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Abstract

Real-Time Sonar Beamforming on a Symmetric Multiprocessing

UNIX Workstation Using Process Networks and POSIX Pthreads

Gregory Eugene Allen, M.S.E.

The University of Texas at Austin, 1998

Supervisor:  Brian L. Evans

Traditionally, expensive custom hardware has been required to implement

data-intensive sonar beamforming algorithms in real-time. We develop a sonar

beamformer in software by merging the following recent technologies: (1)

symmetric multiprocessing on Unix workstations, (2) lightweight POSIX threads,

and (3) the Process Network model of computation. We find that it is feasible for

a 4-GFLOP digital interpolation Process Network beamformer to run in real-time

on a Sun workstation with 16 UltraSPARC-II processors running at 336 MHz.

The workstation beamformer significantly reduces cost and development time

over an equivalent custom hardware beamformer.
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Chapter 1: Introduction

Sonar, the acoustic analog to radar, is a method for detecting and locating

objects using acoustic waves. It is often employed in environments where acoustic

wave propagation is superior to electromagnetic wave propagation, such as under

water. Sonar can be used for navigation, to identify hazardous or hostile objects,

and to map terrain features in the surrounding environment. Fig. 1.1 shows a

sample underwater environment with a navigational hazard.

Figure 1.1: A sample underwater environment.

High-resolution sonars generally consist of an array of underwater sensors

along with a beamformer [1, 10] to determine from which direction a sound is

coming. The higher the resolution of a sonar system, the more accurately the

location of an object can be determined. To achieve high resolution over a wide

coverage area, a large number of beams may be formed. Fig. 1.2 illustrates a high

resolution, multi-beam sonar with several narrow horizontal beams covering a

wide horizontal sector.

Sonar
platform

HazardBeam of
coverage

Side view
(vertical coverage)
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Figure 1.2: Ahead-looking horizontal beam coverage for a sonar system.
Multiple sensor outputs are combined to form each beam.

The sensor element outputs must be combined to form these multiple

narrow beams, each of which “looks” in a single direction and is insensitive to

sound in neighboring directions. This combination must be performed with

precise time delays and amplitude weighting applied to the sensor outputs. As a

result, beamforming for high-resolution sonar systems is extremely

computationally intensive.

Traditionally, custom hardware has been required to implement sonar

beamforming algorithms in real-time. However, the performance of today's

symmetric multiprocessing UNIX workstations makes it possible to implement

these algorithms at a fraction of the development and manufacturing costs of a

custom hardware solution.

Software development in a workstation environment is generally easier

than in a custom embedded hardware environment due to the availability of

Top view
(horizontal coverage)
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superior and more affordable development and debugging tools. In this

implementation, the workstation is both the development platform and the target

architecture. Now we can deploy the computer-aided design tools along with the

design. Workstations also offer better portability, upgradability, and

maintainability than custom hardware solutions. In order to facilitate

implementation of large, computationally intensive systems, a reliable formal

design methodology is needed for organizing and developing real-time

multiprocessor software.

The Process Network [4, 5] model of computation captures the

concurrency and parallelism in signal processing systems. The model represents a

program in directed graph notation, where each node represents an independent

process and each edge represents a one-way FIFO queue of data to be

communicated. This model provides for correctness, and guarantees determinate

execution of the program regardless of the scheduling algorithm used. Dynamic

scheduling based on the availability of data allows execution in bounded memory

[7]. This bounded memory Process Network model is well-suited for

implementation using the thread model of concurrent programming.

The Portable Operating System Interface (POSIX) is a recent standard

[11] with the goal of providing source-code portability across many UNIX

platforms. Implementing the Process Network model with POSIX threads

(Pthreads) gives a low-overhead, high-performance, scalable framework.

Symmetric multiprocessing guarantees efficient utilization of multiple processors,

as scheduling of Pthreads is dynamically handled by the operating system. The
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POSIX standard optionally allows Pthreads to be scheduled with real-time

priority.

The goal is to implement a high-resolution multi-fan three-dimensional

digital interpolation beamformer, as described in Chapter 2, which runs at real-

time on a Unix workstation. This is realized by performing a design space

exploration of software beamforming implementations, modeled as a Process

Network. We show that it is feasible for a 4-GFLOP multi-fan three-dimensional

digital interpolation beamformer to run in real-time on a Sun workstation with 16

UltraSPARC-II processors running at 336 MHz (5.4 GFLOPS at 1 floating point

operation per clock). This beamformer can combine the outputs of both vertical

and horizontal sensors to image an underwater environment in three dimensions.

The software beamformer reduces manufacturing costs, development costs, and

development time by a factor of three, and volume and weight by a factor two,

over an equivalent modern hardware beamformer.

Chapter 2 discusses beamforming techniques including the digital

interpolation beamfoming algorithm. Modeling this algorithm using sparse finite

impulse response (FIR) filters is also discussed. Chapter 3 explains the formal

definition and properties of the Process Network model, and addresses operational

semantics such as scheduling approaches. Chapter 4 covers the C++

implementation of the Process Network model, including low-overhead circular

queues for processors (such as the UltraSPARC) that lack modulo addressing

modes. Chapter 5 addresses the C++ implementation and optimization of a

computationally intensive beamformer, using the Process Network model.
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Chapter 6 compares the performance of batch-mode and Process Network

realizations of digital interpolation beamformers in order to evaluate Process

Network overhead. Chapter 7 concludes this report.
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Chapter 2: Beamforming

A beamformer is a spatial filter that operates on the output of an array of

sensors in order to determine from which direction a sound is coming. It enhances

the amplitude of a coherent wavefront relative to background noise and

directional interference. Time-domain beamforming is realized by delaying and

summing the shaded outputs of an array of transducers. Shading is simply

amplitude weighting which is done to improve the spatial response characteristics

of the beams. The beamforming delays are matched to the anticipated propagation

delays of a pressure field incident from a specific direction [1].

Section 2.1 describes simple analog time-delay beamforming, including

determination of the beamforming time delays. Section 2.2 discusses a digital

implementation of beamforming, and Section 2.3 describes the algorithm for

digital interpolation beamforming.

2.1: ANALOG BEAMFORMING

Conceptually, time-domain beamforming in a single dimension is quite

simple. For M sensors (transducers) each receiving a signal xm(t), the output of a

single beam can be calculated by

b(t) = αmxm(t −τ m)
m =1

M

∑ ,

where αm is the shading coefficient for the mth sensor, and τm is the required time

delay applied to the output of the mth sensor. Fig. 2.1 shows the block diagram for

calculating a single beam using strictly analog methods. Note that analog

multiplication, time delay, and summation is required.
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Figure 2.1: Analog beamformer with hydrophone array.

Figure 2.2: Projection of sensor elements from a semi-circular array.

The beamforming time delays are determined by geometrically projecting

the elements of the sensor array onto a line that is perpendicular to the Maximum

Response Angle for the desired beam. This is demonstrated in Fig. 2.2 with a

semi-circular array of 80 elements, for a beam pointing 20˚ off axis.
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The distance from each physical element location to the perpendicular line

(divided by the speed of sound) is the necessary time delay for the corresponding

element. Note that just over 50 of the elements have been projected, and the

remaining elements have been left out. Although the remaining elements could be

used in the calculation, their response in the direction of interest is relatively small

for this geometry, and they would merely add noise. Leaving these elements out

would also substantially reduce computation.

2.2: DIGITAL BEAMFORMING

Sampling the output of each sensor element in time (at t = n ∆) creates a

digital signal, which requires a digital beamformer implementation. These sets of

discrete samples are now digitally delayed and summed in the beamforming

operation. The delays must be quantized to increments of the input sampling

period, ∆. Fig. 2.3 shows a block diagram.

Figure 2.3: Digital beamformer with digitizing sensor array.

The sensor must be sampled at a rate much greater than the Nyquist rate to

approximate the time delays required for beam steering [1]. To handle the high

N1∆
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bandwidth and large number of elements needed for high resolution sonar, the

necessary sampling rate is quite large. These high sampling rates impose

requirements on the analog-to-digital (A/D) converters and on the bandwidth of

the cables which connect the A/D converters to the beamformer.  Large amounts

of memory are also required to handle the long delays associated with large arrays

and high sample rates [2]. Because of the high implementation cost, digital

interpolation beamformers are generally used instead.

2.3: DIGITAL INTERPOLATION BEAMFORMING

Digital interpolation beamforming is an efficient algorithm that utilizes

hydrophone data sampled at just above the Nyquist rate.  The desired time-delay

quantization is achieved by digital interpolation of the sampled data.  Additional

computation is required to perform this interpolation, but it is performed

efficiently using FIR digital filters.

This principle is a simple one, but with profound consequences. The

expense of high frequency A/D converters and high bandwidth cables can now be

shared with the digital signal processing hardware in order to optimize the overall

system implementation [1].
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Figure 2.4: Digital interpolation beamformer with digitizing sensor array.

Fig. 2.4 shows a digital system with a digital interpolation beamformer.

The sampling interval needed to satisfy the Nyquist criterion is ∆. Digital

interpolation is performed to the interval δ, where ∆ = L δ, and L is an integer

larger than one.  Now time delays are quantized to integer multiples of δ, i.e., τm =

Nm δ.

In a wideband sonar, the digital interpolation beamformer technique

relaxes specifications on the A/D conversion rate and data transmission

bandwidth at the expense of additional computation for digital interpolation.

Beam degradation introduced by interpolation is controllable and quite small for

an interpolation filter of modest design [1, 3]. Digital interpolation beamformers

have been successfully working in the field for at least a decade.

2.3.1: Digital Interpolation

Digital interpolation is a two-step process: zero-insertion and then lowpass

filtering [2, 12].  Since the filter and the summation are both linear, the filter can

be placed either before or after the beamformer summation. The digital

N1δ
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interpolation beamformer in Fig. 2.4 performs the interpolation before the

summation.

The first step of interpolation, zero-insertion, involves transforming the

digital stream xm(n∆) by inserting L-1 zeros after each sample. The resulting

stream xm(nδ) has L times more samples, and has had its sampling period reduced

by a factor of L.

Figure 2.5: The steps of digital interpolation.

To complete the interpolation, an ideal digital lowpass filter with a cutoff

frequency at ω = π/L is required. Filtering the stream xm(nδ) yields the

interpolated approximation to the input sampled at the interval δ. Since FIR filters

are not ideal, error is introduced at the beamformer output. Increasing the number

of filter coefficients reduces this error, so there is a tradeoff between accuracy and

computational complexity. Fig. 2.5 shows the steps of digital interpolation, for L

= 4.

2.3.2: A Sparse FIR Filter Model

Modeling the beamformer as a sparse FIR filter allows for a simple,

concise organization of the algorithm.  If multiple samples of the entire array are

stored contiguously in memory, each beam output can be generated by an FIR

filter of length K = (D+P-1)M, where D is the maximum sample delay due to the

Zero
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t

t

t

xm(t)

xm(n∆) xm(nδ)

xm(nδ)A/D
Low
Pass

t



12

array geometry, M is the total number of sensors in the array, and P is the number

of points used to calculate each interpolation result. Although this can be an

extremely long filter, most of the coefficients are zero.  The number of non-zero

coefficients, C = PS, where S is the number of sensors used to calculate each

beam.  The sparsity is 1-C/K, and is typically above 75%. Note that in this model,

the digital interpolation lowpass filter from Section 2.3.1 is an FIR filter with an

impulse response of length K = LP.

Figure 2.6: Matrix operation to generate one beam set.

For each sample of a beam’s output, C multiply-accumulates (MACs) are

required. When B beams are calculated, (BC) MACs must be executed. Fig. 2.6

shows the matrix operations necessary to calculate B beams from the input data

stream. This algorithm has an extremely high degree of parallelism, which can be

exploited by using the Process Network model of computation.

2.4: SUMMARY

A beamformer is a spatial filter that operates on the output of an array of

sensors in order to image the environment. Time-domain beamforming is realized

by delaying and summing the sensor outputs. For digital implementations, the

desired time-delay resolution is generally much greater than that provided by the

Nyquist rate, which is the minimum sampling frequency required to preserve the

Incoming Data

(1 by K) (K by B)

Beam Data
(1 sample)
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•••
Beam

1
coefs

Beam
B
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significant frequency content of the data. In a digital interpolation beamformer,

this higher resolution time delay is achieved by interpolation of data that was

sampled at just above the Nyquist rate. To simplify the computation and storage

requirements, this algorithm can be modeled as a sparse FIR filter.
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Chapter 3: Process Networks

In the process network [4, 5] model of computation, concurrent processes

are connected by unidirectional first-in, first-out (FIFO) queues to form a

network. The model uses a directed graph notation, where each node represents a

process and each edge represents a communication channel (queue). This model is

natural for describing the streams of data samples in a signal processing system.

Fig. 3.1 shows a simple process network program, in which processes A and B are

connected by a communication channel, P.

Figure 3.1: A simple process network program.

Section 3.1 explains the formal definition and properties of the Kahn

Process Network model. Section 3.2 gives rules for executing Process Networks

in bounded memory. Section 3.3 discusses computation graphs, which is a

similar, but more restricted model.

3.1: KAHN PROCESS NETWORKS

Kahn [4, 5] dictates that communication channels are the only method that

processes may use to communicate. Process nodes may have any number of

incoming or outgoing queues. Nodes with outgoing queues produce data elements

(tokens) on those queues, and nodes with incoming queues consume data. A

A B
P
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consumer node cannot detect the presence or absence of data on an input queue,

and its execution is suspended when it attempts to consume data from an empty

queue. However, producers are always enabled for execution, and queues are of

infinite length. This can cause unbounded accumulation of data on a given queue.

The results of a process network program do not depend on the order of

execution of the process nodes. The tokens produced on all communication

channels are the same for every execution order that obeys these semantics. This

important property of process networks is called determinism. Because process

networks are determinate, the can be executed sequentially or in parallel with the

same outcome.

Kahn developed a formal, mathematical representation of process

networks [4]. By using streams to represent the channels, and functions to

represent the processes, a process network program can be described by a set of

equations. The histories of the streams in the network correspond to a unique least

fixed point of these equations, and are not affected by the scheduling of

operations. Kahn uses this fact to prove that process networks are determinate.

For Kahn process networks, termination is a property of the program and

does not depend on the execution order. The unique least fixed point determines

the value and length of every stream in the program, but there are many possible

execution orders that can lead to this solution. In a terminating program, all

streams in the solution are finite in length. A non-terminating program contains at

least one stream that is infinitely long.



16

Although the total stream lengths are a property of the program, the

number of unconsumed tokens that can accumulate on communication channels

depends on the choice of execution order [7]. Using Fig. 3.1 as an example, if the

nodes are executed as {A, B, A, B, …}, then channel P must buffer only one data

element. However, if process A executes an infinite number of times before B

executes, then P must buffer an infinite number of data elements.

A process network is bounded if a complete execution exists in which

token accumulation on any channel will not exceed some finite constant. In a

strictly bounded network, token accumulation on any channel will not exceed

some finite constant for all complete executions.

For some restricted forms of process networks, such as synchronous

dataflow [8], termination and boundedness are decidable, and a static schedule

can be determined offline in finite time. However, the problems of determining

whether a general Kahn process network will terminate, or can be scheduled in

bounded memory are undecidable. In this context, the scheduler must work

dynamically, as the program executes.

3.2: BOUNDED SCHEDULING OF PROCESS NETWORKS

Infinitely large queues cause obvious problems; execution in bounded

memory is necessary for any practical implementation. Any arbitrary process

network can be transformed into a strictly bounded one by adding a feedback

channel for every data channel and modifying each process. Fig. 3.2 shows how

the simple bounded network in Fig. 3.1 can be made strictly bounded.
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Figure 3.2: A strictly bounded process network.

However, this method could introduce artificial deadlock, thus transforming a

non-terminating program into a terminating one.

Rather than transform the process network, Parks developed rules for

dynamic scheduling in bounded memory [7]. Parks lists two requirements for the

scheduler:

1. Complete Execution – The scheduler should implement a complete execution

of the process network program. If the program is non-terminating, then it

should be executed forever without terminating.

2. Bounded Execution – The scheduler should (if possible) execute the process

network program so that only a bounded number of tokens ever accumulate on

any of the communication channels.

When these requirements conflict (such as for unbounded programs),

requirement 1 takes precedence over requirement 2. That is, a complete,

unbounded execution is preferable to a partial, bounded one.

Parks goes on to show that the following rules will yield a bounded

schedule, if one exists.

1. Block when attempting to read from an empty queue.

2. Block when attempting to write to a full queue.

A B
P

Q
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3. If we reach artificial deadlock, where execution has stopped because

processes are blocked writing to full channels, increase the capacity of the

smallest full queue until the producer associated with it can fire.

This bounded scheduling policy has the desired behavior for all types of

programs – terminating or non-terminating, strictly bounded, bounded, or

unbounded. Now any scheduler will work, because any execution leads to

bounded buffering on the queues. This model is well-suited for implementation

using the threaded model of concurrent programming.

3.3: KARP AND MILLER COMPUTATION GRAPHS

Karp and Miller [6] developed a restricted model similar to process

networks, called "computation graphs", which are also determinate. The

computation is represented by a finite graph containing nodes v1,...,vk, each

associated with a function O1,...,Ok, connected by a set of arcs (edges) d1,...,dt.

Each arc dp has four non-negative integer constants associated with it:

• Ap - The number of data words initially present.

• Up - The number of data words inserted each time the producer node fires.

• Wp - The number of data words removed each time the consumer node fires.

• Tp - The number of data words required to be on the arc before the consumer

can fire.

Clearly Tp must be greater than or equal to Wp. Three basic rules apply to

the execution of a computation graph:

1. No node will fire unless each input edge dp has at least Tp data words.
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2. The execution will continue until every node has at least one input edge with

less than Tp data words.

3. In a "proper execution," every node that has at least Tp data words on each

input edge will eventually fire.

For this restricted model, the questions of termination and boundedness

are decidable. Karp and Miller provide iterative algorithms to determine these

properties. Computation graphs can be statically scheduled. In fact, synchronous

dataflow [8] is a special case where Tp = Wp for every arc.

The digital interpolation beamforming algorithms presented in this paper

(and many other signal processing algorithms) can be modeled as Karp and Miller

computation graphs. The process network implementation presented in Chapter 4

borrows the concept of a firing threshold (Tp) in addition to a dequeue count (Wp)

from Karp and Miller. Although the beamformer system can be statically

scheduled, dynamic scheduling with Process Networks is preferred so that

execution on a symmetric multiprocessing system can effectively utilize parallel

hardware. Static scheduling of algorithms across multiple processors is beyond

the scope of this implementation.

3.4: SUMMARY

The Process Network model of computation represents a program in

directed graph notation, where each node represents an independent process and

each edge represents a communication channel. This model provides for

correctness, and guarantees determinate execution of the program regardless of

the scheduling algorithm used. Dynamic scheduling based on the availability of
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data allows execution in bounded memory. This bounded memory Process

Network model is well-suited for implementation using the thread model of

concurrent programming.
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Chapter 4: Process Network Implementation

Our implementation of Process Networks is intended for computationally

intense algorithms on large symmetric multiprocessing workstations. Many signal

processing algorithms are modeled using directed graphs, where each node

represents fine-grain computations such as addition and multiplication. For

example, the fast Forrier transform (FFT) butterfly [12] may be modeled in this

manner. However, a fine level of granularity is inappropriate for this

implementation, because the overhead of dynamic scheduling will dominate the

overall execution time.

We use nodes of larger granularity – such as an FFT node, a filter node, or

a beamformer node. The graphs drawn using this methodology are essentially

block diagrams. The general rule of thumb is that the cost of firing a node should

be much larger than the cost of a (relatively lightweight) thread context switch.

However, if a node is too computationally costly, it may need to be divided into

smaller pieces in order to run in real time. Generally, there is a tradeoff between

overhead and latency.

Although our implementation of Process Networks is applied to

beamforming in this paper, it could be used on any appropriate processing task,

and is in no way limited to this purpose. We use a layered approach based on the

C++ inheritance mechanism to build interfaces and functionality.

Section 4.1 discusses the ThresholdQueue class, which provides efficient

circular buffers for general-purpose processors. This queue is fundamental to the
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Process Network implementation, so implementation details and usage examples

are given. It also covers the MmapThresholdQueue, which uses the Unix virtual

memory manager to maintain circularity, so that data copying is not required.

Section 4.2 covers the implementation of Process Network nodes, and

their relation to threads. It also addresses the interface for nodes to communicate

with queues, using the classes PNNodeInput and PNNodeOutput. A code

fragment for a sample node is provided. These classes adhere to the rules for

bounded scheduling of Process Networks.

Section 4.3 discusses the implementation of Process Network

communication channels. The abstracted base classes provide versatility in the

delivery mechanism of these channels. The most generally used channel type is

the PNThresholdQueue, which provides ThresholdQueue functionality along with

bounded scheduling rules.

Section 4.4 explains how these node and queue classes are tied together in

order to produce a Process Network program. A directed graph program is given,

and its corresponding C++ implementation is provided.

4.1: THE THRESHOLDQUEUE TEMPLATE CLASS

The ThresholdQueue C++ class is near the base of the inheritance

hierarchy, and is optimized for data-intensive applications. The ThresholdQueue

works much like a typical queue, but is intended to make up for the lack of

circular address buffers in general purpose processors. Because ThresholdQueue

is a template class, it can queue any type of data. A goal in the design of this class

was to prevent unnecessary copying of data. Therefore, the user reads and writes
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data directly from queue memory, and data is guaranteed to be contiguous in

memory. This reduces overhead, and simplifies the implementation of algorithms

that interface to these queues.

The Karp and Miller concept of separating the firing threshold (Tp) from

the dequeue count (Wp) is fundamental to the ThresholdQueue. In addition to the

type of data being queued, instantiation requires the initial queue length and a

maximum threshold that will ever be requested. This threshold is the maximum of

Karp and Miller’s Up, Wp, and Tp parameters for a queue.

The basic interface to the ThresholdQueue is reused throughout the

process networks implementation, using pointers to avoid data copying by the

user. A transaction with a ThresholdQueue is a three-step process:

1. Get a pointer to some number of data elements (which are contiguous in

memory) using the GetEnqueuePtr or GetDequeuePtr method, each of which

takes a threshold and returns the pointer.

2. Operate on the data by de-referencing the pointer, up to the threshold length.

3. Actually insert or remove the data by calling the Enqueue or Dequeue method,

each of which takes a count.

The code fragments in Figs. 4.1 and 4.2 demonstrate insertion and removal

transactions for a ThresholdQueue.
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Figure 4.1: Enqueuing data into a ThresholdQueue.

Figure 4.2: Dequeuing data from a ThresholdQueue.

Although the relationships to Karp and Miller’s parameters are demonstrated in

these code fragments, the threshold and count values are not static, and may

change on each queue transaction. The count must always be equal to or less than

the threshold, although this is not strictly enforced. For enqueueing, the count and

the threshold are generally equal.

The ThresholdQueue implements its apparent circular addressing by

mirroring the beginning of the queue’s data region (up to the maximum threshold)

just past the end of the queue’s data region. Using this methodology, the queue

can provide a pointer to a contiguous block of data elements even when operating

near the end of the data region. The queue manages this mirroring, and guarantees

that the same data resides in both locations. Fig. 4.3 illustrates the

ThresholdQueue implementation.

int threshold = KarpAndMillerTp;
int count = KarpAndMillerWp;
const T* readPtr = theThresholdQueue.GetDequeuePtr(threshold);
for (int i=0; i<threshold; i++)

DataToRead( readPtr[i] );
theThresholdQueue.Dequeue(count);

int count = KarpAndMillerUp;
T* writePtr = theThresholdQueue.GetEnqueuePtr(count);
for (int i=0; i<count; i++)

writePtr[i] = DataToWrite(i);
theThresholdQueue.Enqueue(count);
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Figure 4.3: ThresholdQueue implementation.

The ThresholdQueue has a tradeoff between memory usage and

performance. When the data region is much larger than the mirror region, the

queue rarely needs to copy data. When the mirror region is as large as the data

region, copying must occur frequently, increasing overhead and sacrificing

performance. Fortunately, memory is usually abundant on a workstation.

On some systems (including Sun Solaris), the virtual memory manager

can be used to prevent the ThresholdQueue from having to copy data at all. The

Unix system call mmap() is used to map virtual memory objects into a process’s

address space. By mapping a shared memory object to multiple virtual addresses,

the same physical memory pages appear at multiple addresses, and apparent

circular addressing is achieved.

The C++ class MmapThresholdQueue is derived from the

ThresholdQueue class. It implements the same functionality and interface, but

never has to perform copying of data when managing the mirror region. As a side

effect, the queue data and mirror regions must both be multiples of the system

memory page size, which is 8 kilobytes (kb) in Solaris. Therefore, the

MmapThresholdQueue rounds the queue size and the threshold size up to the next

multiple of the page size.

Mirror regionQueue data region

Mirrored data
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4.2: PROCESS NODES

The process nodes of the Process Network model are implemented using

the thread model of concurrent programming. Each node in the Process Network

program is a different thread. These multiple threads can run concurrently when

the program has parallelism, and thus can take advantage of multiple processors.

Thread implementations are generally intended to provide high performance in a

low-overhead environment.

The Portable Operating System Interface (POSIX) provides a standard

thread interface, called Pthreads, which is source-code compatible with many

versions of Unix. A particular advantage of Pthreads is that they can be given

real-time scheduling priority. By realizing Process Networks with POSIX

Pthreads, our implementation can be run on many different Unix platforms.

The base class for all process nodes is the C++ class PNNode, which is

derived from a Pthread class. Since all nodes are derived from PNNode, porting

this system to a different thread implementation should be fairly simple, requiring

only a change to the PNNode class.

Since the only way that nodes can communicate with each other is via

communication channels, an abstracted interface to these channels has been

provided: the classes PNNodeInput and PNNodeOutput. In order to simplify node

implementation and reduce the overhead of data copying, these classes use the

same transaction mechanism as the ThresholdQueue. Again, these classes are

templates, and can be used to communicate any data type. Figs. 4.4 and 4.5 show

declarations of PNNodeInput and PNNodeOutput.
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Figure 4.4: A partial declaration of PNNodeInput.

Figure 4.5: A partial declaration of PNNodeOutput.

The methods GetDequeuePtr and GetEnqueuePtr are intended to be

blocking. That is, they will not return until the threshold amount of data (or free

space) is available. Note that these are virtual base classes – they cannot be

instantiated.  They only provide an interface for writing process nodes. Using

these interfaces, the code for a node that eternally copies data is as simple as that

in Fig. 4.6.

Figure 4.6: Code for a node that copies data.

template<class T> class PNNodeInput {
virtual const T* GetDequeuePtr(ulong thresh) = 0;
virtual void Dequeue(ulong count) = 0;
// others omitted for brevity

};

template<class T> class PNNodeOutput {
virtual T* GetEnqueuePtr(ulong thresh) = 0;
virtual void Enqueue(ulong count) = 0;
// others omitted for brevity

};

for(;;) {
const T* readPtr = theInputQ.GetDequeuePtr(copySize);
T* writePtr = theOutputQ.GetEnqueuePtr(copySize);
for (int i=0; i<copySize; i++)

writePtr[i] = readPtr[i];
theInputQ.Dequeue(copySize);
theOutputQ.Enqueue(copySize);

}
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The thread implementing this node (and running this code) will block on

its input queue in GetDequeuePtr until there is data available to be copied. It will

also block in GetEnqueuePtr until there is sufficient space in the output queue.

Once there is data to copy and a place to put it, the node is free to perform the

copy operation. After completion, the node notifies the input queue that it is done

with the incoming data, and then notifies the output queue that data is present to

be inserted.

Note that this interface obeys Parks’ rules for bounded scheduling of

Process Networks. Also notice that the node is not concerned with the

implementation of the communication channels, but instead only their interface.

4.3: COMMUNICATION CHANNELS

Because of the abstracted interface to the communication channels, many

different implementations could exist. A channel could send data to another

process via shared memory, or to another computer through a network. A channel

could also save its entire history to disk for program verification or debugging.

However, most of the time data will simply be sent from one thread to another

within the same process. The primary mechanism for this is the C++ template

class PNThresholdQueue.

This class is multiply inherited from the classes PNNodeInput,

PNNodeOutput, and ThresholdQueue. Again, it is a template class, and can send

and receive any type of data. Since it is derived from PNNodeInput and

PNNodeOutput, it can be used as the input or output of any process node. Fig. 4.7

shows a partial declaration of PNThresholdQueue.
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Figure 4.7: A partial declaration of PNThresholdQueue.

The PNThresholdQueue is responsible for blocking any nodes according

to Parks’ firing rules. The POSIX Pthread condition variable mechanism is used

to awaken nodes at the proper time. When a producer enqueues data into a queue

and there is a blocked consumer waiting at the other end, the consumer will be

signaled to awaken if the operation provides enough data for the consumer to fire.

This signaling occurs inside the queue implementation, without the knowledge of

the involved processing nodes. Similarly, when a consumer dequeues data and

there is a blocked producer at the other end of the queue, the producer will be

awakened if there is enough free space in the queue for the producer to fire. This

method awakens the threads as soon as data (or free space) is available,

minimizing latency.

At this time, deadlock detection as described in Section 3.2 is not

implemented. For the class of real-time problems that this implementation is

intended to solve, deadlock detection is not necessary -- it is required for avoiding

artificial deadlock, and for execution of unbounded programs. In this

template<class T> class PNThresholdQueue
: public ThresholdQueue<T>,

public PNNodeInput<T>,
public PNNodeOutput<T>

{
PNThresholdQueue(ulong qLength, ulong maxThresh);
const T* GetDequeuePtr(ulong thresh);
void Dequeue(ulong count);
T* GetEnqueuePtr(ulong thresh);
void Enqueue(ulong count);
// others omitted for brevity

};
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implementation, queues are generally allocated to be much larger than their

minimum possible (deadlock avoiding) size, because of the performance reasons

described in Section 4.1. Unbounded programs have no place in real-time, and

can never be fully executed in a real-world implementation. However, the

addition of deadlock detection would make this a more complete implementation

of the Process Network model, and will be implemented in the future.

4.4: CONSTRUCTING A PROCESS NETWORK PROGRAM

In order to tie these concepts together, an example of constructing a

Process Network program is provided. The Process Network graph is shown in

Fig. 4.8.

Figure 4.8: A sample process network program.

The arcs ‘P’ and ‘Q’ are used to connect nodes ‘A’, ‘B’, and ‘C’. Each time ‘A’

fires, it produces 3 tokens. Each time ‘B’ fires, it consumes 2 tokens and produces

3 tokens. Each time ‘C’ fires, it consumes 2 tokens. Fig. 4.9 gives simple code to

implement this network.

A B C
P Q

3 32 2
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Figure 4.9: Implementation of the process network program.

Recall that the parameters to the PNThresholdQueue constructor are the

queue length, and the maximum threshold. In each arc, the maximum number of

elements enqueued or dequeued is 3. In order to prevent artificial deadlock, the

minimum queue lengths are 4 in both cases. This is the case that uses the minimal

amount of memory. If more memory is available, then context switching can be

reduced (and latency increased) by increasing these queue sizes.

Currently, we only provide support for building a process network by

programming in the C++ language. Our future goal is to have the capability to

build process network programs from a text file or a graphical user interface,

using a tool such as Ptolemy [13] from the University of California at Berkeley.

4.5: SUMMARY

This chapter discusses the implementation of Process Networks in C++.

The efficient circular buffering classes are described, with examples and

implementation details. We give examples of constructing nodes and

communication channels that adhere to the rules for bounded scheduling of

Process Networks. A directed graph program is given, along with its

implementation in C++.

int main() {
PNThresholdQueue<T> arcP(4,3);
PNThresholdQueue<T> arcQ(4,3);
MyProducerNode nodeA(arcP);
MyTransmuterNode nodeB(arcP, arcQ);
MyConsumerNode nodeC(arcQ);

}
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Chapter 5: Beamformer Implementation

Fig. 5.1 shows a block diagram of the beamformer stages implemented.

These stages correspond to nodes in the Process Network implementation.

Figure 5.1: A block diagram of the beamformer stages.

The sensor array consists of 80 elements horizontally by 10 elements

vertically, for a total of 800 elements. An analog-to-digital converter samples

each element, and this digital data comes from the sensor array via four telemetry

links, each at 40 megabytes per second.

The first stage of this system is vertical beamforming or “staving.” In this

stage, the vertical elements are weighted and summed, thus calculating 80 logical

horizontal elements, or staves. The element data is first converted to 32-bit

floating-point, and then three different sets of weights are used to calculate 3 sets

of stave outputs.

The three horizontal beamformers combined perform approximately 3.6

billion (giga) floating-point operations per second (GFLOPS) at real-time, which
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is the bulk of the computational requirement in the system. The horizontal

beamformer has been a large focus of this research, and is discussed in Section

5.1. The vertical beamformer requires approximately 500 million floating-point

operations per second (MFLOPS) at real-time, and is discussed in Section 5.2.

5.1: HORIZONTAL BEAMFORMING

Each horizontal beamformer stage performs digital interpolation

beamforming as described in Chapter 2, using single precision (32-bit) floating-

point numbers. For each vertical weighting, the 80 stave outputs are used to form

61 beams. On average, approximately 50 staves contribute to each beam, and 2

points are used to calculate each interpolation result. The maximum sample delay

due to the array geometry is 32. When modeling this digital interpolation

beamformer operation as a sparse FIR filter, the filter length is 2560 coefficients,

96% of which are zero.

Fig. 5.2 shows a sample set of coefficients used. Although organized as a

2560-point one-dimensional FIR filter, the information contained in the

coefficients is more evident when plotted as sample number vs. stave number. In

the 2-D grid, zero coefficients are white and non-zero coefficients are black. The

curved shape of the array is clearly visible in the coefficients.
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Figure 5.2: Beamforming coefficients for one beam.

All beamforming coefficients were generated in Matlab, a computing

environment from The MathWorks, Inc. [14]. Coefficient indices are based on 2-

point interpolation of the signal delay due to the array geometry and steering

angle. No shading was used in generation of the coefficient values, but this does

not affect the number of operations performed during beamforming.

The digital interpolation beamforming algorithm is highly parallelizable,

and several different methods for dividing the task among threads were examined.

One obvious approach is to calculate different beams using different threads, thus

dividing the task by beam. This follows naturally from “partial-sum”

beamforming [2], and uses a minimal amount of memory, with minimum latency.

Indeed, this method is frequently employed in custom hardware designs that use

digital signal processor (DSP) style computing engines. However this “DSP-
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minded” approach suffers from poor cache utilization on a workstation, which

results in poor performance.

A more “workstation-minded” approach is to divide the task in time.

Memory bandwidth, not raw processing power, is the major obstacle. This method

requires more memory and gives higher latency, but delivers better performance

on a workstation through superior cache utilization. Section 5.1.1 discusses the

cache utilization.

Now, each thread performs exactly the same set of operations, only on

different data. This simplifies code development – only one highly optimized

horizontal beamforming routine is required. This beamforming kernel routine

needs to know the beamforming coefficients, a pointer to the incoming data

(staves), a pointer that tells where to put the results (beams), and the number of

samples to calculate. For organizational purposes, the C++ classes,

HorizontalBeamformerCoefs and HorizontalBeamformer were developed. By

examining the assembler output of the compiler, the C++ source code has been

hand-optimized for improved performance. Section 5.1.2 explains the integration

of the horizontal beamformer with the Process Network framework.

5.1.1: Cache Utilization

Best performance is obtained when the calculation is small enough to fit in

the cache, so that the number of cache misses is relatively small. The coefficients

for this implementation are 36 kilobytes (kb), and the calculation of each sample

requires approximately 10 kb of data. The level 2 cache, which is external to the

processor, typically has a size on the order of megabytes. Thousands of samples
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can be calculated from within this cache. However, the (internal) level 1 cache of

an UltraSPARC II processor is only 16 kb.

Within the kernel beamforming routine, care must be taken to heed this

memory usage limit. The best performance so far has been achieved by making

multiple passes through the same data, calculating only a subset of the result each

pass, such that both the element data and a subset of the coefficients fit in the

level 1 cache at each step. For each additional output sample calculated, 80 more

staves of input data must be fetched from the level 2 cache.

5.1.2: Integration with Process Networks

Implementation of a node that simply calls the horizontal beamformer

kernel routine is easy, but this node cannot achieve real-time performance. A

method for dividing the beamforming task in time is needed. In order to divide

this calculation without copying data, a horizontal beamformer node manages

multiple worker nodes. This is illustrated in Fig. 5.3.

Figure 5.3: A horizontal beamformer node.

Horizontal
Beamformer

Node

Worker 
Nodes
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When the horizontal beamformer node fires, it sends a task description to

each of several worker nodes, and then blocks on each worker node by waiting for

a result. The task description sent across the communication channels is the same

as that provided to the beamforming kernel routine -- a pointer to the incoming

data (staves), a pointer that tells where to put the results (beams), and the number

of samples to calculate. Each worker node simply returns an integer that indicates

error status. The number of worker nodes can easily be increased or decreased, as

the processing performance requires. This method is similar to a thread pool [9],

which is a common workstation multiprocessing tool.

5.2: VERTICAL BEAMFORMING

For the vertical beamformer, no time delay is necessary, and no digital

interpolation is required. For each sample of the logical 80 staves, one dot product

per vertical shading set must be calculated. Given 10 vertical elements and 3

shadings, this is only 4800 operations per sample (40% of a single horizontal

beamformer, and under 12% of the entire system). All of the element data is

consecutive in memory, and the coefficients are small, so the small size of the

level 1 cache is less of an issue.

Although the vertical beamforming operation itself is extremely simple,

this stage must also synchronize the element data, convert it to floating-point

format, and arrange the result for the following horizontal beamformer. Efficient

operation of the horizontal beamformer requires that the stave outputs be

interleaved, as shown in Fig. 5.4.
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Figure 5.4: Interleaving of the vertical beamformer output.

When different processors are performing interleaving by writing to the

same memory area, cache contention (thrashing) can result. As with the horizontal

beamformer, dividing the task by time gives superior performance. Once again, a

kernel beamforming routine was developed and optimized. The innermost loop of

the vertical beamformer kernel routine was written in UltraSPARC assembly

language.

Similarly to Section 5.2.2, a vertical beamformer node is used to manage

multiple worker nodes so that the beamformer can operate in real time. When the

vertical beamformer node fires, it sends a task description to each of the worker

nodes via a communication channel. It then blocks on the return channel of each

worker, waiting for the result which indicates completion.

Although the vertical beamformer performs a relatively small number of

operations on behalf of beamforming, it must convert the incoming data and

interleave the results. These factors significantly affect the performance of the
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vertical beamformer. Further optimization is possible, as demonstrated with the

results in Chapter 6.

5.3: SUMMARY

This chapter describes the implementation of beamforming algorithms in

C++. The digital interpolation beamformer is the most computationally intensive

algorithm in this system; much time has been dedicated to its optimization.

Dividing the computing load by time gives the best cache utilization, and

therefore the best performance. Although vertical beamforming is a simpler

algorithm, this stage must convert the incoming data and interleave the results.

Again, dividing the task by time yields superior performance.

We leverage existing tools and software to implement the digital

interpolation beamformer. Matlab was used to generate and test beamforming

coefficients, and to verify the beamformer output.

Beamforming kernel routines have been developed which can execute in

parallel on multiple processors. The Process Network implementation uses master

nodes with teams of worker nodes. This method avoids copying data, and is

similar to the thread pool model.

Chapter 6 discusses beamformer performance results.
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Chapter 6: Results

This chapter presents and discusses benchmark results for various

different beamformer implementations. These benchmarks were performed on a

Sun Ultra Enterprise 4000 with 8 UltraSPARC-II processors running at 336MHz

each. The Sun Solaris operating system version 2.6 was used, with threads

executing in the “real-time” class.

All results are determined as the average time over 10 trials to calculate

about 2.6 seconds of data. Care was taken to prevent the caching of incoming data

before the benchmarks were performed. If this had not been the case, artificially

elevated results would have been obtained; a real-time system does not have pre-

cached data to work with.

Section 6.1 presents the performance results for horizontal beamforming.

The beamforming kernel speed is evaluated, and scaling is measured using thread-

pool algorithms. Section 6.2 similarly presents the vertical beamformer results.

Section 6.3 presents results for the Process Network beamformer system

presented in Fig. 5.1, and compares them to thread-pool results. It also discusses

the scalability of Process Networks.

6.1: HORIZONTAL BEAMFORMER PERFORMANCE

The horizontal beamformer calculates 61 beams from an array of 80

logical horizontal elements (staves). Two samples are interpolated to calculate

each beamforming time delay, and approximately 50 staves contribute to each

beam, on average. Calculation of one sample requires over 12,000 single-
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precision floating-point operations, in addition to over 6000 index lookups for

location of the proper time index in the sparse FIR filter model. The benchmark

performed requires 3.2 billion floating-point operations.

In order to evaluate the performance of the digital interpolation

beamformer kernel, a non-threaded reference benchmark was performed. The

UltraSPARC-II processor can execute 2 floating-point operations per clock cycle.

At 336 MHz, this is a peak performance of 672 million floating-point operations

per second (MFLOPS). The first row of Table 6.1 displays the result of 410

MFLOPS for the non-threaded horizontal beamformer. Despite the index lookups,

the beamforming kernel routine can keep the utilization of the floating-point units

at 61%, i.e. 1.22 floating-point operations are performed per clock cycle. This

routine is currently written in highly optimized C++ code. Perhaps a hand-

optimized assembly coding could push this performance even further.

Table 6.1: Horizontal beamforming benchmark results.

The remaining rows of Table 6.1 show the results for various batch-mode

thread-pool beamformer implementations, each with a different number of

threads. The “speedup” and “percent utilization” columns are referenced to the

(100.0)
100.7
97.6
94.5
92.0
88.2

410.0
412.7
799.9

1550.4
2262.3
2893.0

7.847
7.795
4.022
2.075
1.422
1.112

(1.000)
1.007
1.951
3.781
5.518
7.057

non-threaded
1 thread pool
2 thread pool
4 thread pool
6 thread pool
8 thread pool

Beamformer
Type

time
(sec) MFLOPS speedup

percent
utilization
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non-threaded case in the first row. Because the thread-pool synchronization

overhead is low, the addition of a processor and its associated cache gives the

one-thread thread-pool implementation a slight (less than 1%) performance

advantage over the non-threaded reference case.

As Table 6.1 shows, the performance of these thread-pool horizontal

beamformers scales fairly well with additional threads. The real-time goal of

beamforming at 1200 MFLOPS is met with 4 threads, where the horizontal

beamformer delivers over 385 MFLOPS on each of 4 (336MHz) processors. Note

that for the 8-thread case, the beamformer must share a CPU with the operating

system. In order to achieve the best scaling performance, an additional level of

detail must be provided when mapping software on to the hardware. Binding of

threads onto individual CPUs was not performed in this implementation.

6.2: VERTICAL BEAMFORMER PERFORMANCE

The vertical beamformer calculates 3 sets of 80 logical horizontal

elements (staves) using 10 vertical elements each, for 800 total elements.

Although a mere 4800 floating-point operations per sample is required, the

incoming data must be converted from the native format of the A/D converter to

32-bit floating-point format, and the outputs must be interleaved (as shown in

Section 5.2). Unlike the horizontal beamformer, no index lookup is required. This

benchmark requires approximately 1.3 billion floating-point operations,

consuming 400 megabytes of element data.

Again, the kernel beamforming routine is evaluated by using a non-

threaded reference benchmark. As Table 6.2 shows, the vertical beamformer
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performance is currently unimpressive at 134.7 MFLOPS. This is only 20% of the

peak performance rate of the floating-point units. The real performance problem

lies in the conversion to floating-point format.

Conversion of 800 A/D outputs to floating-point format requires

approximately 4000 operations, thereby drastically reducing beamforming

performance. Integer implementations for the vertical beamformer have been

attempted, but no performance increase has been seen. Use of the UltraSPARC

Visual Instruction Set (VIS), which works only with fixed-point data, would

result in an unacceptable loss of precision and dynamic range.

Table 6.2: Vertical beamforming benchmark results.

Table 6.2 shows the results for various batch-mode thread-pool vertical

beamformers, referenced to the non-threaded case in the first row. Although the

real-time goal of 500 MFLOPS is nearly met with 4 threads, the scaling

performance is currently rather disappointing. Clearly more optimization effort is

needed on the vertical beamformer implementation. Further optimization is

possible by developing hand-optimized assembly language in conjunction with

Sun’s cycle-accurate simulator.
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69.2
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4.864
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476.4
626.0
746.3
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6.3: PROCESS NETWORK BEAMFORMER PERFORMANCE

Thread pools are the traditional method for lightweight multiprocessing on

a UNIX workstation. In order to evaluate the performance of the full Process

Network beamforming system depicted in Fig. 5.1, it is compared with thread-

pool implementations.

The thread-pool beamforming system loads all input data into memory,

and allocates memory for placing the results of each stage. First, a thread-pool

vertical beamformer calculates three sets of stave data from the element data.

Then 3 thread-pool horizontal beamformers sequentially execute and calculate

beam results from the stave data. This system uses over 800 Mb of memory for

data alone.

Each of the thread-pools in this system uses 8 worker threads, because that

is the number of processors on the workstation executing the benchmark, and this

gives the greatest performance. Not surprisingly, the time taken to execute the full

benchmark is roughly the same as the sum of the times for a vertical beamformer

and 3 horizontal beamformers from Sections 6.1 and 6.2 above.

As shown in Table 6.3, the thread-pool beamformer and the Process

Network beamformer achieve approximately the same results. Processing 2.6

seconds of data on 8 CPUs takes just over 5 seconds, which is slightly better than

half of the real-time goal.
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Table 6.3: Process Network vs. thread-pool performance results.

The Process Network system has distinct advantages. Because it is more

“stream” oriented, it has lower latency and uses less memory. Without real-time

input and output devices, the same amount of memory is required for the input

and output data. However, the communication channels in the network need only

be large enough to prevent artificial deadlock. In this implementation, the

resulting data memory size is reduced by over 200 Mb.

All nodes of the Process Network are operating all of the time, as the flow

of data permits. In the thread-pool implementation, each beamforming stage uses

8 worker threads because that is the number of CPUs. In the Process Network

implementation, each stage needs only enough worker nodes to keep up with the

real-time requirement. For the horizontal beamformer, 4 worker nodes are

required. The poorly performing vertical beamformer uses 6 worker nodes in this

implementation.

Although, the memory, latency, and scheduling issues can be better

addressed in the thread-pool implementation, these advantages come

automatically when using the Process Network model of computation. An

additional advantage of the Process Network implementation is its scalability; the

same Process Network beamformer program would automatically be scaled by the

operating system according to the number of available processors.

5.053
5.024

2159.0
2171.5

thread pool
process network

Beamformer
Type

time
(sec) MFLOPS
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The thread-pool beamformer was written with knowledge of the number

of CPUs in the hardware. If the number of CPUs were to increase, then the

number of worker threads would have to be changed in order to utilize these

additional processors. Arbitrarily creating large numbers of worker threads would

cause unnecessary overhead.

The Process Network beamformer will scale without any change to the

executable. If there were more processors than the sum of all worker nodes, those

processors would not be utilized. However, those extra processors are not needed

for the system to meet its real-time goal. In order to increase the performance past

that point, more worker nodes would simply be added.

Unfortunately, an 8-processor machine was the largest configuration

available to this project for benchmarking. Table 6.4 shows scaling results for the

same Process Network beamformer executable, running on a varying number of

CPUs. Solaris system administration tools were used to disable CPUs in the 8-

processor machine, so that this test could be performed. The Process Network

beamformer scales fairly well from 2 to 8 processors.

Table 6.4: Process Network beamformer scalability.

Based on these benchmarks, real-time operation of this Process Network

beamforming system on 16 CPUs is an attainable goal. Better optimization of the

(100.0)
96.5
90.8
86.8

624.9
1206.0
1702.5
2168.4

17.458
9.046
6.408
5.031

(1.000)
1.930
2.724
3.470

2 CPUs
4 CPUs
6 CPUs
8 CPUs

Number
of CPUs

time
(sec) MFLOPS speedup

percent
utilization
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vertical beamformer kernel routine is required, and its very poor scaling

performance must be addressed. Performance losses due to additional scaling

overhead must also be reduced. Binding threads to individual processors may help

to attain this goal.

6.5: SUMMARY

Horizontal beamforming accounts for the bulk of this system’s processing

requirement. We have focused on optimizing this stage, and performance and

scaling are very good. However, the vertical beamforming kernel needs further

optimization, because the format conversion of the incoming data to floating-

point is causing the performance to suffer. The scalability of the vertical

beamformer is also disappointing, and needs improvement.

The Process Network beamforming implementation compares favorably to

the more traditional batch-mode thread-pool implementation. It is slightly faster,

uses less memory, and has lower latency than the thread-pool version. An

additional advantage of the Process Network implementation is its superior (and

automatic) scalability to parallel hardware.
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Chapter 7: Conclusion

Computationally intensive sonar beamforming algorithms have been

implemented using Process Networks and POSIX Pthreads under the Sun Solaris

operating system. These software systems have been benchmarked on a Sun

workstation with 8 UltraSPARC-II processors, running at 336MHz. Highly

optimized software has been developed to implement (horizontal) digital

interpolation beamforming algorithms, and performance of better than 385

MFLOPS on each of 4 processors has been observed.

The Process Network model provides for correctness and determinacy,

and can guarantee execution in bounded memory. This model is excellent for

digital signal processing systems, and captures their concurrency and parallelism.

The Process Network implementation provided compares favorably with the more

traditional thread-pool model, and provides a low-overhead, high-performance,

scalable framework.

Our future goal is to have the capability to build process network

programs from within a graphical user interface, using a tool such as Ptolemy

[13]. In this implementation, the workstation is both the development platform

and the target architecture, and we can deploy the computer-aided design tools

along with the design.

Implementing this beamforming system on a commercial Unix

workstation reduces manufacturing costs, development costs, and development

time by a factor of three, and volume and weight by a factor two when compared
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to a custom hardware solution. This software implementation also provides

superior portability, upgradability, and maintainability.

Although further optimization is required for the vertical beamforming

software, it is feasible for this high-resolution multi-fan digital interpolation

beamformer to execute in real-time on a Unix workstation. This 4 GFLOP system

would require 16 UltraSPARC-II processors running at 336 MHz.
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