
 

 

Time-Scale Modification of Audio Signals 
Using the Dual-Tree Complex Wavelet 

Transform 
 

 
 

 
 
 
 
 
 
 

APPROVED BY 

SUPERVISING COMMITTEE: 

 
 
                                                                

Brian L. Evans, Supervisor 
 
 
 

Bruce Pennycook 
 
 
 

Russell F. Pinkston



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 

Dedicated to my parents, Harry and Sandra Livingston in appreciation of their 
unwavering support along every step of my academic, professional and personal 

path.



 iii 

 
 

Time-Scale Modification of Audio Signals 
Using the Dual-Tree Complex Wavelet 

Transform 
 
 

by 
 

Jeffrey B. Livingston  
 
 
 
 
 

REPORT 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE IN ENGINEERING 
 
 

 

THE UNIVERSITY OF TEXAS AT AUSTIN 

December 2006 
 



 iv 

TIME-SCALE MODIFICATION OF AUDIO SIGNALS USING THE DUAL-
TREE COMPLEX WAVELET TRANSFORM 

JEFFREY B. LIVINGSTON M.S.E. 

The University of Texas at Austin, 2006 

Supervisor: Brian L. Evans 

 
ABSTRACT 

The use of the wavelet transform in place of the short-time Fourier transform (STFT) 

in the phase-vocoder algorithm for time-scaling audio signals has been investigated 

in the past, motivated by the fact that the wavelet transform offers variable time-
frequency resolution that can efficiently and precisely capture audio signal 

information in a manner very well-matched to human auditory perception 
characteristics. Despite this, little has emerged in the audio processing literature 

likely due to inherent limitations of traditional forms of the wavelet transform, such 

as lack of phase information from the discrete wavelet transform (DWT), and high 
computational cost and lack of available inverse transform implementations for the 

continuous wavelet transform (CWT). In this paper, a new wavelet transform based 
phase-vocoder algorithm is presented that uses a new form of the DWT, the Dual-

Tree Complex Wavelet Transform, DT-CWT, which overcomes many of the 

deficiencies of the older DWT forms.   

A preliminary implementation of the algorithm in Matlab resulted in output 
that was time-stretched as desired, but with the addition of erroneous frequency 

components due to instantaneous frequency estimation errors caused by the 
insufficiently narrow octave band frequency resolution of the fully decimated DT-

CWT.  Use of the wavelet packet transform, (WPT) with approximately 1/3rd octave 
logarithmically spaced subbands instead of the octave band, fully decimated DT-

CWT is proposed as a solution to remedy the artifacts resulting from inadequate 

frequency resolution.
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1.0 Introduction 

In the simplest terms, time-scale modification refers to changing the duration of 

a signal without modifying its perceived frequency content.  In music, this is 

analogous to changing the tempo of a piece of music without changing the key.  In 

speech, time-scaling is analogous to speeding up or slowing down ones words, but 

leaving the pitch, tone and inflection the same.  Numerous time-scaling techniques 

have been developed over the past few decades, most of which generally fall into 

one of three categories: Time domain modification, “phase-vocoder” frequency 

domain techniques, and analysis/resynthesis using signal models [1]. Each of these 

types, and their constituent subtypes, carry with them their own set of advantages 

and disadvantages with regard to computational complexity vs. output quality. In 

this paper, we propose a new variant of the phase-vocoder technique that uses a 

recently developed form of the Discrete Wavelet Transform (DWT), the Dual-Tree 

Complex Wavelet Transform (CD-DWT). This new variant possesses numerous 

advantageous properties for processing audio signals and potentially offers improved 

quality and comparable or reduced complexity compared to other current high 

quality time-scale modification techniques. 
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2.0 Overview of Time-Scaling Techniques 

2.1 Time Domain Techniques: Time-segment processing 

In time-segment  processing, the basic idea behind the time-stretching 

technique is to divide the input sound into segments, then if the sound is to be 

shortened, some segments are discarded, or if the sound is to be lengthened, some 

segments are repeated. In general, all time-segment processing techniques are based 

on overlapping and adding adjacent segments extracted from the input signal.   

 

2.1.1 Overlap-Add (OLA) 

Overlap-add (OLA) techniques are generally the most computationally 

inexpensive of all the time-scaling techniques since the basic algorithm requires only 

simple read/write pointer manipulation and accumulate instructions.  For basic time-

scale compression, small windowed segments are extracted at time t
i
and added to 

the output at time t '
i
= !t

i
 where ! is the time scale factor.  The main artifact from 

the OLA technique comes from the amplitude and phase discontinuity at the 

boundary of the segments which causes pitch period discontinuities and consequent 

distortions that are detrimental to signal quality.   

 

2.1.2 Synchronous Overlap-Add (SOLA) 

One strategy for reducing the artifacts associated with the OLA technique is 

to modify the offset for placing each time-segment within a small range around the 
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time-scale factor offset so that the cross-correlation between the overlapping samples 

is maximized for each pair of overlapping segments[1].  This technique is referred to 

as Synchronous Overlap-Add (SOLA).  The SOLA technique does a much better job 

at preserving the pitch, magnitude and phase relationships of the time-scaled signal. 

2.1.3 Time-Domain Pitch-Synchronous Overlap Add (TD-PSOLA) 

Time-Domain Pitch-Synchronous Overlap and Add (TD-PSOLA) is a 

variation of the SOLA technique in which the signal is first analyzed to identify local 

pitch across the signal, and local pitch information is used to adjust a variable 

segment size parameter, and a variable segment offset parameter to preserve the 

local pitch (fundamental frequency) while achieving a desired time-scale change[1]. 

Although the SOLA and TD-PSOLA techniques significantly reduce the 

inherent distortions of OLA methods, noticeable artifacts still remain in the output, 

such as “buzziness” generated by regular repetition of identical segments in noisy 

signal segments and smearing of transients when they are stretched in time.  The 

overall character of the  undesirable artifacts of time segment techniques are often 

described as a “choppy” or “granulated” sound.  Frequency domain processing 

methods, described later, though more computationally intensive, are generally 

considered to produce higher quality results. 

 

2.2 Signal Model Analysis/Synthesis 

Signal modeling techniques model sounds as a sum of elementary sinusoidal 

components called partials.   These techniques start by extracting partials, in the 
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form of time dependent magnitude and instantaneous phase data, from a signal via 

time-frequency analysis, usually a Fourier transform based analysis, such as the 

short-time Fourier transform (STFT).  The decomposition into individual partials is 

expressed in the additive synthesis equation: 

s(t) = a
k
(t)cos!

k
(t)

k=1

K

"  

where a
k
(t) is the time dependent magnitude and !

k
(t)  is the instantaneous phase of 

the k-th partial.  The instantaneous phase and instantaneous frequency are related by: 

!
k
(t) = "

k
(# )

0

t

$ d#  

As its name implies, the additive synthesis expression is used to synthesize a signal 

from the time dependent magnitude and instantaneous phase data. Time-scaling is 

then achieved by modifying the phase and magnitude data before synthesizing.  The 

modification is a time mapping function, t! "t = T (t) = #t . To time-stretch a signal, 

we set ! > 1 , or to compress in time we set ! < 1 . The time-scaled signal is thus: 

!s ( !t ) = a
k
( !t )cos("#

k
( !t ))

k=1

K

$  

While this time-scaling method has the nice feature of being mathematically 

straightforward, it only achieves good results for signals consisting of smoothly 

varying pure tones.  It fails for signals containing significant noise components and 

does a poor job of resynthesizing transients: attacks are smoothed and noise sounds 

artificial [1]. In addition it is computationally expensive, due to the high overhead 

for calculation of the cosine functions.  The phase-vocoder technique, discussed 

below, is based on the sum of partials signal model, but it performs the synthesis 
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stage with the inverse STFT, which is more computationally efficient than explicit 

computation of the additive synthesis equation.  

2.3 Phase-Vocoder Time-Scaling Algorithm 

The essence of time-scaling is the modification of a signal’s temporal 

evolution while its local spectral characteristics are left unchanged.  Phase-vocoder 

based time-scaling techniques accomplish this via a sequence of analysis, 

modification and resynthesis performed in the frequency domain [2].  

 

2.3.1 STFT Analysis/Synthesis 

The analysis stage of the phase-vocoder is a short-time Fourier transform 

(STFT). The STFT breaks up a signal into equal length blocks, each starting at the 

beginning of equally spaced time intervals, and performs the Fourier transform on 

each block.  The Fourier transform is a technique that decomposes a signal into the 

sum of multiple sine waves evenly spaced in frequency, each having a magnitude 

and phase of the sinusoidal component of the signal, changing with time.  The time 

interval separating the start of each analyzed data block is called the “hop size,” and 

has a length (in number of samples) that is a fraction of the length of the data block.  

The result is the nonheterodyned (see 2.3.2) STFT representation of the signal, 

denoted X(t
a

u
,!

k
) : 

X(ta
u
,!k ) = h(n)x(

n="#

#

$ ta
u
+ n)e

" j!k n  



 6 

where x  is the original signal, h(n) is the analysis window, !
k
=
2"k

N
 is the center 

frequency of the kth vocoder “channel,” N is the size of the discrete Fourier 

transform, in number of samples, and t
a

u
= R

a
u , whereR

a
is the analysis hop factor 

and u is an integer index to specify the analysis block. 

The resynthesis stage involves setting synthesis time instants t
s

u , usually 

uniformly, so that t
s

u
= R

s
u , where R

s
 is the synthesis hop factor.  At each of these 

synthesis time-instants, a short-time signal y
u
(n) is obtained by inverse Fourier 

transforming the synthesis STFT Y (t
s

u
,!

k
) .  Each short-time signal is then 

multiplied by an optional synthesis window w(n) , and the windowed short-time 

signals are all summed together, yielding the output signal y(n) : 

y(n) = w(n ! t
s

u

u=!"

"

# )y
u
(n ! t

s

u
)  with  

yu (n) =
1

N
Y (ts

u
,!k

k=0

N "1

# )e
j!k n , 

In the absence of modifications (i.e. analysis hop size, R
a
= R

s
,synthesis hop size, 

and Y (t
s

u
,!

k
) = X(t

a

u
,!

k
) ), this output signal is theoretically identical to the original 

signal x.  In general, however, a modified Y (t
s

u
,!

k
)  is not the STFT of any actual 

signal since the Fourier transforms correspond to overlapping short-time signals.  

The formula above yields a signal whose STFT is close to Y (t
s

u
,!

k
)  with the 

deviation dependent on the choice of the synthesis window w(n) . 
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2.3.2 Time-Scale Modification 

To modify the time scale of a signal, we modify the magnitude and phase 

data generated in the analysis stage before resynthesizing.  We modify the data in 

two ways.  First, we change the relative spacing between start times of output data 

blocks by a factor equal to the amount of time scaling (i.e. the analysis hop factor R
a
 

is different from the synthesis hop factor R
s
).   Second, the phase values of the 

synthesis STFT Y (t
s

u
,!

k
)  are calculated according to a formula given below.   

According to the underlying signal model, the input signal is the sum of a 

number of sinusoids with time-varying amplitudes A
i
(t)  and instantaneous 

frequencies !
i
(t)  

x(t) = Ai (t)e
j!i (t )

i=1

I (t )

"  with 

!
i
(t) = !

i
(0) + "

i
(# )d#

0

t

$  

 

where !
i
(t)  and !

i
(t)  are the instantaneous phase and frequency of the ith sinusoid. 

Based on the above two equations, for a constant modification factor ! such that 

t
s

u
= !t

a

u , the ideal synthesis phase !
s
(t
s

u
)of the ith time-scaled sinusoid would be 

!
s
(t
s

u
) = !

s
(0) + "

i
(# /$ )d#

0

ts
u

%  

= !
s
(0) +" #

i
($ )d$

0

ta
u

%  

= !
s
(0) +" !

i
(t
a

u
) #!

i
(0)$% &'  

where !
s
(0) is an arbitrary initial synthesis phase. 
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Phase-vocoder based time scaling modifies the STFT of the sinusoidal input 

signal components so as to produce the above time-scaled sinusoids.  The time-

evolution of the sine wave amplitudes is modified simply by setting 

Y (t
s

u
,!

k
) = X(t

a

u
,!

k
)  where t

s

u
= R

s
u . However, modification of the sine-wave 

phases is a bit trickier. 

To calculate the phase of Y (t
s

u
,!

k
) , the standard phase-vocoder technique requires 

phase unwrapping, a process whereby the phase increment between two consecutive 

frames is used to estimate the instantaneous frequency of a nearby sinusoid in each 

channel.  The instantaneous frequency !̂
k
(t
a

u
) is estimated by first calculating the 

heterodyned phase increment 

!"
k

u
= #X(t

a

u
,$

k
) % #X(t

a

u%1
,$

k
) % R

a
$

k
 

then taking its principal determination (value between ±! ) denoted ! p"k

u  and 

deriving the instantaneous frequency !̂
k
(t
a

u
)  of the closest sinusoid using 

!̂ k (ta
u
) = "k +

1

Ra
# p$k

u  

This procedure is called phase unwrapping, because the actual (nonwrapped) value 

of the phase increment is calculated from its principal (wrapped) determination.  The 

heterodyned phase increment ! p"k

u  is the small phase shift resulting from !
k
(t
a

u
)  

being close but not necessarily equal to !
k
.  Once the instantaneous frequency at 

time t
a

u  is estimated, the phase of the time-scaled STFT at time t
s

u  is set according to 

the following phase-propagation formula 

!Y (t
s

u
,"

k
) = !Y (t

s

u#1
,"

k
) + R

s
$̂

k
(t
a

u
) . 
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With time-scaling modifications completed, we combine the magnitude and 

phase components to reconstitute the Fourier coefficients of the synthesis blocks.  

Lastly, we synthesize the output signal by inverse Fourier transforming each 

synthesis block and overlapping and adding them together to form the time-domain 

output. 

2.3.3 Performance Considerations of the STFT Based Phase-

Vocoder 

2.3.3.1 Window Size: Frequency vs. Temporal Resolution 

The choice of window size determines the frequency and temporal resolution 

of the STFT.  The frequencies measured in each STFT window will be integer 

multiples of the reciprocal of the analysis window duration, uniformly spaced apart 

by sampling rate/N Hertz, ranging from sampling rate/window length up to the 

Nyquist frequency (sampling rate/2).  Window size also determines the temporal 

resolution achievable in the STFT, the smaller the window, the more precisely the 

onset of signal events can be resolved.  Here we run into the time-frequency 

uncertainty dilemma: increasing the resolution in time requires decreasing window 

size, which decreases the frequency resolution and vice-versa.  The theoretical limit 

on temporal vs. frequency resolution is expressed in the uncertainty principle for 

time-frequency: 

!t!f "
1

4#
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As a result, the window size choice will always represent a trade off between giving 

up frequency resolution with smaller windows, which is most detrimental in lower 

frequencies due to the logarithmic frequency selectivity of human hearing, or giving 

up temporal resolution with larger windows, which diminishes the ability to capture 

high frequency transient attacks [10]. Typical window sizes range between 256 to 

4096 samples for standard sampling rates (32kHz, 44.1kHz, 48kHz). 

2.3.3.2 Effects of Different Window Types  

Another consideration for analysis windows is the effect of the windowing 

function choice.  The purpose of applying a windowing function is to localize each 

time segment to be analyzed in a STFT frame, and to filter out the high frequency 

signal content due to the discontinuities at the boundaries of the finite window.  

Another way to state this in frequency domain filtering theory terms is that 

windowing is used to reduce side lobes due to truncation, i.e. application of a 

rectangular window [11].  A bandpass interpretation of the STFT [11] reveals that 

the windowing function also determines how well each analysis frequency band is 

isolated from neighboring bands (steepness of transition bands), and the effective 

width of each band (i.e. side lobe attenuation and main lobe width of the equivalent 

BPF for the STFT analysis band).  The ideal windowing function will have 

maximally wide main lobe and heavily attenuated side lobes.  An analysis of the 

performance of typical windowing functions (Blackman, Hanning and Hamming) 

with the phase-vocoder algorithm is presented in [9].  To summarize, the Hanning 

and Hamming windows provide a spectrum with a thinner main lobe ( 4

NT
 where N 
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is the size of the window and T is the sampling period) than the Blackman ( 6

NT
). 

The Blackman function provides the best main lobe to secondary lobe magnitude 

response ratio (57dB) compared to the Hamming function (41dB) or the Hanning 

function(31dB).  Another consideration in evaluating windowing function 

performance is how it behaves when overlapping windows (discussed below) are 

used.  In [9], the best overall performance was found with the Hanning window. 

2.3.3.3 Window Overlapping 

 Since windowing functions decay to zero (or near zero) at the ends, it is 

necessary to overlap windows so the windowed signal is not zeroed out at periodic 

intervals.  In particular, windows are overlapped such that their sum, 

(t ! nS)
n

" (where S is the relative shift offset for each window) is constant for all t.  

Another reason overlapping windows are required is that it increases the accuracy 

with which individual frequency components (a.k.a partials) are discriminated.  This 

can be seen by considering that instantaneous frequency is calculated by taking the 

difference of consecutive frames’ phase coefficients for each frequency bin.  The 

next step in identifying the frequency is to measure the deviation from the center 

frequency of the bin by subtracting out the expected phase change of the bin 

frequency, a positive result signifying a positive deviation in bin frequency and a 

negative result signifying a negative deviation.  In the simple case that any two 

neighboring frames do not overlap, the deviation in frequency can range between 

±! , meaning that it is only possible to discriminate a frequency of half the distance 

between a given bin frequency and its neighboring bins.  Frequency deviations 
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beyond that will wrap back into the ±! interval, and the frequency of the partial 

being tracked by that bin will be incorrectly estimated.  When we apply the phase-

propagation formula after remapping instantaneous frequency coefficients to a 

scaled time grid, the error in partial frequency estimates will manifest as audible 

erroneous frequency components (with no time scale modification, the errors would 

cancel out upon reconstruction).  When the windows are overlapped by a given 

factor however, the expected phase change is decreased by the inverse of the time-

scale factor (e.g. 2x overlap corresponds to a decrease by ½ of the expected phase 

change between consecutive frames), and consequently the effective frequency 

deviation range we can detect increases by the same factor.  As such, with 

overlapping windows, the true frequency of a partial can be estimated more 

accurately in the frequency bins that are detecting its signal energy.  A typical 

overlap factor is 4 (75%), which represents redundant sampling of the STFT and 

consequently increases the computation cost by increasing the number of FFT 

calculations required to process a signal by the overlap factor. 

 

2.3.3.4 STFT Phase-Vocoder Artifact Causes 

There are a number of sources of the audible artifacts in signals time-

stretched via the STFT phase-vocoder.  Firstly, some artifacts are due to the use of a 

single fixed size window used for analyzing the entire spectrum; we are forced to 

compromise temporal resolution for frequency resolution.  When we give up 

temporal resolution, transients are smeared in time after time-stretching, which is 

perceived as short bursts of narrow-band high frequency noise in the output.  
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Similarly, low resolution in frequency manifests as blurring together of neighboring 

frequency components into multiple unstable pitches in the frequency bands 

occupied by the original components.  When the degree of window overlap is 

insufficient, erroneous frequency components are spawned from existing partials due 

to frequency estimation errors as described in the preceding section.  In addition to 

these artifacts sources, there is also a set of artifacts caused by loss of vertical phase 

coherence [2].  Vertical phase coherence refers to the lining up of the phases of 

signal components at different frequencies at each time instant.  By analyzing and 

reconstructing frequency components within each frequency channel, as the phase 

vocoder time-scaling algorithm does, only “horizontal” phase coherence (within 

each channel, along the time dimension) is maintained, but no effort is made to 

maintain vertical phase coherence, across frequency channels.  When phase-

propagation errors accumulate in individual frequency channels after time-scale 

modification, dispersion of the original phase relationships among different 

frequency components results.  This loss of phase coherence is a major source of 

more subtle artifacts in the phase-vocoder.  The perceived effect of vertical phase 

coherence loss is a slight reverberation effect, dubbed “phasiness,” along with loss of 

presence (the sound source sounds as if it has moved further away) [2].  The reason 

it is perceived this way is that dispersion in time of originally time aligned phase 

relationships across frequency is similar to what occurs when sound bounces off 

different surfaces with different sound absorption characteristics in an acoustic 

space.  Lastly, when noisy signals are time stretch by large factors, there are a 

noticeable glissing artifacts (one or more pitched signals gliding up and down 
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unpredictably). The glissing is due to a combination of low frequency resolution and 

loss of vertical phase coherence.   Low frequency resolution leads to discetization of 

the randomly distributed energy of the noise into widely spaced separate bins, each 

of which represent the energy as individual frequency components.  When phase-

propagation errors accumulate and vertical phase coherence is lost for the signal 

energy in neighboring bins due to noise, the signals in individual bins emerge as 

discrete frequency components after resynthesis. 

 

2.3.3.5 Phase-Vocoder Improvements 

A partial solution to the loss of vertical phase problem has been suggested in [2], 

called scaled-phase-locking.   The scaled-phase-locking scheme starts by identifying 

spectral peaks in a STFT analysis frame, and tracking the movement of each peak 

across consecutive analysis frames.  The phase unwrapping calculation for a given 

peak is done by subtracting the phase of the previous frequency bin containing a 

given peak from the phase of the current frequency bin containing the peak, which 

may be a different bin.  The difference in the unwrapped phase of a peak bin and its 

nearest k neighboring bins’ unwrapped phase is stored for each of the k neighboring 

bins.  After remapping the coefficients of each frame to the time-scaled grid, only 

the peak frequency channel bins’ phases are calculated with the phase-propagation 

formula. The neighboring k bins’ synthesis phase coefficients are set so that they 

have the same phase difference with respect to their nearest peak bin.  This 

technique preserves vertical phase coherence in the neighborhood of each spectral 

peak.  The use of scaled-phase-locking has been shown to improve subjective 
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performance of the phase-vocoder, and enables a reduction of the required overlap 

between analysis frames to 50% for good performance [2]. 

 

2.3.3.6 Overview of STFT Phase-Vocoder Shortcomings 

There are a number of drawbacks in using the STFT for analyzing audio 

signals [3]. Firstly, the analysis produces equally spaced frequency bands, which 

does not correspond to the logarithmic frequency selectivity of human hearing. To 

get acceptable frequency resolution in low frequencies, with respect to human 

hearing, long analysis windows must be used, which results in loss of temporal 

resolution and excessive resolution in high frequencies. Therefore, the STFT is quite 

inefficient for this purpose.  Secondly, when window filtering is applied to the data 

to reduce errors, the STFT is even more inefficient, as techniques such as overlap-

and-add need to be used.  Lastly, the compromise of time and frequency resolution 

that must be accepted due to the uncertainty principle is the same over all 

frequencies, and cannot be adjusted for different frequency ranges.  These 

shortcomings of the STFT manifest themselves in phase-vocoder time-scaled signals 

most noticeably as smearing of transients, “phasiness,” (slight reverberation) along 

with loss of presence.  Wavelet transform analysis overcomes the fixed resolution 

limitation of STFT analysis, and has been investigated as a replacement for the 

STFT in the phase-vocoder algorithm.  In the remainder of this paper, we explore the 

efficacy of wavelet transform based phase-vocoders. 
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3.0 Wavelet Transform Based Phase-Vocoder  

3.1 Wavelet Transform Analysis for Audio Signals 

 The wavelet transform was developed as an alternative to the STFT to 

overcome the problems inherent in its time and frequency resolution properties.  

Rather than providing uniform resolution in frequency and time domains, the 

wavelet transform provides high frequency resolution and low time resolution in the 

low frequency range and high time resolution and low frequency resolution in the 

high frequency range.  In signal processing terms, the wavelet transform can be 

viewed as a constant Q filterbank with octave spacing between filter center 

frequencies.  The wavelet transform deals with the uniform time-frequency 

resolution limitation of fixed-size windowing that burdens the STFT by using 

variable sized windows for different frequency bands [1]. The wavelet transform 

uses analysis windows that dilate according to the frequency being analyzed, with 

long time windows where more precise low frequency information is desired, and 

shorter windows where the high frequency information is desired. A wavelet 

transform whose frequency scales change by powers of two (dyadically 

partitioning), such as the fully decimated Discrete Wavelet Transform (DWT), 

produces an octave band decomposition of a signal. Such a partitioning of the 

frequency spectrum closely mirrors the logarithmically spaced perception of 

frequency of the human auditory system and as such makes the wavelet transform an 

ideal candidate for use in analyzing audio signals. 

There are a number of special considerations for audio signals that must be 

taken into account when selecting the type of wavelet analysis to use [3].  First, we 
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note that when the applied wavelet basis function does not resemble the shape of the 

analyzed signal, the wavelet coefficients will not extract the main “features” of the 

signal.  The classes of audio signal of primary interest, speech and musical signals, 

are typically smooth waveforms, which implies that the best wavelet basis function 

is one that is sufficiently smooth, i.e., high regularity is preferred.  Second, the size 

of the transition band of low pass and high pass filters is an important factor. Larger 

transition bands (i.e. low steepness), cause considerable overlapping of low pass and 

high pass bands. So the output bands of the filter bank are not well separated, and 

aliasing effects are reenforced when the coefficients are changed (as is required for 

time-scale modification). Furthermore, linear phase response is crucial for high 

quality audio filters. When the filters do not have at least an approximate linear 

phase, different frequencies are delayed by different amounts, which can cause 

irreversible loss of the original phase relationships of signal components across 

frequency scales if any modifications are made to coefficients in the wavelet 

domain. 

 

3.2 Continuous Wavelet Transform (CWT) 

The Continuous Wavelet Transform is defined as: 

Wf (a,b) = f (t)! a,b

*
(t)dt

"#

#

$  

where, * denotes the complex conjugate and!
a,b
(t)  is the mother wavelet, scaled by 

a factor a  and dilated by a factor b : 
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a,b
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In practice, the CWT must be approximated with a discretized version. The requisite 

discretizations involve a discrete approximation of the transform integral (i.e. a 

summation) computed on a discrete (but not necessarily dyadic) grid of a  scales and 

b  locations.  A major disadvantage of the CWT compared to the Discrete Wavelet 

Transform is the much higher computational cost.  In addition, the two most 

common CWT basis functions for analyzing audio signals in the literature, the 

Morlet and Mexican Hat wavelets, have neither compact support, vanishing 

moments, nor orthogonality.  As such, invertible filters cannot be calculated, making 

practical implementation of the inverse CWT problematic (which explains the 

absence of an inverse CWT function in wavelet software packages such as the 

Matlab Wavelets Toolbox).  For these reasons, the use of the CWT is pursued no 

further here. 

 

3.3 Discrete Wavelet Transform (DWT), and Its Limitations 

The Discrete Wavelet Transform (DWT) maps a continuous function f (t)  to 

a series of coefficients bj ,k , and is defined as: 

bj ,k = f (t)
!"

"

# $ j ,k (t)dt   

where ! j ,k = 2
j 2! 2

j
t " k( )  

 

or, representing the integration as a summation for discrete-time signals, 
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W ( j,k) =
k

! x(k)2
" j 2# (2" j

n " k)
j

!  

where, ! (t) is the “mother” wavelet function.  The decomposition described in this 

last equation can be implemented by successive highpass and lowpass filtering of the 

time-domain signal using the following equations: 

yhigh[k] = x[n]g[2k ! n]
n

"  

ylow[k] = x[n]h[2k ! n]
n

"  

where yhigh[k]  and ylow[k]are the outputs of the highpass ( g ) and the lowpass ( h ) 

filters respectively after subsampling (decimating) by two. The equations are 

repeatedly applied to the ylow[k]  output of each stage, which results in 

decomposition of the signal into octave subbands that can be viewed as a coarse 

approximation (lowpass part) of the input, and detail information (highpass part). 

Each subband contains half the samples of the next higher subband, and the total 

number of DWT coefficients is the same as the number of input samples. 

The standard DWT is powerful tool for signal analysis, but it has two major 

disadvantages for its use in processing audio signals in general, and in the phase-

vocoder algorithm in particular.  The first disadvantage is the lack of shift invariance 

of the DWT. This means that small time shifts in the input signal can cause major 

variations in the distribution of energy between DWT coefficients at different scales 

[5]. This represents a problem for a DWT based phase-vocoder time-scaling 

algorithm because the coefficients are remapped to a scaled time grid, which is 

equivalent to shifting the input signal by varying amounts over time.  The distortions 

resulting from the lack of shift invariance will produce the types of audio artifacts 
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seen in the STFT based phase-vocoder, namely the “phasiness” and reverberation 

effects (since those artifacts are caused by such erroneous dispersion of signal 

energy across STFT frequency bins). 

 The second disadvantage is the absence of phase information due to the fact 

that the DWT produces only real coefficients for real input signals, which includes 

audio signals.  Without phase information, instantaneous frequency cannot be 

calculated, which is required in the phase-vocoder algorithm. 

 Although the prospects at this point for using the wavelet transform in the 

phase-vocoder algorithm may appear bleak, all hope is not yet lost.  A new variant of 

the DWT that does not suffer from the above mentioned shortcomings is available, 

namely, the Dual-Tree Complex Wavelet Transform. 

 

3.4 The Dual-Tree Complex Wavelet Transform (DT-CWT) 

3.4.1 DT-CWT Properties for Phase-Vocoder Time-Scaling 

The Dual-Tree Complex Wavelet Transform (DT-CWT), first and foremost, 

makes available the phase information required by the phase-vocoder algorithm 

since it produces complex valued coefficients.  Secondly, the DT-CWT offers 

approximate shift-invariance, which means that aliasing effects due to the 

decimations in the transform are minimized, and interpolation of coefficients within 

each sub-band to any desired sampling grid is feasible.  This implies good immunity 

to the smearing of signal energy across frequency scales after time-scaling 

modifications are applied to transform coefficients.  This energy smearing is one of 
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the primary sources of undesirable audio artifacts, as mentioned in section 2.3.4.  In 

addition to these beneficial characteristics, there are forms of the DT-CWT (the 

Kingsbury odd-even DT-CWT) that offer other desirable characteristics, such as 

linear-phase filters with steep transition bands (desirable for audio signals, as noted 

earlier), perfect reconstruction (PR), and efficient order-N computation (specifically, 

2N, which is true in general for DT-CWT’s) [6].  The order-N computation is 

possible due to the use of the fast-DWT (Mallat’s algorithm), a highly efficient 

implementation of the DWT. 

 

3.4.2 Kingsbury’s Dual-Tree Complex Wavelet Transform (DT-

CWT(K)) 

The DT-CWT maps a continuous, real (or complex) input signal to a series of 

complex coefficients.  It accomplishes this by with two parallel DWT trees’ that 

have a quadrature phase offset relationship to one another.  The outputs of either 

DWT tree thus represents real and imaginary components of complex coefficients of 

a wavelet decomposition of a signal. 
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Figure 1.  Analysis filterbank structure of the DT-CWT 

3.4.2.1 DT-CWT(K) Filter Design for Shift Invariance and PR 

Kingsbury observed that approximate shift invariance is possible with 

standard DWT by doubling the sampling rate at each level of the tree [6]. For this to 

work, the samples must be evenly spaced and the down-samplers must be eliminated 

after the level-1 filters. This is equivalent to having two parallel fully decimated 

trees, real (tree-a) and imaginary (tree-b) (as in figure 1), if the delays of first level 

filters of tree-b are one sample offset by their corresponding filter in tree-a. This 

offset ensures the pickup of opposite samples in both trees. To get uniform intervals 

between the samples of both trees after level-1, filters in one tree must provide 

delays that are half a sample different from those in opposite tree. 

 One way in which the DT-CWT(K) can be designed to have the required 

delays is to use odd and even length filters in the corresponding levels of the parallel 
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filter trees. The design of DT-CWT(K) is based on viewing the scaling coefficients 

from tree-b as interpolating mid-way between the corresponding coefficients from 

tree-a. To have linear phase filters with required delay offset between filters beyond 

level-1 of both trees, it is necessary to have odd-length filters in one tree and even-

length filters in the other tree. Note, the filters at level-1 in both trees are odd length, 

and the corresponding lowpass and  highpass filter pairs are apart by one sample.  

 The PR condition for the DT-CWT(K) model using standard  multi-rate 

identities  is given in [7] as: 

 
!F(Z ) = !F

a
(Z ) + !F

b
(Z ) = F(Z )  

=
1

M
X(W

k
Z )

k=0

M !1

" A(W
k
Z )C(Z ) + B(W

k
Z )D(Z )#$ %&  

where, M = 2
m  is the total up/down sampling factor determined by the number of 

levels (m)  of the dual-tree, the factor W = e

j2!

M , lettersA , B  represent transfer  

functions of the analysis dual-tree and C , D  represent the corresponding transfer  

functions for the synthesis dual-tree. 

 The filters in the synthesis tree may be biorthogonal for PR or near-

orthogonal for energy preservation (in transform domain) of the filters of analysis 

tree. The odd-even filter design is based on minimum mean squared error in the 

approximation [6]. We note that in practice, filters with compact support will not 

have zero gain in their stop bands and the aliasing terms in the PR equation will not 

be zero. Furthermore, odd-length filters cannot have precisely the same frequency 

responses as the even-length ones.  So a typical DT-CWT(K) will only be 

‘approximately’ shift-invariant. 
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Figure 2. Illustration of shift-invariance of the DT-CWT: 

Wavelet and scaling function components at scale 1 to 4 of 16 shifted step responses for (a) DT-CWT 
and (b) real DWT 

 
 

3.5 Using the DT-CWT in the Phase-VocoderAlgorithm 

We now repeat the phase-vocoder time-scaling derivation, modified to fit the 

dyadic time-frequency grid of the DT-CWT.  For convenience, we express the 

complex DT-CWT coefficients in a form that resembles STFT coefficients so we can 

see more easily the similarities between the derivations. We express the DT-CWT 

coefficients for the input signal x(t) as, 
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DT CWT {x(t)} = X(t
j ,k
,! j )  

where t j ,k = (2 j
Ts )k  (T

s
 is the sampling period for the sampled input signal, 

x(n) = x(nT
s
) , k is the DT-CWT coefficient (integer) translation index, and ! j  is the 

pseudo-frequency, in radians, of scale j.  The pseudo-frequency is the center 

frequency of the sub-band filter corresponding to the jth scale, which can be 

estimated as the frequency midway between the –3dB points of the filter. 

 The coefficient magnitudes are time-scaled by mapping the output coefficient 

magnitudes to the input coefficient magnitudes using: 

Y (ts
j ,k
,! j ) = X(ta

j ,k
,! j )   (3.1) 

where ts
j ,k

= !ta
j ,k  (!  is the time-scaling factor).   Next we do phase unwrapping, 

i.e. calculate the phase increment between two consecutive analysis windows to 

estimate the instantaneous frequency of a nearby sinusoid (referring to the 

underlying signal model) in each pseudo-frequency channel (scale).  The phase 

increment !" j ,k  between analysis window k and k-1 for each scale j is: 

!" j ,k = #X(ta
j ,k
,$ j ) % #X(ta

j ,k%1
,$ j ) % $ j  (3.2) 

from which we take the principal determination (value between ±! ) ! p" j ,k  and 

derive the instantaneous frequency !̂ j (ta
j ,k
)  of the closest sinusoid using 

!̂ j (ta
j ,k
) = " j + # p$ j ,k   (3.3) 

The phase of the time-scaled DT-CWT at time ts
j ,k

= !ta
j ,k  is found using the phase 

propagation formula (from section 2.3.2) 

!Y (ts
j ,k
," j ) = !Y (ts

j ,k#1
," j ) +$%̂ k (ta

j ,k
)  (3.4) 
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In practical terms, this algorithm can be implemented in the following steps: 

1. Starting with the DT-CWT of input signal x(t) , convert the complex 

coefficients to magnitude and phase form: X(ta
j ,k
,! j ) ,!X(ta

j ,k
," j ) . 

2. Calculate the instantaneous frequencies across each scale using (3.2) and 

(3.3). 

3. For each scale, map magnitudes and instantaneous frequencies from the 

scaled time axis for the input to the unscaled time axis for the output.  Use 

(3.1) to map the input to the output magnitudes, and use: 

!̂ j

(Y )
(ts

j ,k
," j ) = !̂ j

(X )
(ta

j ,k
," j )  (3.5) 

to map the input instantaneous frequencies !̂ (X ) to output instantaneous 

frequencies !̂ (Y ) .  (Note, no actual calculation is required for this step, it is 

only necessary to define the mapping for the next step which will carry out 

the mapping implicitly)  

4.  Using the mapping defined in step 3 as an underlying function, we 

interpolate magnitudes and instantaneous frequency values across each scale 

at points coinciding with the DT-CWT time grid.  This can be done using the 

interp1 function in Matlab (using piecewise cubic spline interpolation): 

w_ouptut = interp1(t_input,w_input,t_output,’spline’); 

 where w_input = !̂ j

(Y )
(ts

j ,k
," j ) the remapped instantaneous frequencies for the  

output, and t_input = the remapped time points : ts
j ,k

= !ta
j ,k , 

( k = 0,1,…N !1) for  
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input signal of length N) and t_output = the time points of the output time 

grid: ta
j ,k , ( k = 0,1,… !"1

(N "1)#$ %& ) . 

We likewise interpolate magnitude values across each scale. 

Ymagn_output = interp1(t_input,Ymagn_input,t_output,’spline’); 

5.  Convert the instantaneous frequency values across each scale to phase 

values by applying the phase propagation formula (3.4) to the interpolated 

instantaneous frequencies produced in step 4. 

!Y (ta
j ,k
," j ) = !Y (ta

j ,k#1
," j ) + $̂ j

(Y )
(ta

j ,k
)  

6. Convert the magnitude and phases to complex coefficients. 

7. Apply the inverse DT-CWT to the complex coefficients (at the same scales 

used for the input DT-CWT) to generate the time-scaled output signal y(t) . 

 

4.0 DT-CWT Phase-Vocoder Implementation 

An implementation of the DT-CWT phase-vocoder algorithm was created in 

Matlab using the DT-CWT Pack (version 4.3) provided by Dr. Nick Kingsbury, to 

perform the forward and inverse DT-CWT’s.  Matlab code and example scripts for 

demonstrating the algorithm can be downloaded from 

http://www.ece.utexas.edu/~jlivings.   

 

4.1 Input Signal Considerations for DWT Analysis 

 The dyadic partitioning inherent in the DWT implies that signal length 

should be a power of two so the signal can be fully partitioned, allowing the 
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maximum possible number of wavelet scales to be used in the decomposition of the 

signal into frequency bands.  Zero padding can be used to extend the length of the 

input to the nearest power of two. The number of wavelet scales is dependent on the 

signal size. The highest frequency scale corresponds to the sampling frequency/2, 

and subsequent frequency scales are centered at one half the next highest scale. As 

such the maximum number of scales is log2(N), where N is the length of the signal, 

and the lowest frequency band analyzed is centered at 
sampling_ rate

2log2 N
.  The analysis 

window length should thus be chosen so that the lowest frequency band is at least as 

low as the lowest perceivable frequency, which is in the neighborhood of 10Hz. 

 

4.2 DT-CWT Calculation 

The parameters for the DT-CWT function are the filter functions used for the 

first decomposition level and the filter functions used for all subsequent 

decomposition levels.   The criteria for choosing the filters are the degree of shift 

invariance and the amount of aliasing energy.  A useful measure of the aliasing 

energy is the ratio of the unwanted aliasing energy to the desired non-alias energy as 

formulated in [6]. 

R
a
=

E{A(W
k
z)C(z) + B(

k=1

M !1

" W
k
z)D(z)}

E{A(z)C(z) + B(z)D(z)}
 

where lettersA , B  represent transfer functions of the analysis dual-tree and C , D  

represent the corresponding transfer  functions for the synthesis dual-tree and  

W = e

j2!

M . E{U(z)}  calculates the energy, u
r

r
!

2 of the impulse response of the z-
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transfer function U(z) = u
rr

!
2

z
"r .  Kingsbury used this measure to compare a 

number of filters designed for use as basis functions in the DT-CWT in [6].  Of the 

available filters for use in the DT-CWT function in the Matlab toolkit, the filter set 

with the best combination of shift-invariance and lowest aliasing to non-alias energy 

ratio was the biorthagonal, near-symmetric 13, 19 tap filters for the level 1 

decomposition and quarter-sample shift 18,18 tap filters (‘qshift_d’) for levels >1.  

All filters in the set have linear phase, which as noted in section 3.1 is an 

advantageous property for audio signal filtering. 

 

4.3 Analysis, Time-Scale Modification and Resynthesis 

Stages 

The phase-vocoder algorithm steps: estimation of instantaneous frequencies 

across scales, remapping of magnitude and instantaneous frequency coefficients to 

the scaled time grid , conversion of instantaneous frequencies back to phase 

coefficients, and inverse DT-CWT is as described in section 3.5.  The center 

frequency used for each wavelet scale was midpoint of the octave band represented 

by the scale, and the initial phase for the derivative of phase calculation was zero. 

 

4.4 Handling Boundary Effects Between Successive 
Transform Windows 

The truncation of the input signal at the beginning and end needs to be 

handled in such a way as to minimize the distorting effects of the aliasing 
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frequencies caused by the discontinuities at the signal boundaries.  There are a few 

possible approaches for alleviating boundary effects: zero-padding, periodic 

extension, and symmetric extension [10].   Zero-padding makes the assumption that 

zeros exist beyond the ends of the signal when doing the DWT filtering operations at 

the signal edges.  Periodic extension wraps around to the other end of the signal 

when filtering runs past the signal edges.  Symmetric extension mirrors the signal 

about the end points.  An in-depth analysis of the properties of each of these signal 

extension strategies is presented by Strang and Nguyen [7], and they concluded that 

symmetric extension performed best from mean squared error and peak signal-to-

noise ratio perspectives.   Symmetric extension is the strategy used for handling 

boundary effects in Kingsbury’s DT-CWT Matlab toolkit. 

 

5.0 Evaluation Of Algorithm Implementation 

To test the performance of the implementation, three different types of 

signals, speech, music, and a pure sine tone, were time-stretched by different time 

scale factors.  The desired time-stretching was achieved for all of the test signals, 

however significant artifacts were also present in the time-stretched signals.  Signals 

processed with a time scaling factor of one (no time-stretching) were reconstructed 

without any audible change to the signal. The time-stretched signals had erroneous 

extra frequency components generated along side the existing components.  For 

speech the results sounds clear and intelligible, but with a prominent extra signal 

component sounding approximately one octave below the original pitch.  For the 
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music signal, the vocal part was affected the same way the speech signal was 

affected, but the polyphonic instrumental parts have additional frequency aliases at 

irregular intervals (other than just octave intervals).  The spectrogram of a 500 Hz 

signal time-stretched by a factor of two (figure 3) shows that the original signal has 

been stretched to twice its original length without changing its frequency, and shows 

the additional signal aliases at different frequencies. 

 

5.1 Discussion of Possible Sources of Artifacts 

The filters used in the DT-CWT, as with all DWTs, are designed to cancel 

alias terms after resynthesis for perfect reconstruction of the signal.  Perfect 

reconstruction however naturally assumes that the wavelet coefficients will not be 

modified in the transform domain, and modifications will likely lead to aliasing.   

The aliasing comes from signal energy belonging to one subband leaking into 

another subband due to the non-brickwall nature of the lowpass and highpass filters 

used.  This is certainly one of the sources of the aliased signals present in the time-

stretched output.  The near shift-invariance and low aliasing energy properties of the 

DT-CWT however should greatly alleviate such aliasing after time stretching 

modifications are performed on transform coefficients, as explained in the earlier 

sections.  
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Figure 3. Spectrogram of 1 second 500Hz sinewave (left). Spectrogram of 500Hz sine wave time-
stretched by a factor of 2 by the DT-CWT phase-vocoder (right). 

 

Comparison with the output of the STFT phase-vocoder provides a clue to the main 

sources of the erroneous extra frequency components.  If we look at the output of a 

similarly time-stretched sine wave signal from the STFT phase-vocoder with an 

excessively small window size, we see a very similar set of erroneous frequency 

components (figure 4). 
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Figure 4. Spectrograms of a 500Hz sine wave (44.1 kHz sampling rate) time-stretched by a 
factor of two by the STFT phase-vocoder with 1024 sample window, 4x overlap factor (left), 
STFT phase-vocoder with 128 sample window, 4x overlap factor (middle), and DT-CWT phase-
vocoder (right). 
 

As can be seen in figure 4, a similar set of extra frequency components appears in 

the STFT phase-vocoder output with a window size of 128.  If the window size is 

increased to 1024, these extra frequency components do not appear.  The reason for 

the extra frequency components is inadequate frequency resolution due to the small 

window size.  The excessively wide frequency bands of the 128 sample analysis 

window allows a significant amount of signal energy of the 500Hz signal to leak into 

analysis bins other than the bin that contains the actual signal.  When the phase 

unwrapping calculation is done there is energy from the 500Hz signal in analysis 

bins that are too far away in frequency to accurately estimate the instantaneous 
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frequency, and the signal is erroneously estimated to be within the subband of these 

analysis bins (see Section 2.3.3.3).  The similarity in the pattern of these errors to 

those found in the DT-CWT time stretched signal strongly implies that the extra 

signal components in the latter are also due to errors in estimation of instantaneous 

frequencies due to inadequate frequency resolution.  The octave bandwidth of the 

fully decimated DT-CWT is apparently too wide to isolate and accurately estimate 

the instantaneous frequency of individual partials in audio signals; the shift-

invariance and low aliasing energy properties of DT-CWT cannot overcome the 

bandwidth limitations of the fully decimated, dyadic (divide by two) frequency 

partitioning. 

 

5.2 Discussion of Possible Remedies of Artifacts 

To overcome the limited frequency resolution of the dyadic DT-CWT, we 

could instead use a wavelet packet transform (WPT) version of the DT-CWT.  The 

WPT differs from the DWT in that the WPT may decompose one or both the LPF 

and HPF branches of each node of the filter-bank decomposition tree rather than just 

the LPF branch (see figure 1).  By splitting the HPF branches as well as the LPF 

branches, the signal can be split into analysis subbands with bandwidths that are less 

than an octave by factors of 0.5.  A logical choice for the bandwidth is 1/3rd of an 

octave, which corresponds to the critical bandwidths that represent frequency 

selectivity of human hearing.  Such a subband decomposition (as suggested in [10]) 

seeks to split each octave into three bands that are equally spaced on a logarithmic 

frequency scale.  The 1/3rd octave logarithmic partitioning can be approximated by 
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splitting an octave band into two halves, then splitting the lower half octave into 

quarter octaves in the decomposition tree of the WPT.  This splits the relative 

bandwidths in the octave into partitions that are 25%, 25% and 50% of an octave 

(from lower to higher frequency).  The true 1/3 octave logarithmic partitioning splits 

an octave into 26%, 33%, and 41% relative bandwidth partitions.  The 25%, 25%, 

50% partitioning, referred to as the pseudo third-octave basis (PTOB) in [10] lies 

above and approximately parallel to the critical band curve (figure 5) and should 

suffice as an approximation to true 3rd octave spacing for time-scale modification.  

The narrower bandwidth of the PTOB decomposition would greatly reduce the phase 

unwrapping errors of the dyadic DT-CWT, and thus provide a great reduction in the 

erroneous frequency component artifacts.  

 

 

Figure 5. Critical Bandwidth and Musical Intervals versus Frequency, from [15]. 
The Minor Third (quarter octave) curve corresponds to 25%, 25%, 50% octave partitioning. 
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5.3 Complexity Comparisons of Phase-Vocoder 

Implementations 

To compare the complexity of the different versions of the phase-vocoders, 

we will consider the relative complexity of the transforms used, ignoring the phase 

unwrapping (instantaneous frequency estimation) and phase-propagation stages 

which are common to all the implementations.  The fast wavelet transform, FWT, 

used in the fully decimated DT-CWT  has O(N )  complexity, specifically 2LN 

computations are required, where L is the length of the filters used and N is the 

length of the window.  The STFT phase-vocoder has fundamentalO(N log2 N )  

complexity, based on the underlying FFT calculation.  There is additional overhead 

of N multiplications due to the application of the windowing function as well as an 

additional overall increase by a factor (typically 2 or 4) due to the overlap factor 

used.   A WPT based DT-CWT has the same O(N log2 N )  complexity as the STFT, 

with LN log2 N actual computations required.  The complexity of each of the 

underlying transforms is summarized in table 1. 

 

Table 1. Complexity of transforms used in each of the phase-vocoder implementations. N refers to 
the transform window size, L refers to filter length. 

 

From table 1 we see that the WPT based phase-vocoder will have the same general 

level of complexity as the STFT based phase-vocoder.
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6.0 Conclusion 

The use of the wavelet transform in place of the STFT in the phase-vocoder 

algorithm for time-scaling audio signals has been investigated in the past, motivated 

by the fact that the wavelet transform offers variable time-frequency resolution that 

can efficiently and precisely capture audio signal information in a manner very well-

matched to human auditory perception characteristics. Despite this, little has 

emerged in the audio processing literature likely due to inherent limitations of 

traditional forms of the wavelet transform, such as lack of phase information from 

the DWT, and high computational cost and lack of available inverse transform 

implementations for the CWT. In this paper, a new wavelet transform based phase-

vocoder algorithm was presented that uses a new form of the DWT, the Dual-Tree 

Complex Wavelet Transform, DT-CWT, that overcomes many of the problems of 

the older DWT forms.   

A preliminary implementation of the algorithm in Matlab resulted in output 

that was time-stretched as desired, but with the addition of erroneous frequency 

components due to instantaneous frequency estimation errors cause by the 

insufficiently narrow octave band frequency resolution of the fully decimated DT-

CWT.  Use of the wavelet packet transform, (WPT) with approximately 1/3rd octave 

logarithmically spaced subbands instead of the octave band, fully decimated DT-

CWT was proposed as a solution to remedy the artifacts resulting from inadequate 

frequency resolution. 
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7.0 Future Work 

The DT-CWT based phase-vocoder algorithm presented is based on a fully 

decimated DWT, which decomposes the audio spectrum into octave bands.  As was 

determined from experiments with the algorithm implementation, the octave 

bandwidth of the fully decimated DT-CWT was not narrow enough to avoid 

frequency estimation errors leading to erroneous frequency component artifacts in 

time-stretched outputs. To provide sufficiently narrow bandwidths for accurate 

frequency estimation and to better match the 1/3rd octave critical bands of the human 

auditory system, a WPT implementation of the DT-CWT is required.  Unfortunately 

the DT-CWT Pack toolkit for Matlab only offers a fully decimated implementation 

of the DT-CWT, and it is outside the original scope and not feasible within the time 

constraints of this project to develop an implementation of a WPT version of the DT-

CWT. As such, the use of WPT will have to be left for future work. In addition to 

the use of the WPT, other improvements to the DT-CWT phase-vocoder may be 

possible based on the phase-locking techniques to preserve vertical phase coherence 

discussed in section 2.3.3.5, adapted to work with the DT-CWT. 
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