
Copyright

by

Charles Robert Powers

1998

A Review of Performance Analysis (Benchmarking) Approaches

for Embedded Microprocessors and Microcontrollers

by

Charles Robert Powers, B.S.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May 1998

A Review of Performance Analysis (Benchmarking) Approaches

for Embedded Microprocessors and Microcontrollers

Approved by
Supervising Committee:

Brian L. Evans

Lizy K. John

Dedication

I dedicate this report to my wife Christine, whose patience and support were what

enabled me to complete it; and to my daughter Andrea, who has only known a dad

who is a student, and to whom I owe a lot of time, which I can now begin to make

up to her.

v

Acknowledgements

I would like to express my gratitude to my management at Motorola, who have

given me the support and encouragement I have needed to complete this effort. In

particular, I would like to express my thanks to Nigel Allison, without whose help

and guidance over the years I would never have been able to rise to the challenge

that this program has offered.

I would also like to acknowledge the support of American Airlines, in whose

airplanes and Admiral’s Clubs much of this report was written.

April 14th, 1998

vi

Abstract

A Review of Performance Analysis (Benchmarking) Approaches

for Embedded Microprocessors and Microcontrollers

by

Charles Robert Powers, M.S.E.

The University of Texas at Austin, 1998

Supervisor: Brian L. Evans

This report outlines some of the approaches taken to analyze the

performance and capabilities, or benchmark, embedded microprocessors and

microcontrollers. Beginning with the advent of desktop computer benchmark

suites, as both an engineering evaluation tool and a marketing tool, the use of

benchmarks as a measuring stick for processor-based system performance has

become pervasive. While many of the popular benchmarks used to measure the

performance of desktop or laptop computers provide a reasonable system

evaluation in that environment, the attempts to apply similar benchmark suites to

embedded systems has so far met with little success. This is primarily due to the

large control aspect of many embedded systems, in which hardware and software

work together to produce the desired outcome. Because traditional computer

benchmarks are based primarily on the speed at which data is processed, these

vii

benchmarks are rarely relevant to embedded applications. Some industry efforts are

currently underway to develop benchmark suites which are more appropriate for

measuring the performance of an embedded system, but the diverse and

application-specific nature of most embedded systems make this a daunting task.

This paper will review some of the previous and ongoing approaches used for

benchmarking the performance of microprocessors and microcontrollers in

embedded systems, and discuss why these have met with limited success. This

paper proposes a comprehensive approach which can be taken to benchmark

embedded microprocessors and microcontrollers, including two application

examples to illustrate the difficulties which must be overcome when developing a

valid benchmark suite for the embedded application space.

viii

Table of Contents

List of Tables ... x

List of Figures ... xi

Chapter 1: Introduction.. 1

Chapter 2: What is Benchmarking... 4

Categories of Processor-based System Benchmarks.. 4

Non-embedded microprocessor-based system benchmarks.................... 5

Embedded microprocessor-based system benchmarks 5

Digital Signal Processor-based system benchmarks............................... 6

Highly embedded, microcontroller-based system benchmarks............... 7

Value of Benchmarks.. 7

Chapter 3: Non-Embedded (Computer) Benchmarking Efforts.............................. 10

The goals of non-embedded Processor benchmarking efforts 10

Some examples of non-embedded benchmark efforts.................................... 11

Standard Performance Evaluation Corporation 12

Business Applications Performance Corporation 16

Relevance of these efforts to embedded systems evaluation.......................... 19

Chapter 4: Embedded Benchmarking Approaches.. 21

Some examples of embedded benchmark efforts ... 22

Digital Signal Processor Performance Analysis.................................... 23

Microcontroller CPU Performance Analysis... 25

MCU Features Comparison... 29

limitations of these benchmarking approaches for embedded systems.......... 30

System-Level Performance Analysis... 31

ix

Chapter 5: Possible System-Level Application Benchmarks.................................. 33

System-Level Benchmarks: Pros and Cons.. 33

Example Applications for System-Level Benchmarks................................... 35

Automotive Driver Instrumentation System ... 35

Instrument Cluster System Overview .. 36

Possible Instrument Cluster Benchmark Measurements 37

Global Positioning System Receiver ... 41

GPS System Overview ... 42

Possible GPS Receiver Benchmark Measurements 43

Chapter 6: Conclusion ... 47

References .. 48

Vita ... 49

x

List of Tables

Table 1: CINT95 Benchmark Program Set ... 14

Table 2: CFP95 Benchmark Program Set ... 14

Table 3: CINT95 and CFP95 Performance Measurements 16

Table 4: SYSmark32/95 & NT Benchmark Applications 17

Table 5: SYSmark32/95 & NT Performance Measurements 18

Table 6: BDT Benchmark Algorithm Functions ... 24

Table 7: Philips Semiconductor Benchmark Operations... 27

Table 8: Philips Semiconductor Benchmark Results .. 27

Table 9: Avnet Performance Benchmark Results.. 28

Table 10: EDN Microcontroller Directory Sample Device Information................. 29

Table 11: Example Application-Specific Behavioral and Implementation

Measures for an Instrument Cluster System-Level Benchmark 40

Table 12: Example Implementation Measures for All System-Level

Benchmarks .. 41

Table 13: Example Application-Specific Behavioral and Implementation

Measures for a GPS System-Level Benchmark 45

xi

List of Figures

Figure 1: DSP Benchmark Results (source: Berkeley Design Technology, Inc.) ... 25

Figure 2: Basic Instrument Cluster System ... 38

Figure 3: Basic Global Positioning Systems Receiver .. 43

12

1

Chapter 1: Introduction

The performance of computing systems such as mainframe computers,

desktop computers or engineering workstations have been measured and analyzed

since computing machines like ENIAC first appeared in 1946. However, with the

advent of benchmark suites targeted specifically at desktop computers, as both

engineering evaluation and marketing tools, the use of benchmarks as a popular

measuring stick for microprocessor-based system performance has become

pervasive. Performance measurements such as Dhrystone MIPs, SPECfp and

SPECint are routinely mentioned when the capabilities of a microprocessor unit

(MPU) are discussed, or when a microprocessor manufacturer introduces a new

device or derivative.

While many of the popular benchmarks used to measure the performance of

computers provide a reasonably comparative system evaluation in the desktop

computer environment, most attempts to apply similar benchmark approaches to

embedded systems have met with little success. Embedded systems, which make up

the vast majority of today’s microprocessor-based components, are primarily

designed around highly integrated microcontroller units (MCUs). These devices,

which are based on a central processing unit (CPU) for processing instructions and

data, may also contain a variety of communication and control oriented subsystems,

such as timers, serial communication ports, analog-to-digital converters, and

input/output signals for providing control capabilities.

2

While the number of MCU-based products far exceeds the number of

desktop computers, these devices have been a much more difficult target for

developing comprehensive and equitable benchmark suites. This is due, in large

part, to the significant control aspect of many embedded systems, in which

hardware and software work together to produce the desired outcome. In this type

of environment, the speed with which raw data is processed by the CPU can be less

important than how the input data is retrieved, and the how fast and accurate the

resulting output operations are performed. The performance of these control

functions by an MCU in any individual system will be based largely on the features

and capabilities of that particular device, and any additional components in the

system. The wide variety of available devices and feature sets makes it much more

difficult to develop a single, comprehensive benchmark suite to measure embedded

system performance.

This paper will review some of the approaches which have been taken

toward benchmarking embedded systems, how successful they have been, and how

they compare to the desktop benchmarking efforts. Chapter 2 is a discussion of

benchmarks in general, including some of the categories of processor-based system

benchmarks, and how they are used. Chapter 3 reviews some of the non-embedded

system benchmarking efforts which have been made, while Chapter 4 reviews some

of the current approaches to benchmark embedded systems, including a discussion

of their limitations. Chapter 5 is a discussion of the concept of application-based

performance analysis, which is one approach to developing a more realistic

3

benchmark for an embedded system. Chapter 6 concludes with some comments on

the future of benchmarking.

4

Chapter 2: What is Benchmarking

The analysis of the capabilities of microprocessor- or microcontroller-based

systems has previously been defined at three levels: performance measurement,

which is the empirical testing of the system hardware based on device

specifications; performance evaluation, which is more of a conceptual evaluation of

the system performance, perhaps based on a mathematical assessment of how the

system might perform a certain task; and performance analysis, a combination of

the previous two, which is intended to be a measurement of the performance of the

overall system [1].

In less esoteric terms, the performance analysis of a processor-based

system, whether a desktop computer powered by the latest version of the MPC750

PowerPCTM microprocessor or a one-way, alpha-numeric pager utilizing an

MC68HC11 microcontroller, should provide a measurement of the performance of

a device as it operates in a particular application environment. This performance

analysis might measure the operating speed of the MPU or MCU as it processes

instructions, but optimally it should measure the overall system performance,

including the functionality and capabilities of any additional system components,

whether integrated or discrete, as well as overall cost, area and component count.

CATEGORIES OF PROCESSOR-BASED SYSTEM BENCHMARKS

The number and types of benchmarks which have been developed is as

varied as the number of operating environments into which microprocessors have

been placed. Several of the more general categories are described below.

5

Non-embedded microprocessor-based system benchmarks

This type of benchmark is actively being developed and refined today, and

has generally been intended to provide an evaluator with an idea of the overall

performance of a computer. It is based primarily on the performance of a system’s

microprocessor, and that microprocessor’s interaction with the larger computer

subsystems, such as mass storage or display devices. One example is the CINT95

benchmarking suite, a set of eight integer programs developed by the Standard

Performance Evaluation Corporation (SPEC), to evaluate the integer-based

processing performance of MPU-based computer systems [1].

This type of benchmark suite was originally designed to measure the data

processing performance of an MPU as it interfaced with memory and other

subsystems. Today, many computer benchmark suites are now being developed to

provide specific performance analysis of subsystems, such as multimedia/graphics

processing systems or audio/sound cards.

Embedded microprocessor-based system benchmarks

More recently, attempts have been made to develop performance

benchmarks for systems which may have an MPU similar to those in desktop

computers, but whose functions have a significant aspect of control. One example

of this type of system might be a laser printer, which typically has a high

performance MPU embedded in it, but which also has obvious control functions. In

these systems today, the MPU is tasked with crunching raw data, with the

peripheral control functions being performed by additional components entirely

6

external to the MPU, or possibly through some limited component integration onto

the MPU.

Benchmark suites for this type of embedded application often closely

resemble desktop computer benchmarks in scope. These applications are typically

well-defined, and quite often there is little difference in the implementation of the

control functions from one system to another. This leaves the differentiation

between systems to be made by the performance of the microprocessor.

Digital Signal Processor-based system benchmarks

The significant increase in the number of embedded systems which contain

a Digital Signal Processor (DSP) for performing real-time signal processing

functions has naturally lead to a variety of efforts to develop benchmark suites to

evaluate the performance of these processors, as well. Once used exclusively for

processing audio and communications data, DSPs are now the fastest growing

segment of the semiconductor market, with a 50% annual growth rate, and

penetration into many different embedded application spaces. A DSP’s

comparative capabilities for processing one or more incoming signals

simultaneously is certainly of significant interest to designers of hi-fidelity audio or

digital cellular telephone systems.

Historically, DSP benchmark suites have also been similar to desktop

benchmarks, because the focus has been on the evaluation of a device’s ability to

process and manipulate incoming data, and not on external control functions.

Several standard algorithms have been repeatedly used for analyzing DSP

performance, including the fast Fourier transform (FFT) and the finite impulse

7

response (FIR) filter. This is changing, however, as more DSPs are becoming

available with integrated control subsystems, and are being embedded into more

control-type applications.

Highly embedded, microcontroller-based system benchmarks

While more than 5 billion consumer, automotive and communications

devices have been produced with MCUs embedded in them, the performance of

these devices has been the most difficult to analyze, because of their highly

integrated nature, the wide variety of available devices, and the varied application

spaces involved. Most of the published benchmarking data on MCUs is generally

based on the speed of the CPU, with other CPU-related functions such as context-

switching and interrupt servicing latency included. In order to benchmark the

performance of a highly embedded processor in a realistic way, the application

environment must also be included as a factor, as well as the control functions

which contribute most to the system performance. This is the reason that most of

today’s benchmarks for MCUs do not provide a complete picture of a device’s

potential performance in an application.

VALUE OF BENCHMARKS

Benchmarking of processor-based systems provides two important sets of

empirical data. The first is a set of metrics which indicate a particular device’s or

system’s performance and capabilities for completing a specific set of functions.

For example, developing and running a series of floating-point benchmark

programs designed to emulate the operational requirements of a target application

on a particular device can indicate to the system developer whether that device can

8

meet the minimum requirements of the application. In this case, the result of the

benchmark might be computational times for specific algorithms whose completion

and efficiency are of critical importance to the application in question. This can

certainly be of value when improvements in an existing design are being planned,

and there is a need to understand if the current processor can meet the needs of the

enhanced design.

The second type of data which might be obtained from benchmarking is a

set of comparative metrics, which compare the performance of different devices

operating under the same conditions and performing the same functions. When

purchasing a new computer system, this type of data is intended to give the

consumer some idea of how well the machines being considered compare. For

designers of embedded systems, this information can be important during the

system design phase, when the choice of processor for the system must be made.

Of course, benchmarking results are typically used for much more than

tabulating empirical data. Today, with the large number of processors on the

market from manufacturers such as Hitachi, Philips, Intel, Motorola and others, the

intangible benefits derived from being able to advertise a processor’s performance

on a particular set of benchmarks is almost as important as the actual results. With

some of today’s advanced microprocessors, entire marketing campaigns have been

designed around the benchmark suite performance of a device compared to those of

its competitors. Of course, as with any marketing hype, this type of information

must be considered in context, for sometimes the benchmarks used have been

developed by the manufacturer specifically to highlight the capabilities of their own

9

devices. The most glaring example of this is Intel Corp., which usually compares

its new microprocessors only to other Intel microprocessors. But this type of

information can provide some useful information when making a processor

decision.

10

Chapter 3: Non-Embedded (Computer) Benchmarking Efforts

Non-embedded computer benchmarks are primarily targeted at desktop

computer systems, such as personal computers or engineering workstations.

Several of the most prevalent non-embedded benchmark suites are now so widely

known outside of the technical world that many computer manufacturers typically

advertise the performance of their new systems running one or another of these

benchmark suites. What these benchmark suites are intended to measure, and who

has developed them, is useful for understanding some of the current attempts being

made to benchmark embedded systems.

THE GOALS OF NON-EMBEDDED PROCESSOR BENCHMARKING EFFORTS

The original intent of non-embedded microprocessor benchmarks was to

provide an objective assessment of the performance of the microprocessor in a

computer system. However, with the increase in the complexity of the

microprocessors themselves, as well as the overall system architectures, the

computer benchmark suites available today actually evaluate much more than just

the processor. The benchmark suites available today typically provide a high-level

assessment which includes the performance of the processor, the system memory,

other some of the other major subsystems of the computer.

While today’s complex computer systems allow only system-level

performance assessment, this does not cause a serious problem in this application

space, because the basics of every computer system are the same at the right level

of abstraction. Each system contains one or more main processors, with varying

11

amounts and types of memory (L1 cache, L2 cache and main memory), mass

storage, a display subsystem, and logic devices to interface these systems together.

In fact, for some computer evaluations, the only component being evaluated is the

compiler used to compile the benchmark programs, since the remaining pieces of

the system are virtually identical!

Because of the increasing system complexity, some of these benchmarking

suites are now being expanded to specifically include the performance of some

subsystems. For example, SPEC has created several working groups under the

Graphics Performance Characterization Group to develop benchmarks for graphics

subsystems. One example is the Multimedia Benchmark Committee (MBC), which

was established by SPEC to develop a suite of benchmarks to evaluate the systems

which deliver MPEG-based multimedia support.

Another intent of non-embedded benchmarks is to evaluate how well a

processor or computer will run specific computer applications. As illustrated

below, there are several benchmark suites available which utilize scripts to run

popular software applications, recording the system performance results for each.

This type of information might be particularly important to a business which is

planning a computer purchase, and wants a system which will do the best job of

running the applications they will use, for the best value.

SOME EXAMPLES OF NON-EMBEDDED BENCHMARK EFFORTS

To illustrate the efforts which have been made to develop benchmark suites

for non-embedded systems, two organizations which currently provide

benchmarking software are briefly described below. The first organization, the

12

Standard Performance Evaluation Corporation (SPEC), has created benchmarking

suites by collecting and/or developing a set of application programs specifically

designed to perform certain processing functions. These applications are then run

on a system to evaluate its performance for that specific function. In contrast to

SPEC, the Business Applications Performance Corporation (BAPCo) does not

develop benchmarks consisting of custom software programs. Instead, they provide

software script suites which exercise popular Microsoft Windows software

applications, in order to evaluate the performance of desktop computer systems

under conditions a user might encounter. More information on each of these

organizations and their products is given below.

Standard Performance Evaluation Corporation

The Standard Performance Evaluation Corporation is a not-for-profit

corporation set up to “establish, maintain and endorse a standardized set of

relevant benchmarks that can be applied to the newest generation of high-

performance computers” [1]. SPEC is divided into three groups: the Open System

Group (OSG), established to develop benchmarks for computers operating in the

UNIX / Windows NT environment, the High Performance Computing Group

(HPCG), which targets platforms involved in high-performance numeric

computing, and the Graphics Performance Characterization Group (GPC), which

develops benchmarks for graphical subsystems. Current members of SPEC-OSG

include Compaq Computer, IBM, Intel, Motorola and Unisys. HPCG currently

counts Electronic Data Systems (EDS), Silicon Graphics and Sun Microsystems as

13

members, and GPC members include Advanced Micro Devices, Apple Computer,

Intel and Motorola.

SPEC’s primary role is to develop benchmark suites which are used to

assess the comparative performance of the targeted computer systems. These

benchmark suites, with supporting tool sets, are then licensed for a nominal fee.

The members and licensees can then run these suites on their products and publicly

report the results. SPEC also publishes these results, as well as other related news,

in a quarterly newsletter.

The best known set of benchmark programs which SPEC has produced are

known collectively as SPEC95, indicating the year that they were released. This

benchmark suite, consisting of programs developed and/or collected by the OMG,

has improved significantly since their original release in 1989. SPEC95 is actually

two individual benchmark suites, CINT95 and CFP95. CINT95 is a set of

programs which perform integer computations, and CFP95 is a set of programs

which perform floating-point computations. These two benchmark suites are

intended to evaluate the overall performance of a computer system, assessing either

computer speed or throughput, depending upon how they are used. Table 1 lists the

programs included in the CINT95 set, and Table 2 lists the CFP95 program set.

14

Table 1: CINT95 Benchmark Program Set

Program Name Benchmark Application

 099.go A.I., plays the game of GO

 124.m88ksim Motorola 88k chip simulator

 126.gcc GNU C Compiler, builds code

 129.compress Compresses and decompresses file

 130.li LISP interpreter

 132.ijpeg JPEG image compression/decompression

 134.perl Manipulates strings in Perl

 147.vortex A database program

Table 2: CFP95 Benchmark Program Set

Program Name Benchmark Application

 101.tomcatv Mesh generation program

 102.swim Shallow water mode, 1024 x 1024 grid

 103.su2cor Monte Carlo simulation

 104.hydro2d Hydrodynamic Navier Stokes equations

 107.mgrid Multi-grid solver in 3d potential field

 110.applu Partial differential equations

 125.turb3d Simulate isotropic turbulence in a cube

 141.apsi Solves weather / pollutants problems

 145.fppp Quantum chemistry

 146.wave5 Electromagnetic particle simulation

15

In order to measure the computing speed of a system, each of the

benchmark programs is run on that system, and the resulting “wall-clock” time to

execute the program is compared to the time required to run that program on the

base reference system, a Sun Microsystems SPARCStation 10/40. The result, the

SPEC Ratio, is expressed as a ratio of the speed of the system being benchmarked

to the speed of the reference system. For an overall system speed measurement, an

aggregate result can be obtained by calculating the geometric mean of the

individual ratios. When conservative compiler optimizations are used for the

benchmark programs, these aggregate values are known as SPECint_base95 and

SPECfp_base95. For aggressive compiler optimizations, these aggregate results

are known as SPECint95 and SPECfp95.

In order to measure the computing throughput of a system, each of the

benchmark programs is run on that machine for one week, which is considered the

standard reference time. The resulting SPEC Rate for each program is then

normalized with respect to the SPEC reference system. Similar to SPEC Ratio, an

aggregate performance number is obtained by calculating the geometric mean of

the individual SPEC Rates. As with the speed values, when conservative compiler

optimizations are used the aggregate values are known as SPECint_rate_base95

and SPECfp_rate_base95, and with aggressive optimizations as SPECint_rate95

and SPECfp_rate95.

A sample of performance metrics collected and published which are based

on the SPEC CINT95 and CFP95 benchmark program sets are listed in Table 3.

The comparisons made, for several ~200 MHz systems, document the system

16

tested, the CPU used, the clock speed of the system, the memory architecture

(external memory such as main and L2 cache and instruction and data L1 cache),

and the resulting SPECint95 and SPECfp95 speed performance means.

Table 3: CINT95 and CFP95 Performance Measurements

System Processor

Clock MHz

ext. / int.

Memory

ext + L1 I/D

SPECint

base95

SPECfp

base95

Sun SS10/401 SuperSPARC 40 20/16 1.13 1.38

Dec 3000/700 Alpha 21064A 38/225 2M+16/16 3.66 5.71

Dell DimensionXPS Pentium Pro 200 256+8/8 8.20 6.21

HP 9000/K[35]70 PA8200 200 2M/2M 14.60 23.00

IBM 43P/140 MPC604e 200 1M+32/32 7.22 6.91

Intel 82430VX Pentium 66/200 512+8/8 5.10 4.18

Ross 200S-200/512 HyperSPARC 50/200 512+8/0 5.30 5.05

Sun Ultra2/1200 UltraSPARC 100/200 1M+16/16 7.67 11.10

Business Applications Performance Corporation

The Business Applications Performance Corporation (BAPCo) is also

chartered to develop and distribute computer performance benchmarks. Like SPEC,

BAPCo is a non-profit consortium of computer industry leaders who desire

objective performance benchmarks for computer systems [2]. However, the

approach to benchmarking the BAPCo members have taken differs significantly

1 Reference machine for all SPEC benchmarks

17

from that taken by SPEC. BAPCo’s members, which include Compaq Computers,

IBM, Microsoft, Motorola and Texas Instruments, desired a set of computer

benchmarks based on applications typically used in the business environment,

rather than custom programs designed to evaluate certain computing functions.

The benchmark suites developed by BAPCo are intended to emulate a

model of the workload of end users. These suites include extensive scripts and data

sets that exercise some of the more popular Windows business applications to

produce a performance measurement which closely corresponds to what a user

would experience at the functional level when running those applications. These

scripts and data sets are licensed to anyone who wishes to run the benchmarks;

BAPCo does not benchmark systems themselves.

Table 4: SYSmark32/95 & NT Benchmark Applications

Application Category Windows Application Used

Word Processing Microsoft Word 7.0

Lotus WordPro 96

Spreadsheet Microsoft Excel 7.0

Database Borland Paradox 7.0

Desktop Graphics CorelDraw 6.0

Desktop Presentation Lotus Freelance Graphics 96

Microsoft Powerpoint 7.0

Desktop Publishing Adobe Pagemaker 6.0

18

BAPCo currently has several benchmark suites available. One of the most

popular BAPCo products is SYSmark32 for Windows 95 and Windows NT, which

evaluates systems using 32-bit Windows applications running on Windows 95,

Windows NT 3.51 or Windows NT 4.0. As with all of their benchmark products,

SYSmark32/95 & NT uses several standard business applications to evaluate the

performance of the system. Table 4 lists the application categories and Windows

applications which are used in SYSmark32/95 & NT.

Table 5: SYSmark32/95 & NT Performance Measurements

System Processor

Clock

MHz

Memory

main / L2 SYSmark32

Dell Dimension XPS Pentium Pro 200 32M / 256 277

HP Vectra XU 6/200 Pentium Pro 200 32M / 512 274

IBM PC 365 Pentium Pro 200 32M / 256 259

Intel TX Lone Tree Pentium/MMX 200 32M / 512 234

Compaq DeskPro 600 Pentium 200 64M / 256 183

NEC Powermate Enterprise. Pentium/MMX 233 64M / 512 287

AMI Merlin DP Pentium Pro 200 64M / 256 276

Intergraph TD-310 Pentium Pro 200 64M / 256 287

The BAPCo benchmark suites include the specified Windows applications,

and the scripts and data sets necessary to exercise these applications. There are no

optimizations or compiles for the user to be concerned with. The resulting

performance numbers, based on a minimum of three performance runs, are given

19

for individual application categories, and as an overall system performance

number. Table 5 lists several systems evaluated using the SYSmark32/95 & NT

benchmark suite, indicating the system tested, the processor, clock speed and

memory configuration, and the overall SYSmark32 rating. All machines listed were

running under the Windows NT 4.0 operating system.

RELEVANCE OF THESE EFFORTS TO EMBEDDED SYSTEMS EVALUATION

The examples of benchmarking suites for non-embedded computer systems

illustrated above are only a small sample of those available. There are many other

organizations, consortiums and private companies who publish benchmarking

programs and test results comparing different computer systems and subsystems.

As mentioned earlier, the fact that these benchmarking efforts evaluate not

only the processor, but also the major subsystems and, in some cases even the

compiler used, is certainly acceptable for these systems, since they are essentially

similar in functionality, with their primary tasks being the reading, processing,

displaying and storing of data.

However, their relevance to the embedded application space is limited for

precisely this reason. While the non-embedded systems’ primary function is

processing data, in the embedded space the control attributes of each application

can be significant. If the only tasks of an embedded application which are evaluated

are data processing, then the majority of the functionality would not be assessed,

and any special attributes a device had for performing non-data processing

functions would not be highlighted. In fact, many of the benchmarks published

which compare different embedded processors fall short for this exact reason: they

20

only evaluate a device’s ability to process data, and do not compare the capabilities

of relevant control peripherals.

In the next chapter, several different examples of attempts to benchmark

different types of embedded processors will be discussed, along with how

successful they have been at assessing the complete system, rather than simply

measuring a device’s capability for processing data.

21

Chapter 4: Embedded Benchmarking Approaches

In contrast to the computer system benchmarks described above, the

development of equitable benchmarks for embedded systems, or even agreement on

the best method of evaluation, is still elusive. On the scale from non-embedded

systems to highly embedded systems, the further from a non-embedded system one

gets, the less any valid performance information actually exists for the designer to

rely on.

As previously mentioned, several benchmarking approaches, targeted at

different types of devices or application spaces, are currently being used for

embedded systems. These range from explicit processor-based performance

analysis techniques, which are similar to those used for desktop computers, to

attempts to define broad applications and then measure a device’s ability to

perform in that application space. The former method, which typically involves

analyzing the capabilities of a device’s instruction set for executing an algorithm or

for processing certain types of data, is by far the most prevalent in the embedded

world. This technique can certainly be relevant for some applications, particularly

those involving real-time signal processing.

This technique is less attractive for analyzing highly embedded

applications, where MCUs are the typical solution of choice. For analyzing the

performance of these devices, this approach can provide an incomplete picture, at

best, of a device’s capabilities. In the embedded application space, a system-level

approach to benchmarking is necessary to get a better picture of the capabilities of

22

a particular device. Unfortunately, this approach has rarely been taken to its

necessary limits in a meaningful way.

A large amount of benchmark information, from a variety semiconductor

suppliers, software suppliers, system suppliers, universities and government

organizations, has been published. Unfortunately, much of this data simply

compares CPU core performance, making it less relevant for more highly

embedded applications. What follows are a few examples intended to illustrate

some of the different approaches which have been taken to obtain benchmark data,

and why much of it is incomplete.

SOME EXAMPLES OF EMBEDDED BENCHMARK EFFORTS

To illustrate what efforts have been made to provide performance

information for embedded solutions, a small cross-section of examples are

illustrated below. One example illustrates the efforts being made to evaluate the

performance of embedded digital signal processors using comparative algorithm

execution performance. This is followed by two examples of the attempts, mostly

by semiconductor vendors, to illustrate the performance advantages of their

microcontrollers by comparing instruction set capability, The last example

illustrates the most prevalent type of benchmark data available for embedded

systems - the dreaded features matrix. This section will conclude with a brief

discussion of a new effort to develop system-level benchmarks to try to achieve

truly equitable analysis of highly-embedded MCUs in different application spaces.

23

Digital Signal Processor Performance Analysis

Today’s signal processing systems share some aspects of both non-

embedded and embedded systems. Because the focus of many of these systems is

on real-time data processing, this lends itself to algorithm-based performance

analysis of the DSP core, using approaches similar to those used for benchmarking

non-embedded systems. However, the DSPs in these systems must also utilize a

variety of internal and external peripherals which provide various control functions,

so DSP benchmarks should also include control measurements such as interrupt

service routine latency and peripheral interface capabilities. Some of the newer

DSP families, from manufacturers such as Motorola and Texas Instruments,

include a variety of these peripheral functions integrated directly onto the DSP,

which may further complicate the development of DSP benchmarks in the future.

One source of extensive DSP benchmarking data is Berkeley Design

Technology, Inc. (BDT). BDT has developed a wide array of algorithm-based

benchmarking programs for DSPs, which they use internally to analyze and publish

reports on many of the more popular DSPs. In addition, they also market

performance analysis tools based upon their algorithms which are intended to allow

customers to customize these benchmarks for their particular needs [3][4].

The BDT benchmarks are designed to evaluate the performance of the

target device by implementing several different algorithm kernels which are

considered typical for signal-processing applications. For each algorithm kernel, a

set of specifications are developed to avoid ambiguity in implementation. This is

intended to reduce, as much as possible, variations in results caused by overly

24

simplified or overly complex interpretations of the algorithm description. Table 6

lists some of the algorithms which BDT includes in their benchmark suite. For each

of these algorithms, the BDT benchmark suite provides an analysis of a device’s

performance based on parameters such as execution time, memory used, power

consumption and the number of instruction cycle counts.

Table 6: BDT Benchmark Algorithm Functions

Algorithm Function Description

Real Block FIR FIR filter operating on a block of data

IIR Cascade of biquad infinite impulse response

filters

Vector Dot Product Sum of pointwise multiplication of two vectors

Vector Max Maximum value and location

Convolutional Encoder IS-54 convolutional encoder

256-pt. FFT 256-point radix-2 in-place fast Fourier transform

BDT regularly publishes reports on their benchmark results. Figure 1

illustrates some of their more recent findings. This graph relates the comparative

performance, in execution time, of several popular DSP devices performing a 256-

point radix-2 in-place fast Fourier transform (FFT) algorithm.

25

0
100
200
300
400
500
600
700
800
900

1000

A
D

I A
D

S
P

-
21

06
2

A
T

&
T

D
S

P
16

27

D
S

P
 G

ro
up

P
in

e

M
ot

or
ol

a
D

S
P

56
16

6

N
E

C
uP

D
77

01
5

S
T

 D
95

0-
C

O
R

E

T
I

T
M

S
32

0C
20

9

T
I

T
M

S
32

0C
54

1

DSP Device

T
im

e
(m

ic
ro

se
co

n
d

s)

Figure 1: DSP Benchmark Results (source: Berkeley Design Technology, Inc.)

Microcontroller CPU Performance Analysis

The analysis of MCU performance is probably the most difficult, because

of their unique nature, and the wide variety of devices available. Those

organizations or individuals who actually have developed and run benchmark

software for MCUs typically just focus on the performance of the CPU and it’s

instruction set, ignoring the contributions which a complex integrated peripheral set

can make towards improving performance in a particular application. Of course,

this approach is appreciated by device suppliers such as Hitachi and Intel, who

have higher performing MCU cores and relatively small product portfolios.

However, MCU manufacturers such as Motorola and Philips, who rely on high

levels of integration and large product portfolios to differentiate themselves, are not

as supportive of this CPU-centric approach to MCU benchmarking.

26

An example of this type of performance analysis data has been published

by Philips Semiconductor, in order to demonstrate the performance advantage of

their XA architecture over other MCU architectures [5]. For these benchmarks, the

author has purposely focused on only the instruction set execution time and code

density for a series of operations which were deemed typical for engine

management applications. This results in a benchmark which, while ostensibly a

system-level benchmark, is solely focused on CPU performance.

In order to define this benchmark, the author developed a list of operations

believed to be important in a typical engine management application. Estimates

were then made of the number of occurrences of each operation in a 2ms period,

roughly equivalent to a single machine stroke. Following this requirements

definition, assembly language code for each CPU being considered was written, and

the execution time, based on a 16 MHz clock, and required code density was

calculated.

The resulting data, for four different CPU cores, is listed here. Table 7 lists

the functional descriptions of the operations used. The list in Table 8 contains

comparative execution times for the XA architecture compared to the Motorola

68000 and Intel MCS-96 and MCS-51 architectures for several of the operations. It

is interesting to note that the CPUs chosen by the author for comparison are all

CPUs which are now rarely used for engine management applications, and in fact

the 68000 CPU was never used in this application space.

27

Table 7: Philips Semiconductor Benchmark Operations

Operation Occurrences

16 X 16 Multiply 12

Floating Point Divide (16:16) 4

Add / Subtract (24) 50

Compare (24) 13

CAN 2.0b Compare / Move (10 * 8) 80

Linear Interpolation (8 * 8) 20

Interrupts 10

Program Control Branches 500

 Table 8: Philips Semiconductor Benchmark Results

CPU Core 16 X 16 Multiply 24 bit compare Interrupt Total Exec. Time

Motorola 68000 4.4us 3.2us 21.9us 1560us

Intel MCS-51 37.5us 9.98us 31.5us 5942us

Philips XA .75us 1.06us 6.1us 402.6us

Intel MCS-96 1.75us 4.25us 12.8us 1089.24us

Another example of comparative performance analysis is a simple

performance benchmark published by Avnet, Inc. [6], which compares the relative

capabilities of the Intel MCS-96 and MCS-51 architectures when performing a

relatively small subroutine. This subroutine includes multiply and divide

28

operations, processing of overflow and underflow conditions, and indication of

signed results.

While the actual details of the operations are not given, some of the code

used is described, indicating that the expected operational improvements between

the MCS-51 and MCS-96 MCU families are due primarily to the faster clock speed

of the MCS-96 family, and the expansion of the instruction set, particularly the

addition of the 32:16 divide instruction in the MCS-96 CPU. Table 9 lists the basic

results, giving the overall speed of execution of the subroutine.

Table 9: Avnet Performance Benchmark Results

CPU @ Clock Speed Execution Time

MCS-51 @ 12MHz 1642.0us

MCS-96 @ 12MHz 62.5us

MCS-96 @ 16MHz 47.1us

MCS-96 @ 20MHz 37.7us

It is interesting to note that this benchmark actually does take into account

the integration of added functionality into the MCS-96 CPU architecture,

particularly the 32:16 divide instruction. However, this is not really comparable to

including the performance of peripheral functions, such as intelligent timers or I/O

interfaces, in a performance benchmark. As an added instruction, it is relatively

easy to include the divide instruction performance in a basic CPU benchmark.

29

MCU Features Comparison

Many attempts at benchmarking MCUs simply result in a chart listing

different hardware features of each device, with no actual performance data

supplied. This is the most common approach taken when comprehensive “Buyer’s

Guides” or “MCU Comparisons” are published. Many electronics industry trade

publications, such as Electronic Design News (EDN) or Embedded Systems

Programming, publish this type of information on a regular basis. Typically, a

matrix chart showing device features and basic capability is provided, along with a

brief functional description of each device family. However, actual performance

information is usually lacking, and the device descriptions are often provided by the

manufacturers, ensuring that only positive attributes are brought out.

Table 10: EDN Microcontroller Directory Sample Device Information

Device
CPU
Freq.
(MHz)

Nonvolatile
Memory
(kbytes)

SRAM Serial
I/O

Other Features
Price

(10000)

83C51FB 33 32 (ROM) 256 UART Programmable counter array $2.75
SAB C505C 20 0 512 USART CAN 2.0b, watchdogs, fast

POR
$4.77

8xC251Sx 16 16 (OTP) 1024 sync/
async

PWM, waveform capture $15.00

H8/3337YFLH16 16 60 (FLASH) 2048 USARTs Keyboard scan, I2C, PWMs,
DACs

$13.00

PIC16C924 8 4 (EPROM) 176 I2C/SPI 25-ma source/sink I/O, PWM,
LCD driver

$7.21

68HC05B32 4 32 (ROM) 528 USART Charge Pump, A/D, DAC,
PWM

$5.70

68HC11E9 3,2 12 (ROM) 512 SPI, SCI EEPROM, Pulse width, RTI $5.78
ST90135 25 64 (OTP) 12288 USART DMA channel $6.50
Z86C02 8 0.5

(EEPROM)
61 UARTs Watchdog, comparators, stop-

mode recovery
$0.80

An example of this type of information matrix is illustrated in Table 10 [7].

A matrix of information for several 8-bit microcontrollers is provided, including

CPU characteristics, budgetary cost and additional features. In this type of list only

sample members of a microcontroller family can be included, so the reader is given

30

no real insight as to whether a device from a particular MCU family is appropriate

for a particular application. The primary value in this type of comparison is simply

to expose the reader to what manufacturer produces what MCU families.

LIMITATIONS OF THESE BENCHMARKING APPROACHES FOR EMBEDDED
SYSTEMS

The examples described above are only a small cross-section of the

available benchmark information on embedded products. However, the majority of

this information has been collected using one of the approaches given. As already

mentioned, some of the approaches described here may be appropriate for

applications requiring real-time signal-processing, or some other data processing-

intensive capability. For MCU-based embedded applications with a significant

control component, only the application-level approach to performance analysis can

really provide a broad understanding of the capabilities of a device in a specific

application space. This still paints an incomplete picture, however, if the focus is

entirely on the MCU controlling the application.

To measure the true performance and value of a particular device in an

application, the scope of the benchmark must include an implementation of the

entire system, or at least some significant subset. Only when all devices needed for

fulfilling the performance requirements of the application are specified in the scope

of the benchmark can a complete assessment of any particular MCU’s capabilities

truly be evaluated. This type of true, system-level benchmarking has rarely been

attempted, because of the complexity involved. However, one attempt is currently

underway.

31

System-Level Performance Analysis

In an attempt to fill this need for meaningful, system-level benchmarks, a

new industry consortium was formed in 1997 by EDN magazine. This

organization, the EDN Embedded Microprocessor Benchmark Consortium

(EEMBC) is made up of semiconductor design and manufacturing leaders,

including Advanced Micro Devices, IBM, Motorola, NEC Electronics and Texas

Instruments. The stated goal of EEMBC is to “collaboratively develop a suite of

benchmarks that will help customers evaluate microprocessors and aid the industry

in improving the performance and functionality of microprocessors used in

embedded systems” [8]. While it is currently unclear what level of success EEMBC

will achieve in developing full system-level benchmarks, they have targeted five

market segments for defining applications and specific benchmarks: consumer,

networking, telecommunications, office automation and automotive/industrial. For

each of these target markets, a different EEMBC subcommittee has identified

important system-level applications. For each of these applications, functional

requirements are being defined, along with the metrics which must be reported.

Once these functional definitions are completed, consultants will be used to

develop reference software for the benchmark, which subscribers will be allowed to

optimize as they see fit in order to evaluate the performance of their device(s) in the

defined application. One or more certification agencies will also be identified, to

review a subscribers optimized benchmark code in order to verify its similarity to

the original reference. Once this is done, that subscriber will be able to publish the

results as official EEMBC findings.

32

While the EEMBC organization seems to be making the most aggressive

attempt to date at defining system-level benchmarks, it is still unclear how

successful they will ultimately be. There are still many obstacles to be overcome for

a group of this type of achieve consensus on this effort. These include technical

problems such as reaching agreement on the scope and metrics of each system, and

agreeing on methods of benchmark reference code development and compliance

certification. Significant political problems must also be dealt with, such as

ensuring that a group of semiconductor manufacturers can reach consensus on how

to measure device performance without raising antitrust concerns in the industry.

While system-level benchmarks can be very difficult to define, if an

application with clearly understood functionality is chosen, then it is certainly not

impossible to define a fair way of measuring a particular solution for that

application. The next chapter illustrates two example applications, with

suggestions on how a system-level performance benchmark for each might be

defined.

33

Chapter 5: Possible System-Level Application Benchmarks

The CPU-centric approach to performance benchmarks is really limited to

basic data processing functions (such as multiply, divide, and compare) and device

operations (such as interrupt servicing time, context switching time). The MCU-

only, application-level approach to MCU performance analysis can be of greater

value, since some of the added benefits of integrated peripherals can be

documented. However, this can still paint an unfinished picture, if the focus is

entirely on the MCU controlling the application.

SYSTEM-LEVEL BENCHMARKS: PROS AND CONS

To measure the true capabilities and performance of a particular MCU or

DSP in an embedded application, measures such as part count, board space,

interconnect complexity and relative component cost must be included in the

analysis. Only in this way can all of the benefits derived from high levels of

integration be highlighted by standardized performance analysis. Unfortunately, for

this to be achieved the scope of the application must be such that an

implementation of the application, or some significant subset, can be defined in the

benchmark.

The benefits of this approach are many-fold. For MCU manufacturers, the

system-level approach will not only measure the processor performance for their

devices, but in applications where cost and space issues may outweigh raw CPU

performance, advantages in these categories can also be highlighted. Benchmark

implementers can make hardware/software partitioning decisions based on

34

available device capability and performance. Also, the results allow the application

developer to evaluate performance data based on all of the factors which are

relevant to their implementation, rather than having to draw conclusions based on

partial data. Overall, this approach provides more relevant results for the

application developer, who needs to make an informed choice in which all factors

have been accounted for.

Of course, this type of performance analysis is also the most difficult to

define and to measure. Defining a benchmark based on a complete application can

be very difficult, unless the application is self-contained, or can be subdivided into

independent subparts. For example, an automotive remote keyless entry (RKE)

application might be straightforward to benchmark, since the primary functionality

remains the same from one system to the next. Conversely, an automotive general

electronics module (GEM) would be much more difficult, because the desired

functionality from one system to the next varies greatly.

Quite naturally, a benchmark which is difficult to define is also difficult to

ensure adherence to the defined functionality. A system-level benchmark must

result in quantifiable behavioral and implementation results which an application

developer can use to assess performance. If the application in question does not

have externally measurable functionality as well as data processing functionality,

then it becomes very difficult to ensure that the spirit of the benchmark is being

met; i.e., the implementation does not cheat in order to appear more suited to the

application. Even when the benchmark has been implemented in accordance with

the defined scope, with the amount of leeway which must be allowed for

35

implementation, the resulting performance numbers can still vary greatly due to

subtle functionality differences. Therefore, anyone wishing to define this type of

benchmark must try to develop metrics which will as accurately as possible reflect

the performance of the basic functionality, while allowing the flexibility required to

differentiate between different solutions.

EXAMPLE APPLICATIONS FOR SYSTEM-LEVEL BENCHMARKS

Below are two example applications which might be targets for this type of

performance analysis. These two applications, an automotive instrumentation

system and a global positioning systems receiver, are both currently being

considered by EEMBC for their benchmarking efforts. Each will be described

briefly, along with some possible measures which may be used to analyze

performance in a system-level benchmark.

Automotive Driver Instrumentation System

One of the most fundamental applications in today’s automobile is the

driver instrumentation system, known as the instrument cluster. This system is

tasked with a variety of input, processing and output functions which are necessary

to keep the vehicle operator informed of the state of the vehicle, and each of its

critical systems. Because the basic functionality of every instrument cluster,

including the sources of input data and the methods of displaying output data, is

very similar, this application is ideal for developing a system-level benchmark.

This type of benchmark would be very timely, too, as many automotive

manufacturers are moving towards a higher level of electronics in their instrument

clusters. Having a standard way of measuring suppliers’ instrument cluster

36

solutions would provide a valuable piece of information to an automotive

manufacturer.

Instrument Cluster System Overview

The basic functionality of an instrument cluster includes collecting inputs

from remote sensing units, processing this information as needed, and presenting

this data to the driver. In more recent instrument clusters, this basic functionality

has been enhanced by the addition of serial communication networks as a source of

the data inputs, and character-based electronic displays (LED/LCD) for indicating

gear shift position or odometer readings.

An instrument cluster system collects inputs from a variety of sources. In

more basic systems, these inputs are collected directly from remote sensors.

Examples include the fuel tank level sensor, the engine RPM sensor, the vehicle

speed sensor, and the engine coolant temperature sensor. In newer systems, this

input data is being supplied to the instrument cluster by a connection to a serial

network, which connects the vehicle’s primary body electronics and powertrain

systems to a single communication system. The addition of this communication

port on new instrument cluster systems has helped reduce wiring harness

complexity by providing most or all of the necessary vehicle data through a single

communication port.

Regardless of the source of the inputs, all of the data received by the

instrument cluster must be converted from raw form into information that can be

displayed to the driver. For direct connections to vehicle sensors, this includes

converting the data to a digital format, performing data algorithm processing where

37

appropriate, and then converting the resulting data into a format which is

appropriate for the display type. For data received from a communication network,

format conversions are typically required. In addition, some additional processing

may also be necessary in order to make display decisions. For example, the motion

of the fuel in the tank must be taken into account when a low fuel level indication is

being made to the driver.

The output of data to the driver can also take many forms. The most

familiar forms include air-coil gauges, which are typically used to display data such

as vehicle speed, engine revolutions and fuel level. Many indicator lamps are also

used, to indicate turns, vehicle system faults, and high beam headlight status. Other

types of information outputs are also common, but less recognized as instrument

cluster functions. These can include warning chimes, instrument cluster

backlighting, and odometer, trip meter and vehicle transmission (PRNDL) status.

While these indications have historically been made mechanically, today’s

instrumentation systems are capable of electronic control of these outputs. For an

example of the functions and subsystems in a typical instrument cluster display,

refer to Figure 2.

Possible Instrument Cluster Benchmark Measurements

With this basic functionality common to all automotive instrumentation

systems, it is rather straightforward to suggest some functional and physical

implementation characteristics which might be used for evaluating the performance

of this type of system. This system definition should include type and periodicity of

inputs, required data processing and types and display of outputs. Because many of

38

the outputs are discrete (lamps, chimes, etc), other issues such as cost and

component count will also be important factors in the results.

Processor

7 1 3 5 6 8

270o Gauge Driver(s)90o Gauge Driver(s)

Lamp Drivers

LCD
Driver

Network
Interface Analog

to
Digital

Converter

HL
0

2

4

6

8

PWM

RPM X 1000

Coolant Temp.

Tachometer

Odometer

Chime

Remote
Sensors

Serial Comm. Network

Telltale Lamps

Figure 2: Basic Instrument Cluster System

The system definition should include as data sources direct sensor

connections as well as a connection to a serial communication system. The sensor

connections can typically be read directly at a rate which depends upon the

function: fuel and temperature change relatively slowly, while engine revolutions

can change more quickly. The data received from the serial network typically comes

at a predefined rate, regardless of the rate of change of the source.

39

Data processing would include processing algorithms such as data

averaging over several readings, processing and filtering messages received from

the serial network, and calculating display criteria such as the delay before

indicating a low fuel level, in order to filter out sloshing in the fuel tank.

Outputs should include all of the basic outputs: air-coil gauges, lamps, and

chimes. Additional displays could be included such as an LCD or LED display for

displaying odometer or trip meter readings, or for displaying ASCII text messages

to the driver. Additional functionality might include a real-time clock.

Table 11 lists some of the application-specific behavioral and

implementation requirements and functions necessary for the operation of an

automotive instrumentation system, along with some of the possible measures

which could be evaluated by an instrument cluster benchmark. This list does not

focus on the data processing capabilities which might also be applicable, but on the

non-traditional types of measures for a benchmark. While it is not a comprehensive

list, it does illustrate the wide variety of information which might be used to judge

the performance of an MCU and related components in this type of system-level

benchmark.

Table 12 lists some generic application measures which might also be used

for system-level benchmarks. This list contains some implementation measures

which might be applied to any application space for which a system-level

benchmark is being developed.

40

Table 11: Example Application-Specific Behavioral and Implementation Measures
for an Instrument Cluster System-Level Benchmark

Function / Issue Possible Behavior/Implementation Measure

Relative

Importance2

(1 - 10)

Sensor Connection Analog to Digital (A/D) conversion resolution;

A/D conversion speed

8

7

Network Connection Link Layer message handling/filtering;

Network physical layer capabilities

7

5

Gauge Drivers Major gauge (270o) drive capability;

Minor gauge (90o) drive capability;

Gauge update speed;

Automatic vs. Manual update

10

10

7

5

Lamp Drivers Voltage capability;

Low-side vs. High-side drive

8

6

Backlighting Pulse Width Modulation frequency range 4

Chimes Pulse Width Modulation frequency range 4

Alternative Displays LCD / LED Display capabilities;

Display update speed

3

3

Real Time Clock Real time calculation 1

Integration Level Integrated features (gauge drivers, lamp drivers,

serial port, display drivers, A/D converters, etc.)

5

2 For relative importance: 1 = lowest, 10 = highest

41

Table 12: Example Implementation Measures for All System-Level Benchmarks

Function / Issue Possible Implementation Measure

Relative

Importance3

(1 - 10)

Component Count Number of components required 7

Component Height Board spacing;

Minimum enclosure area

5

5

Interconnects required Interface requirements for external components 4

Board Space Relative cost of all devices;

Area required

10

8

EMI / EMC Electromagnetic emissions (high speed

interfaces, multiple oscillators);

Electromagnetic susceptibility

10

10

Global Positioning System Receiver

Another application which is seeing more use, and competition, today is a

receiver for the Global Positioning System (GPS). GPS is a constellation of 24

satellites circling the earth which transmit a stream of data from which a receiver’s

position, elevation, velocity and direction can be derived. Like the instrument

cluster example, the GPS system functionality is basically the same regardless of

3 For relative importance: 1 = lowest, 10 = highest

42

the implementation, and therefore a possible candidate for a system-level

benchmark.

GPS System Overview

A basic GPS receiver is designed to receive very weak signals broadcast

from one or more of the satellites in the GPS constellation. The number of satellite

signals received determines, up to a point, the accuracy of the position. A basic

GPS system includes a radio frequency device (RFIC) for receiving the broadcast

signals from the satellites. The intermediate frequency (IF) output of the RFIC is

passed into an application-specific device referred to as a correlator. The correlator

receives the digital data and, depending upon the number of channels it is designed

for, differentiates between the satellite signals, and processes the received signal for

each satellite.

The output of each channel of the correlator is then processed to calculate

the latitude and longitude position of the receiver, the elevation, speed and direction

the receiver is moving, and the local time at the receiver’s position. To get a

relatively accurate position reading, at least three satellites must be in sight of the

GPS receiver. Some elements, such as the local time and the datum format used for

calculating the latitude and longitude, are based on either accepted constants or on

inputs from the user, such as the local time zone.

The outputs for the receiver can be displayed on a simple LED or LCD

display, or can be fed into a more complex system, such as a navigation system

which might use the GPS output to determine the user’s current position. More

complex GPS receiver systems might provide functions such as recording path

43

segments or displaying which satellite’s signals have been acquired. In addition, to

boost the signal strength of the received broadcast, some GPS receivers also make

use of a low-noise amplifier (LNA) to amplify the received signal before it is

processed. For an illustration of the basic components which comprise a GPS

receiver, refer to Figure 3.

ENTER

Low-Noise
Amplifier
(optional)

Radio Freq.
I.C.

C
O
R
R
E
L
A
T
O
R

Channel 1
Channel 2
Channel 3
Channel 4
Channel 5
Channel 6
Channel 7
Channel 8
Channel 9
Channel 10

Processor

 LAT: 15o 23’ 12’’
LONG: 12o 23’ 23’’

Position Display

Antenna

Input Keypad

Figure 3: Basic Global Positioning Systems Receiver

Possible GPS Receiver Benchmark Measurements

While a considerable amount of CPU processing is required for converting

the correlator outputs into a receiver’s position, additional factors such as the

44

number of channels the correlator can simultaneously process or the datum types

which the GPS receiver supports are also important to the application designer.

Cost and component count is also an important factor, since the goal of many of

today’s systems is to be as compact and cost-effective as possible.

A system benchmark definition for a GPS receiver would need to specify

the expected signal strength of the incoming signal, the minimum number of

satellite signals which would be expected to be received, and the type and format of

the output display. Additional types of outputs might be specified, such as the

ability to enter the local time zone, or to specify the datum format to be supported.

Since the source of the GPS signals is fixed and understood, the performance of a

GPS receiver would be measured primarily on the accuracy of the position output

data, and the ability of the user to provide inputs to modify that output.

Table 13 lists some of the application-specific behavioral and

implementation requirements and functions necessary for the operation of the GPS

receiver, along with some of the possible measures which could be evaluated by a

GPS receiver benchmark. Due to the nature of a GPS receiver application, the

possible measures rely a bit more on CPU processing power than the instrument

cluster benchmark example. As with the instrument cluster benchmark, Table 12

lists some of the generic implementation measures which might be used for the

GPS system-level benchmark.

45

Table 13: Example Application-Specific Behavioral and Implementation Measures
for a GPS System-Level Benchmark

Function / Issue Possible Behavior/Implementation Measure

Relative

Importance4

(1 - 10)

Signal Strength RFIC capabilities;

Low noise amplifier requirements

10

Correlator capability Number of channels supported;

Time to first fix;

Time to reacquire after loss of signal;

Software vs. Hardware correlator implementation

8

7

9

4

GPS Datum Format Fixed vs. standard / user defined formats 6

Data Available Latitude, Longitude, Velocity, Elevation,

Direction, Local time

8

Data Accuracy Position error;

Position error between signal locks

10

8

Integration level Integration features (correlators, A/D converters,

timers, serial ports)

5

4 For relative importance: 1 = lowest, 10 = highest

46

These two application examples, while not comprehensive in their scope,

help to illustrate what types of measures could be made in a system-level

benchmark. They also give an indication of how difficult it is to define this type of

benchmark, and what types of applications are suitable targets. In more complex

application spaces, it may be necessary to define the scope of a system-level

benchmark as a suitable subset of the entire application. However, even this

approach may be too difficult for some applications.

47

Chapter 6: Conclusion

In summary, the vast majority of the published performance analysis results

for embedded microprocessors and microcontrollers have, at best, provided only

partial information. These approaches, which include the analysis of data

processing capabilities, the comparison of instruction set and other CPU

capabilities, and MCU features comparisons, while all providing relevant

information, also each have their shortcomings in providing a complete assessment

of a device’s capabilities in an application.

In order to fully evaluate a device’s capability in a particular application

space, a system-level approach must be taken. This means defining the scope of the

benchmark to measure not only the performance of the CPU, but also the

capabilities of any integrated or discrete peripherals, how efficiently the processor

interfaces to these peripherals, and the overall cost, component count and area

required to assemble a complete solution. The resulting metrics must reflect the

entire system performance, rather than just a single component. While this is

certainly the most difficult approach, and in some application spaces is probably

not possible, this is the only approach which will provide an evaluator with the

most complete assessment of a device’s ability to meet a system designer’s needs.

48

 References

[1] “SPEC Frequently Asked Questions (FAQ)”, Standard Performance Evaluation
Corporation (SPEC), 1995, Manassas, VA
- http://www.specbench.org/spec/faq/

[2] “BAPCo Frequently Asked Questions (FAQ)”, Business Applications
Performance Corporation, 1998, Santa Clara, CA
- http://www.bapco.com/info.htm

[3] Lapsley, P., Bier, J., “DSP Benchmarks: Methodology and Results”, Reprinted
from: Proceedings of the International Conference on Signal Processing
Applications and Technology, 1994
- http://www.bdti.com/articles/method.htm

[4] Lapsley, P., Blalock, G., “Evaluating DSP Processor Performance”, Berkeley
Design Technology, Inc., 1996, Fremont, CA
- http://www.bdti.com/articles/wpeval.htm

[5] Roy, S., “AN703: XA benchmark versus the architectures 68000, 80C196, and
80C51”, Philips Semiconductors, 1996
- http://www-us2.semiconductors.philips.com/acrobat/8206.pdf

[6] Hartman, R., “MCS-96 vs. MCS-51: A Performance Benchmark”, Hamilton-
Hallmark Technology Review, Avnet, Inc, 1997,
- http://www.hh.avnet.com

[7] Levy, Markus, “EDN’s Annual Microprocessor/Microcontroller Directory”,
EDN Magazine, September 1997

[8] “New Consortium to Drive Benchmarking Standards for Embedded
Microprocessors”, EDN Embedded Microprocessor Benchmarking
Consortium, 1997,
- http://www.eembc.org

49

Vita

Charles (Chuck) Powers was born in Monroe, MI on January 24th, 1962,

the son of Cornelius Powers and Doris Griggs Powers. After graduating from New

Braunfels High School in New Braunfels, TX, he attended Texas Tech University,

where he received a Bachelor of Science degree in Engineering Technology in

August, 1986. After graduation, he spent 19 months working for Texas

Instruments as a test engineer, before moving to his current employer, Motorola, in

1988. While with Motorola, Chuck has held positions of increasing responsibility

in product and applications engineering, leading to his current position as manager

of Systems Engineering for the Intelligent Transportation Systems operation of the

Semiconductor Products Sector. He has authored or co-authored more than 20

papers, articles and application notes, and is also actively participating in

leadership roles in several industry standards committees. He and his wife,

Christine, have a daughter named Andrea, and a second child due in August, 1998.

Permanent address: 6408 Convict Hill Road
Austin, TX 78749

This report was typed by the author.

50

