARG+B0,W

ADDWF REM+B0

RLF ACC+B0

MOVLW 6

MOVWF LOOPCOUNT

;

LOOPS1608A

;

RLF ACC+B0,W

RLF REM+B0

76

MOVF BARG+B0,W

BTFSC ACC+B0,LSB

SUBWF REM+B0

BTFSS ACC+B0,LSB

ADDWF REM+B0

RLF ACC+B0

DECFSZ LOOPCOUNT

GOTO LOOPS1608A

RLF ACC+B1,W

RLF REM+B0

MOVF BARG+B0,W

BTFSC ACC+B0,LSB

SUBWF REM+B0

BTFSS ACC+B0,LSB

ADDWF REM+B0

RLF ACC+B1

MOVLW 7

MOVWF LOOPCOUNT

;

LOOPS1608B

;

RLF ACC+B1,W

RLF REM+B0

MOVF BARG+B0,W

BTFSC ACC+B1,LSB

77

SUBWF REM+B0

BTFSS ACC+B1,LSB

ADDWF REM+B0

RLF ACC+B1

DECFSZ LOOPCOUNT

GOTO LOOPS1608B

BTFSS ACC+B1,LSB

ADDWF REM+B0

;

ENDM

;

;**

;

FXD1608S

MOVF AARG+B0,W

XORWF BARG+B0,W

MOVWF SIGN

BTFSS BARG+B0,MSB ; if MSB set go & negate BARG

GOTO CA1608S

COMF BARG+B0

INCF BARG+B0

;

CA1608S

;

BTFSS AARG+B0,MSB ; if MSB set go & negate ACCa

78

GOTO C1608S

COMF AARG+B1

INCF AARG+B1

BTFSC _Z

DECF AARG+B0

COMF AARG+B0

;

C1608S

;

CLRF REM+B0

;

SDIV1608L

;

BTFSS SIGN,MSB ; negate (ACCc,ACCd)

RETLW 0x00

COMF AARG+B1

INCF AARG+B1

BTFSC _Z

DECF AARG+B0

COMF AARG+B0

COMF REM+B0

INCF REM+B0

RETLW 0x00

;**

BIBLIOGRAPHY

[1] J. G. Proakis and D.G.Manolakis, Digital Signal Processing Principles,

Algorithms, and Applications. Englewood Cli�s, NJ: Prentice Hall, 1995.

[2] J. Bier, \The evolution of DSP processors." Berkeley Design Technol-

ogy Inc., presentation to the U.C. Berkeley CS 152 class, Nov. 1997.

http://www.bdti.com/articles/evolution.htm.

[3] T. Engibous. \Focus on Digital Signal Processing solutions," Bern-

stein Strategic Decisions Conference, June 1997. Texas Instruments,

http://www.ti.com/corp/docs/library/bern/bern.htm.

[4] C. Nguyen, \Designing low voltage microcontrollers into portable prod-

ucts," in Wescon Conf. Record Proc., (San Jose, CA), pp. 222{227, Nov.

1997.

[5] B. L. Evans, \EE382C Embedded Software Systems." Spring 1998 course,

The University of Texas at Austin,

http://www.ece.utexas.edu/�bevans/courses/ee382c/.

[6] P. K. Mishra, S. Paul, S. Venkataraman, and R. Gupta, \Hard-

ware/software co-design of a high-end mixed signal microcontroller," in

Proc. IEEE Int. Conf. VLSI Design, (San Jose, CA), pp. 91{95, Jan.

1998.

79

80

[7] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor Fundamen-

tals: Architectures and Features. Berkeley, CA: Berkeley Design Technol-

ogy Inc., 1994.

[8] D. Clark, \New era for digital signal processors," IEEE Computer, vol. 30,

pp. 10{11, Jan. 1998.

[9] R. Hersch, \Microcontroller-faq/primer." ftp://rtfm.mit.edu/pub/usenet-

by-hierarchy/news/answers/microcontroller-faq/primer.

[10] B. Shackleford, M. Yasuda, E. Okushi, H. Koizumi, H. Tomiyama, A. In-

oue, and H. Yasuura, \Embedded system cost optimization via data path

width adjustment," IEEE Trans. Inform. and Syst., vol. E80-D, pp. 974{

981, Oct. 1997.

[11] C. Nguyen, \Fixed-point math in time critical applications," in Wescon

Conf. Record Proc., (Los Angeles, CA), pp. 587{593, Oct. 1996.

[12] \Microchip PICmicro devices, Microchip Techonology Incorporation."

http://www.microchip.com/10/Datasheet/PICmicros/index.htm.

[13] G. Kamas and M. A. Lombardi, NIST Time and Frequency Users Manual.

Boulder, CO: National Institute of Science and Technology, 1990.

[14] R. E. Beehler and M. A. Lombardi, NIST Time and Frequency Services.

Boulder, CO: National Institute of Science and Technology, 1991.

[15] T. E. Parker and J. Levine, \Impact of New High Stability Frequency

Standards on the Performance of the NIST AT1 Time Scale," IEEE Trans-

81

actions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 44,

pp. 1239 { 1244, Nov 1997.

[16] V. Friedman, \A zero crossing algorithm for the estimation of the fre-

quency of a single sinusoid in white noise," IEEE Trans. Signal Processing,

vol. 42, pp. 1565 { 1569, June 1994.

[17] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing.

Englewood Cli�s, NJ: Prentice Hall, 1989.

[18] P. E. Wellstead, \Aliasing in system identi�cation," Int. Journal of Con-

trol, vol. 22, pp. 363 { 375, Sep. 1975.

[19] Z. Dusan, \Mean power estimation with a recursive �lter," IEEE Trans.

Aerospace Electronic Systems, vol. 13, pp. 281 { 289, May 1977.

[20] T. N. Osterdock and J. A. Kusters, \Using a new GPS frequency refer-

ence in frequency calibration operations," in Proc. Annual Int. Frequency

Control Symp., pp. 33{39, June 1993.

[21] S. Park and D. M. Funderburk, \DTMF detection having sample rate

decimation and adaptive tone detection." United States Patent, Feb. 1995.

Patent Number: 5,392,348.

[22] S. L. Gay, J. Hartung, and G. L. Smith, \Algorithms for multi-channel

DTMF detection for the WEDSP32 family," in Proc. IEEE Int. Conf.

Acoust. Speech Signal Processing, pp. 1134{1137, May 1989.

82

[23] S. Bagchi and S. K. Mitra, \An e�cient algorithm for DTMF decoding us-

ing the subband NDFT," in Proc. IEEE Int. Symp. Circ. Syst., pp. 1936{

1939, May 1995.

[24] M. D. Felder, J. C. Mason, and B. L. Evans, \E�cient dual-tone multi-

frequency detection using the non-uniform discrete Fourier transform,"

IEEE Signal Processing Letters, Jul. 1998. to appear.

[25] G. Arslan, B. L. Evans, F. A. Sakarya, and J. L. Pino, \Performance

evaluation and real-time implementation of subspace, adaptive, and DFT

algorithms for multi-tone detection," in Proc. IEEE Int. Conf. Telecom-

munications, (Istanbul, Turkey), pp. 884{887, Apr. 1996.

[26] T. H. Tsim, \DTMF FAQ - Telephone Tone Dialing Chips V1.20."

http://margo.student.utwente.nl/el/phone/dtmf.htm, Aug. 1994.

[27] J. H. Beard, S. P. Given, and B. J. Young, \A discrete Fourier trans-

form based digital DTMF detection algorithm," in MS State DSP Conf.,

(Mississippi), 1995.

[28] P. Mock, \Add DTMF generation and decoding to DSP-�p designs," in

Electronic Design News, vol. 30, pp. 205{220, Mar. 1985.

[29] H. M. Mesiwala and S. R. McCaslin, \Persistence and dynamic threhold

based signal detector." United States Patent, July 1996.

Vita

Amey Arun Deosthali was born in Pune, Maharashtra, India, on April

15, 1975, the son of Arun Sadashiv Deosthali and Vrinda Arun Deosthali. After

completing his studies at the Seth Dagduram Kataria High School, Pune, India,

in 1990, he entered Sir Parshurambhau College where he played for the college

badminton team. After completing his higher secondary school, he entered

Government College of Engineering, Pune, India, in August, 1992. During

the subsequent years, he actively participated in various cultural activities.

He also pursued his interests in rowing during his undergraduate studies. He

received the degree of Bachelor of Engineering from Government College of

Engineering in May 1996. In September, 1996, he started his studies towards

Master's degree at The University of Toledo, Ohio. After studying there for

one semester, he transferred to the Graduate School at The University of Texas

at Austin in January 1997.

Permanent address: 3110 Red River, #208
Austin, Texas 78705

This report was typeset1 with LATEX by author.

1LATEX document preparation system was developed by Leslie Lamport as a special version

of Donald Knuth's TEX program for computer typesetting. TEX is a trademark of the

American Mathematical Society. The LATEX macro package for The University of Texas at

Austin report format was written by Khe-Sing The.

