

Copyright

by

Jeremy Gin

2017

The Report Committee for Jeremy Gin
Certifies that this is the approved version of the following report:

Evaluation of Open-Source Intrusion Detection Systems for
IPv6 Vulnerabilities in Realistic Test Network

APPROVED BY
SUPERVISING COMMITTEE:

Brian L. Evans, Supervisor

William C. Bard

Evaluation of Open-Source Intrusion Detection Systems for
IPv6 Vulnerabilities in Realistic Test Network

by

Jeremy Gin, B.S.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin
May 2017

 Dedication

This work is dedicated to Abby Gin, whose ongoing, unwavering support in everything I

do breathes life into me, and Ezekiel Gin, whose arrival has only enriched my time in

Texas.

 v

Acknowledgements

This research was generously supported by Sandia National Laboratories through

the Master’s Fellowship Program. I humbly thank my many colleagues from Sandia

National Laboratories who provided insight and technical expertise that greatly assisted

my research.

I thank Dr. Brian L. Evans, whose holistic mentorship and excellent teaching have

profoundly impacted my education, this research, and my time at the University of Texas.

His dedication to his students and care for their well-being exceed the expectation of an

academic advisor.

I thank Prof. William C. Bard for lending his technical expertise to this project

through his formal networking class and his network security experience.

I thank my God, family, and friends for loving and supporting me throughout my

life and especially during my studies at the University of Texas.

 vi

Abstract

Evaluation of Open-Source Intrusion Detection Systems for
IPv6 Vulnerabilities in Realistic Test Network

Jeremy Gin, M.S.E.

The University of Texas at Austin, 2017

Supervisor: Brian L. Evans

Abstract: The Internet Protocol (IP) defines the format by which packets are relayed

throughout and across networks. A majority of the Internet today uses Internet Protocol

version 4 (IPv4), but due to several key industries, a growing share of the Internet is

adopting IPv4’s successor, Internet Protocol version 6 (IPv6) for its promise of unique

addressability, automatic configuration features, built-in security, and more. Since the

invention of the Internet, network security has proven a leading and worthwhile concern.

The evolution of the information security field has produced an important solution for

network security monitoring: the intrusion detection system (IDS). In this report, I

explore the difference in detection effectiveness and resource usage of two network

monitoring philosophies, signature-based and behavior-based detection. I test these

philosophies, represented by leading edge passive monitors Snort and Bro, against

several categories of state-of-the-art IPv6 attacks. I model an IPv6 host-to-host intrusion

across the Internet in a virtual test network by including benign background traffic and

mimicking adverse network conditions. My results suggest that neither IDS philosophy is

superior in all categories and a hybrid of the two, leveraging each’s strengths, would best

secure a network against leading IPv6 vulnerabilities.

 vii

Table of Contents

List of Tables ...x	

List of Figures ... xii	

Chapter 1: Introduction ..1	

1.1: Transition From IPv4 To IPv6 ...1	

1.2: IPv6 Features ...4	

1.2.1: ICMPv6 ..5	

1.2.2: IPsec ...6	

1.3: Cybersecurity And IPv6 ...7	

1.4: Intrusion Detection ..11	

1.5: Research Questions ..11	

1.6: This Work ..12	

Chapter 2: Related Work ...14	

2.1: IDS Approaches ...14	

2.2 State-Of-The-Art IDS ...17	

2.2.1: Snort ...18	

2.2.2: Bro ...20	

2.3: The Hybrid Approach ..23	

2.4: IDS and IPv6 ..24	

Chapter 3: Experimental Setup ..26	

3.1: Virtual Test Network Architecture ..26	

 viii

3.2: Design of Network Architecture ..28	

3.3: Design of Experiment Variables ..31	

3.4: Attack Tools ...32	

3.4.1: Reconnaissance ..36	

3.4.2: Flooding ...36	

3.4.3: Malware Delivery ..37	

3.4.4: CVE ...37	

Chapter 4: Procedure/Data Generation ..39	

4.1: Baseline Measurements ...39	

4.1.1: Baseline Binary Detection Results ..40	

4.1.2: Baseline Qualitative Detection Results41	

4.1.2.1: alive6 ..41	

4.1.2.2: denial6 ..42	

4.1.2.3: flood_advertise6 ...43	

4.1.2.4: flood_solicitate6 ...44	

4.1.2.5: covert_send6 ..44	

4.1.2.6: exploit6 ..45	

4.1.3: Baseline Resource Usage Results ..46	

4.1.4: Baseline Malware Signatures ...47	

4.2: Scripting And Data Flow ...48	

4.2.1: PCAP Generation ...49	

4.2.2: NIDS Analysis ...49	

ix

4.3: Ostinato ..50

4.4: Network Interface Manipulation ..52

Chapter 5: Results and Analysis ..53

5.1 Analysis of Baseline Measurements ...53

5.2: Results ..53

5.2.1: alive6 ..55

5.2.2: denial6 ..61

5.2.3: flood_advertise6 ...66

5.2.4: flood_solicitate6 ...71

5.2.5: covert_send6 ..76

5.2.6: exploit6 ..81

5.3: Analysis of False Positive Results ...87

5.4: Analysis Of Detection Results ...89

5.5: Analysis of Resource Usage Results ...91

Chapter 6: Conclusion ..94

6.1: Answers To Research Questions ...94

6.2: Future Work ...97

Glossary ...99

References ..103

Vita ...108

 x

List of Tables

Table 2.1: High-level comparison chart of detection philosophies18	

Table 2.2: Comparison of Snort and Bro from [Mehra2012]22	

Table 3.1: Table of IPv6 attack categories and tools used in experiments33	

Table 4.1: Binary detection matrix for baseline measurement of all attacks by Bro and

Snort, listed by attack category ...40	

Table 4.2: Qualitative detection matrix showing alert messages for baseline

measurement of alive6 by Snort ...42	

Table 4.3: Qualitative detection matrix showing alert messages for baseline

measurement of denial6 by Bro ..42	

Table 4.4: Qualitative detection matrix showing alert messages for baseline

measurement of denial6 by Snort ...43	

Table 4.5: Qualitative detection matrix showing alert messages for baseline

measurement of flood_advertise6 by Bro ...43	

Table 4.6: Qualitative detection matrix showing alert messages for baseline

measurement of flood_advertise6 by Snort43	

Table 4.7: Qualitative detection matrix showing alert messages for baseline

measurement of flood_solicitate6 by Snort44	

Table 4.8: Qualitative detection matrix showing alert messages for baseline

measurement of covert_send6 by Snort ..45	

Table 4.9: Qualitative detection matrix showing alert messages for baseline

measurement of exploit6 by Bro ...46	

Table 4.10: Qualitative detection matrix showing alert messages for baseline

measurement of exploit6 by Snort ..46	

 xi

Table 4.11: Baseline measurements for run-time and memory usage47	

Table 4.12: Attributes of benign traffic streams generated by Ostinato by protocol51	

Table 4.13: Side-by-side comparison of benign traffic generated by Ostinato and

Internet traffic statistics gathered by [Labovitz2008] by protocol by

number of packets ...51	

Table 5.1: False positive messages produced by Bro throughout experiment87	

Table 5.2: False positive messages produced by Snort throughout experiment88	

Table 6.1: High level Snort and Bro comparison ..96	

 xii

List of Figures

Figure 1.1: OSI 7-layer model from [Peterson2011] ...1	

Figure 1.2: Example IPv4 datagram header format from [Postel1981]2	

Figure 1.3: Percentage of users who access Google over IPv6 from [GoogleIPv6] 3	

Figure 1.4: Worldwide IPv6 adoption per-country from [GoogleIPv6]4	

Figure 1.5: Monetary damage of cyber crime from 2001-2015 from [IC32016]8	

Figure 2.1: Example of NIDS architecture from [Scarfone2012]15	

Figure 2.2: Example of inline NIDS/IDPS architecture from [Scarfone2012]16	

Figure 2.3: High-level Snort architecture ..19	

Figure 2.4: Bro architecture from [Bro2016] ...21	

Figure 2.5: Architectural components of a Bro cluster from [Bro2016]22	

Figure 3.1: Network diagram of a host-to-host cyberattack over the Internet26	

Figure 3.2: Ostinato’s controller-agent architecture to transmit to DUT from

[Ostinato2016] ..28	

Figure 3.3: Network diagram of host-to-host attack over Internet abstracting away all

routing over the Internet ..30	

Figure 3.4: Network diagram of the virtual test network used31	

Figure 3.5: Lockheed Martin’s industry-standard Cyber Kill Chain model from

[Lockheed2017] ..35	

Figure 5.1: True positive distributions of Snort detection of alive6 across 9 different

network degradation scenarios ..56	

Figure 5.2: False positive distributions of both Snort and Bro detection of alive6

across 9 different network degradation scenarios57	

 xiii

Figure 5.3: ROC-like scatter plot of Snort detection of alive6 with line segments

connecting points of similar scenarios ..58	

Figure 5.4: Run time distributions of both Snort and Bro detection of alive6 across 9

different network degradation scenarios ...59	

Figure 5.5: Memory usage distributions of both Snort and Bro detection of alive6

across 9 different network degradation scenarios60	

Figure 5.6: True positive distribution of Snort detection of denial6 across 9 different

network degradation scenarios ..61	

Figure 5.7: False positive distributions of both Snort and Bro detection of denial6

across 9 different network scenarios ...62	

Figure 5.8: ROC-like scatter plot of Snort detection of denial6 with line segments

connecting points of similar scenarios ..63	

Figure 5.9: Run time distributions of both Snort and Bro detection of denial6 across 9

different network degradation scenarios ...64	

Figure 5.10: Memory usage distributions of both Snort and Bro detection of denial6

across 9 different network degradation scenarios65	

Figure 5.11: True positive distributions of both Snort and Bro detection of

flood_advertise6 across 9 different network degradation scenarios .66	

Figure 5.12: False positive distributions of Snort detection of flood_advertise6 across

9 different network degradation scenarios ..67	

Figure 5.13: ROC-like scatter plots of both Snort and Bro detection of

flood_advertise6 with line segments connecting points of similar

scenarios ..68	

 xiv

Figure 5.14: Run time distributions of both Snort and Bro detection of

flood_advertise6 across 8 different network degradation scenarios .69	

Figure 5.15: Memory usage distributions of both Snort and Bro detection of

flood_advertise6 across 9 different network degradation scenarios .70	

Figure 5.16: True positive distributions of Snort detection of flood_solicitate6 across

9 different network degradation scenarios ..71	

Figure 5.17: False positive distributions of both Snort and Bro detection of

flood_solicitate6 across 9 different network degradation scenarios .72	

Figure 5.18: ROC-like scatter plot of Snort detection of flood_solicitate6 with line

segments connecting points of similar scenarios73	

Figure 5.19: Run time distributions of both Snort and Bro detection of

flood_solicitate6 across 9 different network degradation scenarios .74	

Figure 5.20: Memory usage distributions of both Snort and Bro detection of

flood_solicitate6 across 9 different network degradation scenarios .75	

Figure 5.21: True positive distributions of Snort detection of covert_send6 across 9

different network degradation scenarios ...76	

Figure 5.22: False positive distributions of both Snort and Bro detection of

covert_send6 across 9 different network degradation scenarios77	

Figure 5.23: ROC-like scatter plot of Snort detection of covert_send6 with line

segments connecting points of similar scenarios78	

Figure 5.24: Run time distributions of both Snort and Bro detection of covert_send6

across 9 different network degradation scenarios79	

Figure 5.25: Memory usage distributions of both Snort and Bro detection of

covert_send6 across 9 different network degradation scenarios80	

 xv

Figure 5.26: True positive distributions of Snort detection of exploit6 across 9

different network degradation scenarios ...81	

Figure 5.27: False positive distributions of both Snort and Bro detection of exploit6

across 9 different network degradation scenarios82	

Figure 5.28: ROC-like scatter plot of Snort detection of exploit6 with line segments

connecting points of similar scenarios ..83	

Figure 5.29: ROC-like scatter plots of Bro detection of exploit6 across 9 different

network degradation scenarios (top) and across 7 scenarios omitting bit

corruption scenarios ..84	

Figure 5.30: Run time distributions of both Snort and Bro detection of exploit6 across

9 different network degradation scenarios ..85	

Figure 5.31: Memory usage distributions of both Snort and Bro detection of exploit6

across 9 different network degradation scenarios86	

 1

Chapter 1: Introduction

1.1: TRANSITION FROM IPV4 TO IPV6

The Internet Engineering Task Force first defined IPv4 in Request for Comment

(RFC) 791 in 1981. Since then, it has been the de facto protocol of internetworking and

the world wide web, not only outlining the format of networked messages sent in packets,

but also dictating many of the methodologies by which packets are routed in the

decentralized, packet-switched Internet [Postel1981]. The primary role of IPv4 is to

provide a standardized addressing scheme which can be used to route a packet from one

node on an internetwork to another. In the 7-layer Open Systems Interconnection (OSI)

model of the International Standards Organization (ISO), IPv4 exists at Layer-3: the

network layer (see Figure 1.1). The OSI model employs the concept of data encapsulation

to abstract away a range of roles of internetworking from physical hardware tasks to

application and presentation software tasks.

	

Figure 1.1: OSI 7-layer model from [Peterson2011]

 2

Figure 1.2: Example IPv4 datagram header format from [Postel1981]

According to [Peterson2011], the primary responsibilities of a Layer-3 protocol

like IP are: datagram delivery, packet format, and fragmentation and reassembly. This

means that each IPv4 packet contains a 20 B IPv4 header and up to 65 KB of data, or

encapsulated segments or datagrams from higher layers. The 14 fields in an IPv4 header

span basic classifications of packet contents, elementary security checks, and most

importantly, source and destination IP addresses (see Figure 1.2). By and large, IPv4

effectively achieves its original purpose of accommodating any future heterogeneous

network architecture and technology. However, IPv4 uses a 32-bit addressing scheme

(e.g. 192.168.100.101) which limits the address space to 232, or 4.3E9, unique addresses.

For decades, the inevitable end of IPv4 has been spelled out by a marked lack of

unique IP addresses. The past decade has seen an increasing demand for unique IP

addresses due to a rise in the Internet-of-Things (IoT), mobile internetworking, social

media, and greater global access to Internet. Additionally, organizations like Google,

Facebook, Twitter, the Department of Defense, and other government agencies have

proactively ramped up research efforts into what must follow IPv4. Even though network

engineers have utilized special protocols and network architectures to reuse IP addresses,

such as Network Address Translation (NAT), these efforts are temporary fixes to a

foundational problem. Mobile internetworking, for example, is fundamentally unsolvable

by NAT when users cross NAT boundaries.

 3

The IETF formally introduced IPv6 in 1998 as IPv4’s successor in RFC 2460

[Deering1998]. Today, full IPv6 adoption would immediately relieve IPv4’s restricted

address space, but it also heralds updates in efficiency, complexity, and security to a

longstanding standard of the Internet. IPv6 was designed to accommodate automatic

configuration, more self-sufficient network administration, and more secure

internetworking. IPv6 uses a 128-bit addressing scheme (e.g.

2001:cdba:0000:0000:0000:0000:dead:beef or 2001:cdba::dead:beef) which expands the

address space to 2128, or 3.4E38, unique addresses. Having such an astronomically large

number of available addresses not only allows for unique addressability of every Internet-

connected device, but it also leaves the address space sparsely populated and therefore

more resistant to scanning. Under the assumption that worldwide users of Google are an

accurate representation of Internet users, Google estimates that current IPv6 adoption

rates are approximately 14-16% of the Internet (see Figure 1.3) and estimates that North

American and Western European users experience minimal problems connecting to IPv6-

enabled networks due to widespread deployment (see Figure 1.4).

Figure 1.3: Percentage of users who access Google over IPv6 from [GoogleIPv6]

 4

Figure 1.4: Worldwide IPv6 adoption per-country from [GoogleIPv6]

1.2: IPV6 FEATURES

While the primary motivation for IPv6 adoption is an increased address space,

early use of the Internet has greatly influenced its design. Major IPv6 design paradigms

include [Werny2014]:

• End-to-end addressability: Devices should be able to specifically address devices

regardless of network architecture.

• Large scale use: IoT will accommodate tens to hundreds of networked devices per

household (e.g. refrigerators, thermostats, mobile phones, glasses, etc.).

 5

• Automatic network and device configurations: Offload configuration from user to

equipment. IoT devices should configure themselves on a home Wi-Fi network,

and mobile phones should configure themselves as they travel across networks.

• Assumption of low device complexity: Small, single-purpose sensors and devices

cannot be expected to handle heavy traffic or complex calculations

• Authentication and encryption: More effective guarantees that traffic is verifiably

secure and private

The protocol seeks to achieve these goals by eliminating IPv4 artifacts like Address

Resolution Protocol (ARP), NAT, Internet Control Message Protocol (ICMP), and

Dynamic Host Control Protocol (DHCP) and instead implementing Stateless Address

Auto-configuration (SLAAC), ICMP version 6 (ICMPv6), DHCP version 6 (DHCPv6),

Internet Protocol Security (IPSec), extension headers, and more.

1.2.1: ICMPv6

ICMP is used for important utilities like ‘ping’ and ‘traceroute’ to test end-to-end

connectivity statistics and gain better understanding of internetworking from a source to

destination. Internal to a network, ICMP is used as an administrative tool to advertise and

discover hosts and routers throughout the network. ICMPv6 supports new functionality

for IPv6, but is fundamentally based on the original ICMP. Similar to the original ICMP

packet format, ICMPv6 packets include a 1 B type field, a 1 B code field, and variable

length payload field. ICMPv6 packets are either error messages or informational

messages and different combinations of types and codes provide the following major

features [Hogg2008]:

 6

• “Neighbor Discovery Protocol (NDP), Neighbor Advertisements (NA), and

Neighbor Solicitations (NS) provide the IPv6 equivalent of the IPv4 Address

Resolution Protocol (ARP) functionality.

• Router Advertisements (RA) and Router Solicitations (RS) help nodes determine

information about their LAN, such as the network prefix, the default gateway, and

other information that can help them communicate.

• Echo Request and Echo Reply support the Ping6 utility.

• PMTUD determines the proper MTU size for communications.

• Multicast Listener Discovery (MLD) provides IGMP-like functionality for

communicating IP multicast joins and leaves.

• Multicast Router Discovery (MRD) discovers multicast routers.

• Node Information Query (NIQ) shares information about nodes between nodes.

• Secure Neighbor Discovery (SEND) helps secure communications between

neighbors.

• Mobile IPv6 is used for mobile communications.”

1.2.2: IPsec

Internet Protocol Security (IPsec) is a framework of RFC standards which, when

supported by a network’s infrastructure, offers such guarantees as authentication,

confidentiality, and encryption for narrow and wide communication channels (range:

from one TCP connection to all traffic) [Peterson2007]. Some of the major protocols

whose use IPSec standardizes are Authentication Headers (AH), Encapsulating Security

Payload (ESP), and Internet Security Association and Key Management Protocol

(ISAKMP). IPSec is modular in nature and allows users many options in the kind of

services they implement for tasks such as end-to-end encryption or tunneling.

 7

1.3: CYBERSECURITY AND IPV6

Cybersecurity has emerged as an engineering grand challenge of the 21st century.

Cyberattacks level the playing field between adversaries who are unequally matched in

traditional assets, like manpower, weaponry, and experience. It is a relatively new

battlefield whose implications, technologies, and laws have not been concretely formed

and whose limitations have not been fully tested. Its non-physical confrontations and

exploits are popular among a range of criminals and governments of varying capabilities

and intentions. All of these characteristics make the physical and financial consequences

of cybercrime and cyberwarfare quite dangerous. According to data compiled by

[IC32016], the monetary damage caused by cyber crime reported to the Internet Crime

Complaint Center (IC3) has steadily increased from $17.8M in 2001 to $1.07B in 2015

(See Figure 5). On a practical level, cybersecurity research and countermeasures guard

against threats to supervisory control and data acquisition (SCADA) systems, critical

infrastructure, and commercial systems and machinery. These systems support necessary

life-sustaining technologies, industries, and utilities.

 8

Figure 1.5: Monetary damage of cyber crime from 2001-2015 from [IC32016]

Recent high-profile cyberattacks span the various classes of exploits and caused a

wide array of long-lasting consequences. In July 2015, attackers stole the personal

records and intimate details contained in the United States security clearance applications

of 22 million people from the databases of the Office of Personnel Management

[Levine2015]. In October 2016, attackers launched a distributed denial-of-service

(DDoS) attack on major Domain Name Service (DNS) host, Dyn, which resulted in

regional outages of popular websites like Netflix, Twitter, and Spotify [O’Brien2016].

Most recently, in the election season of 2016, adversaries leaked politically embarrassing

content from the servers of the Democratic National Committee in an alleged effort to

influence the presidential election.

IPv6 plays a fundamental role in cybersecurity as its protocols and standards

represent a variety of attack vectors for a potential attacker in the Layer-3 operations of

 9

future networks. As an emerging technology, its vulnerabilities are not well-researched

and seasoned security personnel are not experienced in its defense. In the past, lacking

the skills and experience to secure IPv6 on their networks, many network administrators

either disabled all IPv6 communication or ignored it [Warfield2003]. Warfield goes on to

say, “administrative personnel tasked with defending IPv4 networks have not kept pace

with the growth of IPv6”. Perhaps, blocking or ignoring IPv6 would suffice 10 years ago,

but not today, and definitely not in the future. [Gont2014] warns that unilaterally

blocking IPv6 using Layer-2 devices “might create problems that are difficult to

diagnose, inclusive of intentional or incidental use of link-local addressing”, citing other

RFCs for DNS-reliant services. As IPv6 adoption rates rise worldwide, network

defenders will see a greater benign-to-malicious ratio IPv6 traffic, and disabling a widely

used protocol renders a service or website unreachable for a significant portion of users.

[WorldIPv6] keeps a running list of the thousands of websites (including Google,

Facebook, YouTube, Yahoo!), tens of network operators, and handful of network

equipment vendors who have permanently enabled IPv6 by default on their services,

networks, and products.

IPv6 deployment faces substantial security problems. Like any new technology,

the security research community requires time and experience to understand new attack

vectors and early adopters are discouraged by a lack of existing security best practices.

Attack methodologies unique to IPv6 exist in: reconnaissance, network scanning, remote

DoS attacks, fragmentation, and abuse of IPv6 extension headers [Werny2014]. As

internetworks slowly transition from IPv4 to IPv6, networks must transition through

several stages of IP deployment, for example: native IPv4, IPv6-over-IPv4 tunneling,

IPv4-over-IPv6 tunneling, dual stack (IPv4 and IPv6 enabled), and IPv6 native. This

presents unique security challenges at every stage. This means that even early adopters of

IPv6 must continue to defend against IPv4 intrusions in addition to implementation

 10

complications that limit connectivity to the backbone, threaten critical services currently

running IPv4, and more. The malicious acts demonstrated in this report represent an IPv6

native environment but can also be used in a dual stack network, as the virtual test

network in this report is a dual stack network.

While IPsec promises security improvements over traditional IPv4 networks and

its support is mandatory, its implementation relies on other infrastructure such as public-

key management systems, and therefore its usage is not required [Caicedo2009]. Like

IPv4 attacks, IPv6 attacks will begin with scripted network scanning or mapping for basic

and advanced reconnaissance of available hosts, ports, and services even though the IPv6

address space is sparsely allocated. Such scanning programs can utilize IPv6’s unique

multi-cast addressing which allows for easy communication with all hosts on a LAN

[Pilihanto2011]. After scanning a network, an adversary may take advantage of SLAAC,

DHCPv6, and NDP to announce phony routers or hosts on the network or launch man-in-

the-middle (MITM) attacks ultimately convincing other nodes of its authenticity. Once

valuable targets (hosts or routers) are identified, studied and maybe even inadvertently

communicating with an adversary, he might launch a DoS attack from locations internal

and/or external to the network using ICMPv6 or any combination of protocols, services

and ports. Alternatively, quieter attackers may opt to transfer malware, abuse IPv6

extension headers, fragment large packets, or overflow buffers to take down a victim.

Even still, IPv6 will one day subvert IPv4 as the Layer-3 protocol of the world.

On World IPv6 Day, June 8th 2011, major Internet content providers enabled IPv6 in their

servers and since then, the Internet has sustained and increased the level of IPv6 traffic

specifically content-based traffic like Hypertext Transport Protocol (HTTP), rather than

 11

control traffic like ICMPv6 [Sarrar2012]. This suggests that not only did the providers

not experience fatal problems, but IPv6’s use is approaching that of IPv4.

1.4: INTRUSION DETECTION

In the world of intrusion detection systems (IDSs), there are two main

approaches: an network intrusion detection system (NIDS) and a host-based intrusion

detection systems (HIDS). For a network administrator, a NIDS is more practically

relevant and implementable and is the subject area of this report. The two represent

different philosophical approaches to the problem of network exploitation. The basic

premise of a HIDS is to run software on all or a selection of hosts in a network searching

for signs of attacks on the host. A NIDS runs on one or multiple hosts or servers at

different locations in a network passing a selection or all observed network traffic

through a variety of algorithms to identify potentially malicious traffic. NIDSs play a

crucial role in the cyber arms race between white hat operators and adversaries whether

in enterprise networks or government networks. The two most prevalent, open-source

IDSs are Snort and Bro.

1.5: RESEARCH QUESTIONS

This work is an effort to provide data by which to evaluate various aspects of

network security approaches in light of the development and adoption of the IPv6

protocol. The following research questions guided my work:

(1) For current state-of-the-art IPv6 attacks, which IDS philosophy is more

effective in detecting attempts to compromise a network: signature-based

detection or behavior-based detection?

(2) As network conditions deteriorate and routing becomes less reliable or as

traffic load overwhelms each IDS, which IDS approach maintains better

performance?

 12

(3) Does the more resource-intensive reassembly operations of a behavior-

based detection system ultimately render it inferior when it is

overwhelmed?

The answers to all of these questions must inform real-world network

administrators anticipating a future of IPv6 adoption in sensitive networks. The cost of

lapses in cybersecurity are too great to ignore the existence of IPv6 and the real attack

surface the protocol presents to adversaries and penetration testers.

 1.6: THIS WORK

 The research described in this report provides a detailed comparison of the

different paradigms for writing and executing IDS algorithms for IPv6 vulnerabilities. It

details the testing of the two most popular, current, state-of-the-art, and open-source IDS

engines: Snort [Snort2016] and Bro [Bro2016]. Both systems are widely used in

enterprise networks, and each has its advantages. My experimentation leverages a state-

of-the-art, open-source IPv6 attack suite called ‘The Hacker’s Choice – IPv6’

[Hauser2017]. This work attempts to evaluate the effectiveness of different IDS

paradigms in a realistic test network modeled in a virtual laboratory setting. Multiple

baseline measurements are taken to ensure that all network components function as

described.

 To simulate realistic network conditions, I use a combination of assumptions and

open-source tools to establish a reasonable confidence in my experimentation. I create

many streams of benign traffic in various protocols and processes that are irrelevant to

the attack event using Ostinato [Ostinato2016]. At the network interfaces of all hosts

emitting packets on the test network, I artificially alter packet transmit rates, drop rates,

latencies, and accuracies using a network emulator tool, NetEm [Hemminger2005].

Using multiple scripts running on the network administrator and on each host in the

network, I create thousands of trials varying slightly different conditions. In doing so, I

hope to build a more holistic picture of real-life attacks in a laboratory setting. Using

 13

additional scripts, I test which alerts, if any, Bro and Snort return on the packet captures

and aggregate the detection results into an analyzable form.

 Chapter 2 discusses the current state of intrusion detection and specifically IPv6

security research. Chapter 3 gives a more detailed view of the experimental setup I used

for this project, specifically various design choices in my virtual test network. Chapter 4

details the generation and processing of the traffic capture data to model realistic data for

analysis. In Chapter 5, I provide the results of the experiment through a number

visualized metrics and analysis of the data. As part of the analysis, I note trends in the

data, present theories to explain trends, and identify sources of error. I conclude the

findings of my research and suggest future work in Chapter 6.

 14

Chapter 2: Related Work

2.1: IDS APPROACHES

In 1987, [Denning1987] proposed the foundational model for detection of

anomalous audit records. Reasons that remain valid in modern systems motivate this

model of handling malicious activity in a system: fully securing systems is technically

and/or economically unrealistic, upgrading to more secure systems is economically

prohibitive and/or sacrifices functionality, and no system is safe from the insider threat.

Denning’s model uses event counters and statistical models to characterize a normal

usage model. It provides a basis for detecting break-ins, viruses, Trojans, and leakage

while remaining naïve of a target system’s mechanisms or deficiencies. Since

[Denning1987], industry has adopted much of the sentiment for network security. At one-

time, flow-based intrusion detection (FID) was state-of-the-art in the network security

field [Sperotto2010]. This method uses flow information of a network trace (i.e. source

IP, destination IP, source port, destination port) to identify malicious flows and alert a

network administrator. This methodology is less computationally intensive than deep

packet inspection (DPI) which involves using protocol parsers and authorized decryption

to read all header information and even packet contents. Given the modern-day skill level

of adversaries and security experts alike, FID seems more like a superficial catch-all for

any malicious activity that might be identified by its unique flow pattern. To be clear,

FID is sufficient for a wide range of attacks, however, DPI is now more computationally

plausible with efficiently written software, advances in computing power, and more

resources devoted to solid cybersecurity. DPI can be considered an extension of FID

capability because DPI can entire packet headers and payloads.

 15

Figure 2.1: Example of NIDS architecture from [Scarfone2012]

The fact that an IDS does not actively accept or reject packets is a fundamental

flaw of strictly IDS approaches. State-of-the-art IDSs operate for passive monitoring

systems, which branch all or a portion of traffic from a network tap or a switch’s

switched port analysis (SPAN) port for offline, real-time analysis (see Figure 2.1). A

firewall, on the other hand, exists inline of inbound and outbound network traffic and

accepts or rejects packets based on superficial information such as program author,

certificates, type of service, or specific port. This disadvantage exists by design. IDSs are

capable of piecing together longer connections and can build behavioral profiles by

which to assess traffic rather than make face value decisions which carry potentially

costly consequences for mistakes. The types of intrusions NIDSs most are often best

 16

prepared to detect include: reconnaissance and attacks in the application layer (DHCP,

DNS, HTTP, FTP, etc.), transport layer (TCP and UDP) and network layer (IPv4, IPv6,

ICMP, and IGMP), unexpected application services (tunneling, back doors, etc.), and

policy violations (blacklisted Websites, protocols, ports, etc.) [Scarfone2012]. Some

efforts have been made to enable IDSs to prevent intrusions, using a hybrid firewall-IDS

architecture, perhaps inline of network traffic, sometimes called an Intrusion Detection

and Prevention System (IDPS) (see Figure 2.2) [Scarfone2012].

Figure 2.2: Example of inline NIDS/IDPS architecture from [Scarfone2012]

 17

Realistic network traffic volumes often overload IDS sensors with billions of

packets from thousands of hosts on the monitored network. IDSs must employ certain

methods to build the most complete picture of the network and its connections with the

fewest packets necessary. The rest of the packets are either purposefully discarded as

unnecessary or inadvertently discarded as resources are maximized. IDSs can employ

best effort approaches to discard a majority of packets in high volume connections only

making decisions with the first packets, thereby increasing the detection accuracy under

high load [Papadogiannakis2010]. To be clear, IDSs are not perfect solutions and attempt

to only serve a subset of roles which ultimately comprise comprehensive iron clad

network security. There is plenty of argument for the insufficiencies of IDSs,

fundamental flaws, and difficulty of testing network security algorithms in a laboratory

setting [Ptacek1998][Gates2008]. These basically come down to the heterogeneity and

evolution of network contents and architectures complicating the task of modeling a

network or understanding how malicious a traffic specimen is. Additionally, IDSs can

detect attacks like DoS but prevention requires more than passive monitoring. Some of

the genius of IDSs is definitively hard to model in a laboratory setting: the ability to

continually build behavioral profiles of diverse, changing networks.

2.2 STATE-OF-THE-ART IDS

 Today’s state-of-the-art, open-source IDS solutions on the market include: Bro,

Snort, and Suricata. These network security monitors passively monitor raw network

traffic from a tap on network media hardware. With similar goals, these monitors

represent vastly different approaches in IDSs: namely, the tradeoffs between behavior-

based detection and signature-based detection. All of them alert network operators when

a suspicious item is flagged or a reportable event is noticed. In general, some tradeoffs

characterize the behavior-based vs. signature-based comparison (see Table 2.1). In this

report, “behavior-based detection” is used synonymously with “anomaly detection”.

 18

Characteristic	 Behavior-based	 Signature-based	

Triggers	on	 Statistical	anomalies	 Byte/instruction	
sequences	

Relies	on	data	
Representing	unique	
behavioral	profiles	of	a	

system	

From	large	community	
databases	of	signatures	

Similar	paradigm	to	 Machine	learning	 Anti-virus	software	

Detects	 Zero	day	and	day	after	
exploits	 Day	after	exploits	

Detection	of	Unknown	
Threats	 Possible	 Impossible	

Detection	of	Known	Threats	 Good	 Good	
False	Positive	Rate	 High	 Low	
False	Negative	Rate	 High	 Low	

Computational	Efficiency	 Can	be	complex	 Simple	

Table 2.1: High-level comparison chart of detection philosophies

2.2.1: Snort

In 1998, Martin Roesch created today’s most widely deployed NIDS, Snort, as a

weekend project [Snort2016]. It is now owned by Cisco Systems. Snort is a libpcap-

based packet sniffer and logger that can detect intrusions by analyzing network traffic

and its protocols [tcpdump2017]. Raw network traffic passes through a series of program

layers: packet decoder, preprocessors, detection engine, and logging/alerting subsystem

(see Figure 2.3).

 19

Figure 2.3: High-level Snort architecture

The packet decoder quickly sets pointers throughout each packet at various

markers ascending up the OSI model from data link layer to the application layer

[Roesch1999]. In the preprocessor layer, the decoded packets are funneled into all

preprocessors which are categorized by protocol such as Simple Mail Transfer Protocol

(SMTP), Post Office Protocol (POP), or Internet Message Access Protocol (IMAP). By

design, users can extend Snort by writing their own preprocessors to augment the

modular hierarchy [Snort2016]. Some preprocessors identify suspicious activity in

packets and are responsible for the small amount of behavior-based alerts Snort produces.

The rest of the preprocessors modify packets in preparation for input into the detection

engine, normalizing for distracting traffic patterns. All preprocessors process all packets

to detect even those packets which might require more than one preprocessor

[Koziol2003]. After packets are preprocessed, the detection engine recursively checks

through a user-extendible list of default rules triggering on specific signatures or packet

attributes. Because a rule must fully describe an exploit’s signature before Snort can

detect an exploit, Snort’s detection is considered day after detection, as opposed to zero

 20

day detection. In what seems to be a best case scenario, [Roesch1999] states that effective

Snort rules can be written hours after an exploit is discovered, and in fact, [Snort2016]

offers a subscription service which provides frequent rule updates 30 days before

granting access to the public. Finally, once the detection engine triggers on a suspicious

signature, a logging or alerting subsystem chosen at run-time issues and/or logs the alert

to the specified media for human review.

2.2.2: Bro

Researcher Vern Paxson first created Bro in 1999 at Lawrence Berkeley National

Laboratory [Paxson1999]. It has the theoretical capabilities of a low-level signature-

based IDS with extensive additional capabilities in behavioral modeling and anomaly

detection of network traffic and can run on any UNIX-style system. Bro algorithms, or

Bro scripts, are written in an event-driven, scripting language and are run on a Unix-

based network monitor written in C++. The language is designed for network-specific

applications containing variables that are designed to express network

fundamentals/primitives like subnets or IP addresses. Bro’s flexibility allows it to run on

a specific packet capture (PCAP) or passively monitor a network. In 2012, Bro was

updated for full IPv6 compatibility by default, including full IPv6 protocol parsing and

various variable and function accommodations in the scripting language.

Bro employs a high-level structure consisting of an event engine and a policy

script interpreter (see Figure 2.4). The event engine translates a packet stream into policy-

neutral “higher-level network events” to which the interpreter applies Bro’s policy scripts

[Bro2016]. Not all network packets are processed by the entire hierarchy depicted, in

fact, the goal of the structure is to exponentially reduce the information handled as each

increasing layer is employed. The popular Linux program libpcap is used to capture

 21

raw streams off the network to be filtered in a common file format and input into the

event engine [tcpdump2017]. The event engine checks IP checksums and basic header

information before invoking individual handlers for TCP and UDP payloads. Depending

on its analysis, Bro will retain the header, entire packet, or nothing while tagging certain

events based on its observations. The interpreter then invokes event handlers for triggered

events. The Bro package provides many event handlers by default, but the highly

extensible domain-specific variables and computations allowed in the Bro scripting

language allows for arbitrary site-specific policies. Event handlers can even execute

third-party programs that can help bridge the gap between intrusion detection and

intrusion prevention. One of Bro’s design goals is describing network events in a neutral

manner. To this end, Bro logs a multitude of information for potential review, such as

number, length and nature of all connections, run-time statistics, unusual events, etc. Bro

writes all connections and alerts to their own compressed ASCII logs where they can be

ingested by a sorting and visualization program stack and ultimately reviewed.

Figure 2.4: Bro architecture from [Bro2016]

 22

Figure 2.5: Architectural components of a Bro cluster from [Bro2016]

Parameter Bro Snort

Contextual signatures Yes No

Flexible site customization High Medium

High speed network capability High Medium

Large user community No Yes

Configuration GUI No Yes

Analysis GUI A few A lot

Installation/deployment Difficult Easy

Operating system compatibility Unix Any

Table 2.2: Comparison of Snort and Bro from [Mehra2012]

 23

Because Bro is not multi-threaded, many implementations may employ a Bro

cluster which shares the overall workload with as many cores or nodes as are available.

Bro’s authors have designed in the agility to deploy in such a manner using a cluster

architecture (see Figure 2.5). In this figure, the manager processes the logs and notices

Bro produces while the Proxy administers the workload sharing between the worker

nodes, which represent any number of cores or physical machines that comprise the

cluster. The Bro authors generally estimate that each core can handle 250 Mbps of traffic.

Lastly, it is noteworthy that among its various frameworks, Bro uses a signature

framework to provide functionality where signatures better identify a malicious

connection than its behavior does. At one time there was a script named snort2bro

which sought to achieve Snort-like capability by importing Snort rules into Bro syntax to

be implemented in Bro, but it is no longer maintained because it does not capitalize well

on Bro’s additional capabilities [Bro2016]. All in all, Bro’s signature framework allows it

to achieve a somewhat hybrid approach between behavioral and signature detection.

2.3: THE HYBRID APPROACH

The major differences between Snort and Bro originate in differences in their IDS

philosophy. One significant low level difference between Snort and Bro and ultimately

their IDS philosophy is this: Snort is packet-oriented and Bro is connection-oriented. Bro

can process traffic at higher rates and has more configurable and flexible options, but it

uses more complex policies, must be more specifically tuned when deployed, and lacks a

GUI. Snort boasts a stronger user community and therefore more comprehensive rule

database (see Table 2.2) [Mehra2012].

In Table 2.1, red fields indicate faults to be mitigated and green fields indicate

strengths of the approach. In anomaly detection, the risk of computation complexity can

 24

be effectively mitigated to avoid adding load to the network. As mentioned above,

anomaly detection deployments increasingly rely on specialized, faster hardware.

Administrators can also utilize network architecture mechanisms, such as using a hybrid

of online and offline processing of packet captures. Particularly, configuring port

mirroring or SPAN ports on network switches or routers branches all live traffic to be

processed online or offline. [Papadogiannakis2010] proposed using selective packet

discarding to handle processing greater traffic loads by discarding high volume low risk

traffic such as video streaming, Voice over Internet Protocol (VoIP), or other multimedia

content. While it is impossible to detect previously unknown threats, or zero day threats,

with signature-based detection alone, administrators might use a collection of approaches,

with and without IDSs, to identify these threats. Most of the time, a hybrid of the two

approaches is the most effective in which: a behavior-based IDS is used to profile new

threats and a signature-based IDS is used to detect these exact profiles.

2.4: IDS AND IPV6

 Based on my literature review, research and experimentation in the public domain

bridging the gap between IDS solutions and IPv6 vulnerabilities is sparse. The fields of

networking and information security are relatively young and develop at a relatively fast

pace. Additionally, it is suspected that a majority of innovative information security

advancements are retained privately for security reasons. Even still, some works such as

[Schütte2014] exist, which presents an IPv6 plugin for Snort. The plugin adds “IPv6-

specific rule options” for Snort signatures as well as builds its own network view to track

NDP broadcasts. [Elejla2016] reviews several methods utilizing an IDS to flag ICMPv6-

based DDoS attacks, claiming that ICMPv6 is the most prevalent protocol used for DoS

and DDoS attacks of IPv6 networks.

 In the most relevant work I am aware of, [Gehrke2012] samples 13 categories of

malicious attacks and tests whether or not Bro and Snort alert on single trials of host-to-

 25

host or host-to-router events in a native IPv6 testbed and a transitional IPv6-over-IPv4

tunneled testbed. This work was published when Google’s IPv6 access rate was

approximately 0.45% and before popular intrusion detect systems began supporting

default comprehensive IPv6 detection [Google2017][Bro2016].

 This work focuses on IPv6 attacks in 4 major categories: reconnaissance,

flooding, malware delivery, and exploits—in the form of Common Vulnerabilities and

Exposures. Attacks in these categories can be dangerously effective at taking IPv6

networks or nodes offline or infecting them with adversarial programs. I compare and

evaluate behavior-based and signature-based IDSs for these attack vectors across

thousands of trials in laboratory network while modeling varying degrees of degradation

of general network conditions. To my knowledge, this work is novel in its statistically

significant testing of open-source intrusion detection.

 26

Chapter 3: Experimental Setup

Figure 3.1: Network diagram of a host-to-host cyberattack over the Internet

3.1: VIRTUAL TEST NETWORK ARCHITECTURE

The classes of attacks of interest and reasonable assumptions of network

conditions influenced the major design choices of the architecture of the test network.

The test network is fully virtualized using VMWare Fusion running on a MacBook Pro

equipped with a 2.8GHz Intel Core i7 processor and 16 GB 1600 MHz DDR3 RAM

[VMWare2017]. The experimental setup simulates events which originate from one or

more hosts on one or more Local Area Networks (LAN), travel across the Internet, and

terminate in a victim LAN containing a targeted host (see Figure 3.1). The virtual test

network architecture is as follows. One virtual LAN configured as a Host-Only Network

 27

contains two 64-bit virtual machines as guests hereafter referred to as: ATTACKER and

TARGET.

ATTACKER is an Ubuntu 16.04 virtual machine (VM) loaded with The Hacker’s

Choice Internet Protocol version 6 (THC-IPv6) attack suite, Ostinato packet generator,

NetEm network emulator tool, and Linux utility tcpdump

[Hauser2017][P2016][Hemminger2005][tcpdump2017]. German security developer van

Hauser created THC-IPv6 in 2005 to fill a gap in open-source security research tools for

IPv6 [Hauser2017]. He has continued to maintain it through the present. Indian network

engineer Srivats P. first publicly released a flexible packet generator, Ostinato, in 2010

which filled a gap in open-source networking load testing tools and the like. Ostinato’s

architecture uses a controller as an administrator to control an agent, often running on the

same machine, to transmit streams of random network traffic to a Device Under Test

(DUT) (see Figure 3.2). In my setup, the DUT is TARGET. NetEm is a popular network

emulation tool installed on selected network interfaces to develop and test products that

rely on internetworking, like online games [Hemminger2005]. The NetEm tool enhances

Linux’s traditional traffic control (tc) facilities by allowing a developer to arbitrarily

designate packet drop rate, latency, duplication rate, reordering, probability of bit error,

and more.

TARGET is a fully updated Ubuntu 16.04 VM with no major additions to its

software. Its function is simply to exist as an addressable and discoverable node on the

network which responds as expected to appropriate requests. I did not use a vulnerable

VM image because it places an unnecessary burden on the automation of thousands of

trials to restart or recreate an addressable node on the network.

 28

Figure 3.2: Ostinato’s controller-agent architecture to transmit to DUT from

[Ostinato2016]

I use an additional VM, IDS-VM, is a 64-bit Ubuntu 16.04 VM, but this VM is

not connected to the test network. Bro and Snort are installed from source, configured,

and run on this VM.

In a Host-Only Network configuration, the Network Interface Card (NIC) in each

VM is fully isolated from any networking that the host engages in, such as the Internet or

any communication on the host’s real LAN. This design ensures that data recorded in the

experiment is precise and intentional.

3.2: DESIGN OF NETWORK ARCHITECTURE

Due to the difficulty of testing IDS algorithms in a laboratory setting, I make a

number of assumptions which directly influence all design choices. Major design choices

for the network are:

• One LAN

• No routers

 29

• Benign traffic generator on attacker node

• No firewall

The test network consists of only a single LAN because this experiment is only

concerned with host addressable attacks. It assumes that an attacker already knows the IP

address of the target or is scanning for it. While multiple LANs and the processing and

forwarding between and through them would demonstrate scalability of this experiment, I

perform load testing in other more measurable ways.

The decision to exclude any routers in the test network is based on a number of

assumptions. First, while plenty of interesting and effective IPv6 attacks involved

targeting vulnerable routers (dumping router information, flooding routers, man in the

middle attacks), such attacks are beyond the scope of this project and none of the attacks

used explicitly target or require routers in the network. DHCP, NAT, and IP forwarding

are major protocols and services for which routers are needed in today’s networks. DHCP

is not necessary in this experiment because each guest VM is assigned a unique IPv6

address by the virtualization software. NAT is a redundant service in an ideal IPv6

internetwork in which all network nodes are uniquely addressable from any other node in

the internetwork. Finally, this setup assumes that for such an experiment in which a raw

view of egress packets is necessary for analysis, any included router would simply

forward packets to their destinations.

ATTACKER creates multiple traffic streams speaking different protocols and

conversations to and from target and imaginary hosts on the internetwork. It is assumed

that a targeted machine would witness some of this background noise in a real network in

addition to any traffic sent to and from the target. The benign traffic generator greatly

 30

amplifies the integrity of simulation of the network events and more than one node is

excessive.

No firewall or packet blocking mechanism is implemented in the network so as to

allow the IDS a full and unfettered view of the network traffic. Any realistic enterprise

network employs a firewall and many other security measures to protect its servers and

internal networks. However, implementing such technologies would bias the results of

this experiment. Additionally, we assume that in a real network, Bro or Snort would

passively monitor network traffic at the gateway of the targeted enterprise network and

would therefore have the most comprehensive view of traffic leaving and entering.

From the original figure of a host versus host attack vector across the Internet, one

could create an experimental network in which one router separates the attacker and

traffic generator from the target (see Figure 3.3). In this case, the one router represents all

routing across the Internet and between the two LANs. Given the assumptions and

explanations above, I abstract one step further and eliminate the router to achieve a

simpler network architecture (see Figure 3.4).

Figure 3.3: Network diagram of host-to-host attack over Internet abstracting away all

routing over the Internet

 31

Figure 3.4: Network diagram of the virtual test network used

3.3: DESIGN OF EXPERIMENT VARIABLES

Throughout my experiments, I seek to model network traffic as influenced by the

realities of many idiosyncratic causes of non-ideal network infrastructure. Because the

information security community should anticipate IPv6 cyberattacks to originate

anywhere from a local LAN to intercontinental networks, I experiment with a variety of

network conditions. I use 4 independent variables as parameters to model a real network

in the virtual test network: benign traffic streams, drop rate, transmit latency, and

probability of byte error.

I configure Ostinato to generate benign traffic streams consisting of variable-

length TCP, UDP, IGMP, and ICMPv6 packets and streams carrying random payloads to

and from random IPv6 addresses. I provide more detailed statistical characteristics of the

Ostinato streams in §4.3. These benign streams simultaneously increase the load on the

monitors and model the innocent traffic on a network without increasing the amount of

malicious attacks. I treat the benign traffic stream variable as a binary parameter. I turn it

 32

off when acquiring baseline measurements and on when testing with the other

independent variables.

The packet loss rate variable represents any packet that is not successfully

delivered to its intended receiver. This variable models network degradations such as

improper Layer-3 routing, a router’s buffer overflowing, mistakes in Layer-2

transmissions, etc.

The transmit latency variable represents a wide variety of latencies for Internet

communications caused by physical distance between endpoints, routing delays, Layer-1

hardware abnormalities, etc.

Finally, the packet corruption variable catches a remainder of errors mostly due to

Layer-2 noise. Many error detection mechanisms are typically used like cyclic

redundancy checks (CRC), parity checks, and checksums which can often result in a

retransmission of the information. However, there is still a probability of error at a

receiver because some undetected errors can still pass CRC or parity checks and any

errors that are not checked until arriving at the receiving host or LAN will still pass

through a NIDS placed at the top of the network.

3.4: ATTACK TOOLS

Table 3.1 shows the attack categories sampled and which attacks represent them

in the virtual network. The source code for the attacks are written by [Hauser2017] and

are configured and initiated on the UNIX command line interface (CLI) terminal. A large

majority of the attack tools used leverage vulnerabilities in ICMPv6. It makes sense that a

study on IPv6-specific attacks would focus on Layer-3 protocols, the most prominent of

which is ICMPv6. However, for being a relatively rarely used protocol in the wild,

ICMPv6 poses a disproportionately large security risk. [Labovitz2008] analyzed

 33

anonymously gathered Internet traffic statistics from 67 Internet Service Providers (ISPs)

over 2 years in 17 countries, and found that 27% of attacks observed used the ICMP

protocol even though ICMP is responsible for less than 0.001% of Internet traffic. While

the overwhelming majority of these statistics undoubtedly referred to ICMPv4, ICMPv6

should expect similar usage as IPv6 networks increase in number.

The THC-IPv6 tools used in this experiment exploit vulnerabilities that are unique

to protocols and services in IPv6. It targets ICMPv6 weaknesses such as neighbor

advertisements, neighbor solicitations, IPv6 multicast broadcasts, and generic ICMPv6

echo request/reply pairs. There are plenty of IPv4 attack tools that fall into

reconnaissance, flooding, malware delivery, and various CVE weaknesses. In fact, a large

portion of tools in the THC-IPv6 suite are designed to implement IPv4-era mechanisms

on IPv6 networks by using IPv6-specific technologies and protocols. To be clear, the

IPv6 attacks used in this experiment or in the rest of the tool suite would not be effective

on strictly IPv4-configured networks or hosts.

IPv6 Attacks Used

Attack Category Tool

Reconnaissance alive6

Flooding denial6

 flood_advertise6

 flood_solicitate6

Malware Delivery covert_send6

Common Vulnerabilities and Exposures (CVE) exploit6

Table 3.1: Table of IPv6 attack categories and tools used in experiments

 34

It is important to note where these attacks fall in Lockheed Martin’s industry

standard Cyber Kill Chain which guides security researchers in mitigating risk and

defending information systems from advanced persistent threats (APT) (see Figure 3.5).

APTs are patient, surgically targeted cyber threats that may last for months to years and

are generally orchestrated by highly resourced, motivated, and capable nation states. The

Cyber Kill Chain describes the 7 stages of an APT: reconnaissance, weaponization,

delivery, exploitation, installation, command and control, and actions on objectives. This

kill chain generally outlines each step of a successful malicious operation that must be

completed before proceeding to the next.

As a Layer-3 protocol, IPv6 vulnerabilities fall in steps 1-4 of the kill chain

model: reconnaissance, weaponization and delivery. The subsequent steps tend to require

more access to specific host conversations and victim manipulation that is greatly

benefited by information transmitted via Layer-4 to Layer-7 protocols. Additionally,

many of these exploits are more host-based as opposed to network-based. Usually, the

only aspects of steps 4-7 that would be visible to the network is the command and control

stage, which establishes a reliable communication link between the attacker and his

target(s) over the network.

As a result, the categories of IPv6 attacks sampled for this experiment and

described in the sections above cover potential IPv6 tools to be used in steps 1-4 of the

Cyber Kill Chain model.

 35

Figure 3.5: Lockheed Martin’s industry-standard Cyber Kill Chain model from

[Lockheed2017]

 36

3.4.1: Reconnaissance

alive6 is a reconnaissance tool capable of using a variety of methods to identify

alive IPv6 nodes on a network visible to the attacker’s network interface. An attacker can

specify an arbitrary range of addresses or scan the entire link-local network. The basic

premise of the method sends requests in various forms (ICMP, DNS resolve alive, TCP

SYN, TCP ACK, UDP) to many addresses and analyzes whether or not there was a reply.

The nature of each reply may also indicate information such as host OS, open ports, and

services running. For this experiment, I use a default configuration of alive6 which sends

an ICMPv6 ping request packet to the link-local multicast address ff02::1.

3.4.2: Flooding

The following attacks are IPv6-specific DoS or flooding attacks.

denial6 offers 7 different ICMPv6 ping request DoS attacks which emit high

volumes of packets with attributes that incur heavy workload for any victim to process

them. The options that are available include: “large hop-by-hop header with router-alert

and filled with unknown options”, “large destination header filled with unknown

options”, “hop-by-hop header with router alert option plus 180 headers”, etc.

[Hauser2017]. In my experiment, I configure denial6 under the first option using large

hop-by-hop headers and a router alert. On my hardware, denial6 transmitted

approximately 66000 packets/sec to the victim from random IPv6 addresses for the 10

seconds it was allowed to run.

flood_solicitate6 floods a victim’s network with ICMPv6 NSs from randomized

MAC and IPv6 addresses. On my hardware, flood_solicitate6 was capable of increasing

traffic on the network by approximately 66000 packets/sec during the 10 seconds it ran,

which includes any attempts by the victim of replying to the solicitations. I specifically

 37

configured flood_solicitate6 to target the IPv6 address of TARGET, instead of simply

flooding the network with random destinations.

flood_advertise6 floods a victim’s network with ICMPv6 NAs addressed from

random IPv6 hosts. Since NAs are designed to be replies to solicitations, the victim did

not transmit any replies during experimentation. Even still, flood_advertise6 increased

traffic on the network by approximately 66000 packets/sec for the approximately 10

seconds it ran.

3.4.3: Malware Delivery

covert_send6 is a proof-of-concept malware delivery method for IPv6. It covertly

sends files from a random IPv6 address to an already compromised, expecting victim by

injecting file partitions into the destination headers of a series of ICMPv6 ping requests.

For this experiment, I configure covert_send6 to send the binary for the popular 2009

virus Conficker. covert_send6 generates 64 packets to send the designated binary and the

victim replies with 64 symmetric ICMPv6 ping replies, in turn.

3.4.4: CVE

exploit6 implements various CVE and non-CVE techniques to compromise or kill

a victim host. It begins and ends by checking whether a host is alive or not using a

normal ICMPv6 ping request. It sends a series of large ping requests with checksum

mistakes followed by implementations of CVE-2003-0429 and CVE-2004-0257.

Submitted in June 2003, CVE-2003-0429 describes the use of buffer overflow attacks to

cause the packet interpretation software Ethereal 0.9.12 to crash while dissecting packets

with invalid IPv6 prefix lengths [Mitre2017]. Submitted in September 2004, CVE-2004-

0257 describes the transmission of an IPv6 packet with a low Maximum Transmission

 38

Unit (MTU) followed by a TCP connection to an open victim port to cause a DoS attack

against vulnerable OpenBSD and NetBSD distributions [Mitre2017].

 39

Chapter 4: Procedure/Data Generation

The scripts which automate generation, evaluation, and visualization can be found

as part of the software release which accompanies this work [GinCode2017]. The data

generated throughout the course of experimentation consists of all PCAPs, ASCII output

files, aggregated data, and visualizations. These can be found as part of the dataset

release which accompanies this work [GinData2017].

4.1: BASELINE MEASUREMENTS

To ensure the various systems are functioning correctly, I establish baseline

measurements of the various attacks in their most basic forms without network

degradation or background noise added to the controlled virtual environment. These

measurements verify whether or not Bro and Snort can successfully identify the chosen

IPv6 attacks and malware in their most obvious form (see Table 4.1). Collecting and

verifying baseline measurements ensures the experimenter that each step of the analysis

process is functioning before proceeding to the next. This is an important step in

verifying whether or not each IDS is configured and functioning correctly. The feedback

that a good IDS provides network administrators is not a true fact about whether or not a

compromise occurred. Instead, it relays a detailed description of what events its sensor

observed, which rules generated the alert(s), how many alerts were generated, among a

whole host of additional information that helps an administrator form a contingency plan

going forward.

 40

4.1.1: Baseline Binary Detection Results

The most basic baseline is whether or not Bro or Snort detect any unusual traffic

for each of the attacks with no superfluous network traffic or network degradation. This

is a binary assessment that does not relay the IDSs’ qualitative alert messages.

Table 4.1: Binary detection matrix for baseline measurement of all attacks by Bro and

Snort, listed by attack category

For the binary detection baseline measurement, I use 1 PCAP of each attack and

determine if at least a single alert is generated on any communication involving either

IPv6 address of ATTACKER or TARGET. Theoretically, binary detection baseline

measurement only requires a single PCAP of each attack since these captures are

relatively deterministic with no uncertainty from network degradation or network traffic.

Snort detects all attacks, while Bro detects only flood_advertise6 and exploit6.

Binary detection matrix for baseline measurement

Attack Category Tool Bro Detected? Snort Detected?

Reconnaissance alive6 no yes

Flooding denial6 no yes

 flood_advertise6 yes yes

 flood_solicitate6 no yes

Malware Delivery covert_send6 no yes

CVE exploit6 yes yes

 41

4.1.2: Baseline Qualitative Detection Results

Binary detection is a good baseline with which to start, but it does not tell the

whole picture. The alert messages that Bro and Snort generate are crucial in determining

the severity of an event and in describing the overall attack picture. To further describe

the attacks to the network administrator, the IDSs provide alert messages. I cover alert

messages generated by both IDSs corresponding to each attack in the next subsections.

Bro provides two flavors of feedback in weird.log and notices.log. weird.log records

network events deemed unexpected or anomalous but not necessarily malicious.

notices.log records network events deemed more malicious in nature. In this work, when

Bro messages are provided, I differentiate between the two by parenthetically labeling

each message.

4.1.2.1: alive6

Described in §3.4.1, alive6 does lead to Snort alerts but not to Bro weird records

or notices. Snort alerts on generic ICMPv6 Echo Request/Replies because inter-domain

ICMP usage is commonly blocked. Snort also more specifically generates alert code

1:24303:6 which correctly reports a multicast neighbor add attempt.

 42

alive6 alert messages for baseline measurement by Snort

Snort Message Number/Total

[1:24303:6] PROTOCOL-ICMP IPv6 multicast neighbor add attempt 2/8

[1:28292:1] PROTOCOL-ICMP IPv6 0xfacebabe ICMP ping attempt 2/8

[1:18474:3] PROTOCOL-ICMP ICMPv6 Echo Request 2/8

[1:18473:3] PROTOCOL-ICMP ICMPv6 Echo Reply 1/8

[1:448:10] PROTOCOL-ICMP Source Quench undefined code 1/8

Table 4.2: Qualitative detection matrix showing alert messages for baseline measurement

of alive6 by Snort

4.1.2.2: denial6

Described in §3.4.2, denial6 does lead to Snort alerts and to 1 Bro weird record.

Because the Bro record does not identify any anomalous behavior of denial6 and only

produces 1 record, I include it in Table 4.3 below but disregard it as an outlier for the rest

of this work. Snort again alerts on generic ICMPv6 Echo Requests, but does not pick up

on the large hop-by-hop headers in these packets. However, a security administrator

could deduce that Snort has witnessed a DoS attack from this data alone due to the large

number of the same alerts in a short period of time.

denial6 alert messages for baseline measurement by Bro

Bro Message Number/Total

truncated_inner_IP (weird) 1/1

Table 4.3: Qualitative detection matrix showing alert messages for baseline measurement

of denial6 by Bro

 43

denial6 alert messages for baseline measurement by Snort

Snort Message Number/Total

[1:28292:1] PROTOCOL-ICMP IPv6 0xfacebabe ICMP ping attempt 76973/153946

[1:18474:3] PROTOCOL-ICMP ICMPv6 Echo Request 76973/153946

Table 4.4: Qualitative detection matrix showing alert messages for baseline measurement

of denial6 by Snort

4.1.2.3: flood_advertise6

Also described in §3.4.2, flood_advertise6 leads to Snort alerts and Bro weird

records. Snort correctly identifies a large number of IPv6 NA flood attempts.

flood_advertise6 alert messages for baseline measurement by Bro

Bro Message Number/Total

zero_length_ICMPv6_ND_option (weird) 247/247

Table 4.5: Qualitative detection matrix showing alert messages for baseline measurement

of flood_advertise6 by Bro

flood_advertise6 alert messages for baseline measurement by Snort

Snort Message Number/Total

[1:24294:2] PROTOCOL-ICMP IPv6 neighbor advertisement flood

attempt

678162/678162

Table 4.6: Qualitative detection matrix showing alert messages for baseline measurement

of flood_advertise6 by Snort

 44

4.1.2.4: flood_solicitate6

Also described in §3.4.2, flood_solicitate6 leads to Snort alerts, but no Bro weird

records or notices. Snort correctly identifies a large number of IPv6 multicast neighbor

add attempts.

flood_solicitate6 alert messages for baseline measurement by Snort

Snort Message Number/Total

[1:24303:6] PROTOCOL-ICMP IPv6 multicast neighbor add attempt 6143/6143

Table 4.7: Qualitative detection matrix showing alert messages for baseline measurement

of flood_solicitate6 by Snort

4.1.2.5: covert_send6

Described in §3.4.3, covert_send6 leads to Snort alerts, but no Bro weird records

or notices. Snort correctly identifies 128 pairs of ICMPv6 Echo Request/Replies. Snort is

likely alerting on the 128 transmitted packets covertly containing the malicious binary,

and the 128 symmetric packets sent by TARGET in reply.

 45

covert_send6 alert messages for baseline measurement by Snort

Snort Message Number/Total

[1:18473:3] PROTOCOL-ICMP ICMPv6 Echo Reply 128/258

[1:18474:3] PROTOCOL-ICMP ICMPv6 Echo Request 128/258

[1:24303:6] PROTOCOL-ICMP IPv6 multicast neighbor add attempt 1/258

[1:27611:1] PROTOCOL-ICMP Truncated ICMPv6 denial of service

attempt

1/258

Table 4.8: Qualitative detection matrix showing alert messages for baseline measurement

of covert_send6 by Snort

4.1.2.6: exploit6

Described in §3.4.4, exploit6 leads to Snort alerts and Bro weird records. Snort

correctly identifies each test within the exploit6 tool. Bro correctly identifies the 2 CVE

techniques in exploit6. It makes sense that Bro does not identify the ICMPv6 Echo

Requests because these are fairly normal behaviors and are ignored in the testing of the

other tools in this experiment.

 46

exploit6 alert messages for baseline measurement by Bro

Bro Message Number/Total

excessively_large_fragment (weird) 1/2

zero_length_ICMPv6_ND_option (weird) 1/2

Table 4.9: Qualitative detection matrix showing alert messages for baseline measurement

of exploit6 by Bro

exploit6 alert messages for baseline measurement by Snort

Snort Message Number/Total

[1:18474:3] PROTOCOL-ICMP ICMPv6 Echo Request 4/15

[1:28292:1] PROTOCOL-ICMP IPv6 0xfacebabe ICMP ping attempt 3/15

[1:18473:3] PROTOCOL-ICMP ICMPv6 Echo Reply 3/15

[1:24296:6] PROTOCOL-ICMP IPv6 router advertisement invalid

prefix option attempt

1/15

[1:461:12] PROTOCOL-ICMP unassigned type 2 undefined code 1/15

[1:460:12] PROTOCOL-ICMP unassigned type 2 1/15

[1:24297:2] PROTOCOL-ICMP IPv6 oversized ICMP ping attempt 1/15

[1:24295:2] PROTOCOL-ICMP suspicious IPv6 router advertisement

attempt

1/15

Table 4.10: Qualitative detection matrix showing alert messages for baseline

measurement of exploit6 by Snort

4.1.3: Baseline Resource Usage Results

 47

Since a good comparison of the two NIDS approaches is also concerned with the

NIDS’ abilities to function under complexity and memory constraints, I take baseline

measurements for the resources used in the baseline measurements as well (see Table

4.4). Throughout the analysis, I varied the technical specifications of IDS-VM to

accommodate for the resource needs of each operation. The RAM for the VM varied

from 4 GB to 10 GB and the number processor cores were between 1 and 4. These can be

varied to accommodate each operation without affecting the results because I collect the

resource usage of each trial. I varied the number of processor cores for Bro operations

only because Bro is single-threaded, and this would not affect Bro’s run-time.

Baseline measurement of run-time and memory allocation

Tool
Bro Time

(s)

Bro Memory

(MB)

Snort

Time (s)

Snort Memory

(MB)

alive6 0.0036 2.0 1.138 156.60

denial6 0.4486 2.0 4.538 156.61

flood_advertise6 18.5839 4897.0 18.6875 156.60

flood_solicitate6 17.7756 4730.0 17.16 156.87

covert_send6 2.2985 2.0 3.14338 156.60

exploit6 0.0193 2.0 1.445 156.60

Table 4.11: Baseline measurements for run-time and memory usage

4.1.4: Baseline Malware Signatures

Finally, I verify that Bro and Snort should be reasonably expected to identify the

delivery of a specific piece of malware. For this experiment, I chose an older, well-

known worm called Conficker. Conficker quickly spread across an estimated 3 million

 48

Windows XP and Windows 2003 hosts worldwide in 2008-2009 by using new evasion

techniques and blocking the user from accessing security countermeasures [Shearer2013].

Notably, it used the autorun.exe feature of external drives to run its executable to

install as legitimate sounding Windows registry entries and delete security-related ones.

Over the course of about a year, five known versions surfaced, of which I experiment

using the first, CONFICKER.A [Parkour2017]. The origin of the malware is believed to

be Ukraine because some versions beaconed to a Ukrainian server for updates and the

malware avoided infecting Ukrainian IP addresses. The malware has been given different

names by different anti-malware companies, but its hash is consistently verifiable. I

submitted the hash of the Conficker executable to Internet malware lookup service

VirusTotal which checked it against 61 malware databases [VirusTotal]. 55 of the 61

databases verified the file’s hash as malicious. Since I am testing the effectiveness of an

IDS to detect specific malware delivery methods and not how correctly an IDS assesses

malware, an old, verifiably malicious file is ideal for testing.

4.2: SCRIPTING AND DATA FLOW

The methodology for generating and evaluating the data relies heavily on Python

scripting for automation. Assembling statistically significant results and a realistic view

of a network is crucial to the analysis. During the experiment, I generate over 7000 35-

second PCAPs for evaluation representing different attacks and network conditions.

Because Bro and Snort are built for real-time human analysis, the alerts provided

by Bro and Snort are qualitative in nature and qualitative judgments determine how

effective such an alert would be to a human administrator. I design my scripting process

to preserve this information instead of reducing the results down to true positive and false

positive rates.

 49

4.2.1: PCAP Generation

The first automated task is that of generating the PCAP data for analysis

[GinData2017]. Initially, I intended to use the proprietary VMWare utility vmrun.exe to

manage multiple VMs simultaneously, but its functionality proved inconsistent when

executing various commands. Ultimately, a single Python script, run.py, running on

ATTACKER iterates through the list of 6 IPv6 attacks and 8 network settings

[GinCode2017]. For each combination, it modifies the NIC setting using NetEm and then

performs 100 trials. For each trial, the script initiates a tcpdump capture as a Python

subprocess, sleeps for 10-15 seconds before executing an attack (also as a Python

subprocess), waits for the attack to terminate independently, and then waits for the

tcpdump capture to reach 35 seconds in length whereupon it terminates independently.

For each trial featuring a DoS attack, the script deviates in only two ways: (1) it sleeps for

5-10 seconds before executing a DoS attack and (2) it terminates a DoS attack after 10

seconds of running. During the 35 seconds while tcpdump is running, any malicious or

generated benign traffic is captured, as well as any normal operation of the 2 VMs on the

network, such as Domain Name Service queries.

4.2.2: NIDS Analysis

All PCAPs are processed and visualized offline in IDS-VM through additional

Python scripts: snort_eval.py, bro_eval.py, snort_plot.py, and bro_plot.py

[GinCode2017]. Each of the first two ‘evaluation’ scripts iterates through all expected

PCAPs, creates a bash file with execution commands for each NIDS in PCAP reading

mode, executes the bash file in the terminal, reads the output in the respective form of

each NIDS, and then aggregates the quantitative and qualitative results in a human-

readable results file for further analysis. The script for Bro evaluation reads the weird.log

 50

and/or notices.log of each trial and appends the relevant details of each trial to the Bro

results file. The script for Snort evaluation outputs Snort’s results to the console and to a

file (using the tee command), reads the file, and appends the relevant details of each

trial to the Snort results file. The ‘plot’ scripts parse the ASCII results files for

visualization and reporting. It aggregates all data points into a series of matrices, exports

the statistics in a .csv file format designed to create various charts in Microsoft Excel

[GinData2017]. Box and whisker charts and scatter plots are generated and used to

compare results across network degradation settings and across Bro and Snort

[GinData2017].

4.3: OSTINATO

For all benign and malicious PCAPs generated (except some of the baseline

measurements), the Ostinato agent-controller architecture generated 6600 packets/sec of

traffic in the IPv6 protocols expected to be most popular: ICMPv6, IGMPv6, TCP, and

UDP. The packets were assigned a variety of attributes to roughly simulate real network

traffic (see Table 4.4). These characteristics were partially influenced by [Labovitz2008]

which analyzed the protocol breakdown of traffic anonymously gathered at the

aforementioned 67 ISPs. [Labovitz2008] found that of approximately 1 Tbps of average

inter-domain traffic, TCP comprised an approximate average of 900 Gbps, UDP

comprised an approximate average of 60 Gbps, and all other protocols comprised an

average of under 10 Gbps. There is no fine-grained restriction on the similarity of traffic

emulated in the lab network to Internet traffic since Internet traffic varies so much across

networks, not to mention that [Labovitz2008] only aggregates statistics on inter-domain

traffic (see Table 4.5).

 51

Protocol Frame

Length

Payload

Data

Packets/

Bursts?

Transmission

Rate

Transmission

in Bits/Sec

TCP 78-500

bits

Random Bursts 20 bursts/sec and

250

packets/burst

12.34 Mbps

UDP 78-750

bits

Random Bursts 4 burst/sec and

250

packets/burst

3.47 Mbps

ICMPv6 78-200

bits

Random Packets 100 packets/sec 127.2 kbps

IGMPv6 78-500

bits

Random Packets 500 packets/sec 1.24 Mbps

Total 18.07 Mbps

Table 4.12: Attributes of benign traffic streams generated by Ostinato by protocol

Protocol This experiment The wild

TCP 68.29% ~90%

UDP 19.20% ~6%

ICMP 0.70% <0.5%

IGMP 6.86% <0.1%

Other 0.00% ~4%

Table 4.13: Side-by-side comparison of benign traffic generated by Ostinato and Internet

traffic statistics gathered by [Labovitz2008] by protocol by number of packets

 52

4.4: NETWORK INTERFACE MANIPULATION

NetEm manipulates ATTACKER’s network interface from which all malicious

and benign traffic is transmitted. For each attack, NetEm implements 8 different network

degradation settings by independently adjusting 3 unique parameters: packet loss rate,

packet delay, and packet corruption rate. Designating a packet loss rate causes the NIC to

randomly drop an amount of packets equal to or near the desired rate. In this experiment,

I also add a 25% correlation sub-parameter from packet to packet, which forces each

packet’s probability of loss to be 25% dependent on whether or not the previous packet

was dropped. Designating a packet delay induces a mean delay with normal distribution

on all outbound packets. In this experiment, I specified a range of variation sub-

parameter equal to 20% of the delay and a 25% correlation sub-parameter from packet to

packet. For example, a NIC configured to induce 128 ms delay transmits packets with

128 ms ± 25 ms and with a 25% dependency on the delay of the previous packet. Finally,

designating a packet corruption rate instructs the NIC to flip a bit at a random offset in an

amount of packets equal to the corruption rate.

To achieve the 8 network degradation settings, I adjust a single parameter per

setting to 2-3 different values. I choose the values to approximately sweep across

common values for a mediocre trans-Atlantic Internet connection. There is no fine-

grained restriction for these parameters since these factors vary widely depending on

Internet connection, specific routing decisions, and numerous other variables. The

parameter values I used are listed below:

• Packet loss rate: 0.1%, 1%, 10%, (‘loss_1’, ‘loss_2’, ‘loss_3’)

• Packet delay: 128 ms, 256 ms, 512 ms (‘delay_1’, ‘delay_2’, ‘delay_3’), and

• Packet corruption rate: 10%, 25% (‘corrupt_1’, ‘corrupt_2’).

 53

Chapter 5: Results and Analysis

5.1 ANALYSIS OF BASELINE MEASUREMENTS

A brief analysis of the baseline results provided in §4.1 justifies the presentation

of the more in-depth results in this chapter. The most general detection results are the

binary detection performance of both IDS philosophies, given in Table 4.1. Because Bro

correctly alerts on flood_advertise6 and exploit6, I do not present true positive results of

Bro detection for any other attack. However, I do include false positive results and

resource usage of Bro for these attacks because they still demonstrate the effectiveness of

Bro to a network security administrator who would not have access to labeled datasets in

the real world.

The alerts produced by either Snort or Bro are specifically mentioned in Tables

4.2-4.10. The alerts produced by Snort span a range of general messages alerting based

on ICMPv6 codes to specifically identifying neighbor add attempts and network flood

attempts. The alerts produced by Bro tend to be more specific about the nature of the

behavior observed, which makes sense, since the goal of Bro’s alerting and logging

system is to provide a neutral, low-level view to the user.

The resources observed in the baseline measurement (see Table 4.11) show great

disparity between Snort and Bro and even between attacks. Bro shows an exceptionally

fast

5.2: RESULTS

In §5.2.1-§5.2.6, I present visualized results from all experiments in Figures 5.1-

5.31 [GinData2017]. These figures contain true positive, false positive, run time, and

memory usage distributions of IDS detection of all 6 attacks across all 9 network

 54

degradation scenarios with side-by-side Snort and Bro comparisons where available. The

9 scenarios are labeled as mentioned in §4.4 with the addition of ‘none’, which denotes

no network degradation or an ideal network.

The results are best presented as distributions of numbers of observed alerts and

resources used because it is misleading in both a laboratory setting and a real-world

setting for a single trial or PCAP to return a binary result of detection or lack of detection.

These results are presented using box and whisker charts in which the length of each box

shows the range between the first and third quartile of the data, an ‘X’ marks the median,

whiskers show the range of outliers, and points mark the far outliers.

Also among Figures 5.1-5.31 are true positive vs. false positive scatter plots

similar to a traditional receiver operating characteristic (ROC) plot for a binary classifier.

A true ROC curve is not ideal to present the data in this experiment because of the nature

of data collected and the subject field. A ROC curve in this experiment would potentially

treat an IDS like a binary classifier for each packet or classification decision. However,

the data collected are PCAPs, each containing a diverse number of packets on the order

of 104 to 105. True positive rates could be on the order of 10-4 or 10-5 per packet. Treating

an IDS like a binary classifier for an entire PCAP, especially without a standard length of

PCAP, risks dichotomizing the experiment variables and drops useful quantitative and

qualitative information about each trial’s alerts.

Since Bro alerts on high level network behaviors and Snort alerts on each packet

that triggers a rule, the number of alerts they produce based on an arbitrary amount of

data varies widely. Snort can alert 10,000 times on 10,000 packets in a PCAP, whereas

Bro might identify all 10,000 packets as components of one anomalous behavior and alert

once. With this disparity in mind, I present the number of alerts on an absolute scale in

 55

my plots so as to display the difference in philosophies. Each point on the plots is placed

on the statistical mean of the number of true and false positives in 100 trials. In these

plots, points closer to an infinite y-value and 0 x-value represent a better relative

performance as it is ideal for an IDS to produce a high true positive rate and a low false

positive rate. A way to mathematically determine the IDS performance for each point is

to compare the geometric distance of each point to an arbitrarily high point on the y-axis,

where the points reflect greater performance for smaller distance.

For each attack in §5.2.1-§5.2.6, I present the visualized results for that attack

followed by any relevant analysis. More general analysis is presented in §5.3-§5.5.

5.2.1: alive6

The detection rates of alive6 across the network scenarios are fairly consistent

with very little variation. One notable deviation is the spike in Snort’s true positive and

false positive detection for the loss_1 scenario (see Figures 5.1-5.2). There also seems to

be a statistical downward trend of Snort’s true positive detection as the packet loss rate is

increased from loss_1, to loss_2, and then loss_3 (see Figure 5.1). This fact remains

unexplained as packet loss seems like it would decrease Snort’s detection which

evaluates largely on a per packet basis.

Bro’s false positive detection increases markedly in the corrupt_1 and corrupt_2

scenarios (see Figure 5.2). This can be explained by Bro’s effective header checking rules

that generate weird records for improper headers. As random bits are corrupted in

packets, a small percentage of headers are corrupted and become invalid.

 56

Figure 5.1: True positive distributions of Snort detection of alive6 across 9 different

network degradation scenarios

 57

Figure 5.2: False positive distributions of both Snort and Bro detection of alive6 across 9

different network degradation scenarios

 58

Figure 5.3: ROC-like scatter plot of Snort detection of alive6 with line segments

connecting points of similar scenarios

From Figure 5.3, the more effective scenarios are found in the cluster consisting

of delay_2, delay_3, and corrupt_2. The high false positive rates of the packet loss

scenarios make their statistical results less favorable for security administrators.

 59

Figure 5.4: Run time distributions of both Snort and Bro detection of alive6 across 9

different network degradation scenarios

 60

Figure 5.5: Memory usage distributions of both Snort and Bro detection of alive6 across

9 different network degradation scenarios

Snort and Bro roughly correlate in run times (see Figure 5.4) but not memory

usage (see Figure 5.5). They both require more time to process packet corruption

scenarios especially compared to processing packet delay scenarios. Run time decreases

 61

as packet delay increases and increases as packet corruption increases. Better run times

for both IDSs and memory usage for Bro for the packet delay scenarios can be explained

by a built-in threshold for tracking IPv6 flows. Once the observation window has closed

for a conversation, the IDSs ignore future packets from the same conversation.

Snort’s memory usage remains consistently around 156 MB throughout the rest of

this experiment. This is significantly more than Bro’s memory usage, at least for alive6.

This indicates that Snort’s processes are fairly constant no matter the specific task it is

performing, whereas Bro allocates only the memory necessary to create the various

structures it uses to track traffic.

It should be noted that for alive6, Bro’s run time results are roughly 1/3 to 1/5 of

Snort’s run time, but they both can be considered to achieve real-time processing for a 35

second long PCAP.

5.2.2: denial6

Figure 5.6: True positive distribution of Snort detection of denial6 across 9 different

network degradation scenarios

 62

Figure 5.7: False positive distributions of both Snort and Bro detection of denial6 across

9 different network scenarios

Snort’s true positive detection is fairly consistent except for the packet delay

scenarios where there is a steep drop in detection (see Figure 5.6). The same downward

trend manifests itself in the false positive detection of both Snort and Bro. There is also a

 63

slight downward trend in false positive detection for both IDSs in the packet loss

scenarios, which can be explained by slightly less packets being transmitted on the

network in general.

Notably, Bro’s false positive rate is near perfect for the scenario with no network

degradation (see Figure 5.7). The fact that Bro then identifies 100s of false positives in

the other scenarios seems to indicate errors directly caused by network degradation,

whether corrupted headers, delayed conversation replies, or missing expected packets.

The true positive vs. false positive scatter plot for Snort seems to indicate that

ideal detection conditions exist near the delay_1 scenario (see Figure 5.8).

Figure 5.8: ROC-like scatter plot of Snort detection of denial6 with line segments

connecting points of similar scenarios

 64

Figure 5.9: Run time distributions of both Snort and Bro detection of denial6 across 9

different network degradation scenarios

 65

Figure 5.10: Memory usage distributions of both Snort and Bro detection of denial6

across 9 different network degradation scenarios

Similar to alive6 results, denial6 results show resource usage by both IDSs trend

downward for packet delay scenarios and trend high for packet corruption scenarios (see

Figure 5.9-5.10). Additionally, Snort’s memory usage remains around 156 MB, and Bro

 66

averages roughly 50 MB lower (see Figure 5.10). Interestingly, Bro’s memory usage is

much lower for the ideal network than for the degraded networks. Bro most likely

requires more memory to track delayed, unexpected IPv6 conversations.

5.2.3: flood_advertise6

Figure 5.11: True positive distributions of both Snort and Bro detection of

flood_advertise6 across 9 different network degradation scenarios

 67

Figure 5.12: False positive distributions of Snort detection of flood_advertise6 across 9

different network degradation scenarios

The true positive detection results of both Snort and Bro trend similar to each

other without considering the magnitude difference (see Figure 5.11) and similar among

the network scenarios as attacks discussed above. One exception is Bro’s low true and

 68

false positive detection for the ideal network, which suggests that a majority of Bro’s

alerts indicate faulty network conditions rather than malicious activity (see Figure 5.11-

12). Bro’s false positive performance is consistent with Snort’s, given that a disparity in

number of observations does not necessarily indicate a disparity in performance.

Figure 5.13: ROC-like scatter plots of both Snort and Bro detection of flood_advertise6

with line segments connecting points of similar scenarios

 69

Because Snort and Bro performed closely to each other for flood_advertise6, their

ROC-like scatter plots show scenario clusters in relatively the same locations. This

similarity reflects consistent interpretations of the ground truth.

Figure 5.14: Run time distributions of both Snort and Bro detection of flood_advertise6

across 8 different network degradation scenarios

 70

Figure 5.15: Memory usage distributions of both Snort and Bro detection of

flood_advertise6 across 9 different network degradation scenarios

Resource usage across the scenarios and for both IDSs is similar to previous

attacks. The delay scenarios require less scenarios as observation windows expire more

frequently, corruption scenarios sometimes require more resources (see Figure 5.14-

 71

5.15). For flood_advertise6, for run time results and Bro’s memory usage results, the

ideal network requires less resources to monitor than the packet loss and packet

corruption scenarios. It makes sense that, in general, as network conditions deteriorate,

IDSs must work harder to reassemble traffic and make decisions. Finally, as expected,

Snort allocates approximately 156 MB for all trials with even very few outliers, however,

Bro allocated 5-6 GB for most flood_advertise6 scenarios! This is because Bro builds

data structures that scale directly with the number of unique flows, such as conn.log.

5.2.4: flood_solicitate6

The true positive detection results by Snort of flood_solicitate6 are among the

more unique distributions (Figure 5.16). Across all scenarios, Snort detects 6144

malicious activities or patterns. This unique event is hard to explain as even packet loss

should cause a slight drop in detection from the ideal network. However, Figure 5.17

shows similar false positive results to the rest of the attacks tested.

Figure 5.16: True positive distributions of Snort detection of flood_solicitate6 across 9

different network degradation scenarios

 72

Figure 5.17: False positive distributions of both Snort and Bro detection of

flood_solicitate6 across 9 different network degradation scenarios

 73

Figure 5.18: ROC-like scatter plot of Snort detection of flood_solicitate6 with line

segments connecting points of similar scenarios

The ROC-like scatter plot of Snort’s detection of flood_solicitate6 clearly shows

the best detection conditions exist near the cluster of packet delay scenarios (see Figure

5.18). This cluster is followed by the packet loss cluster, and finally the packet corruption

scenario.

One caveat when interpreting the false positive distributions of detection of

flood_solicitate6 is how I define a false positive in my experiment code. The code

identifies any alerts which do not contain the IPv6 address of either ATTACKER or

TARGET as a false positive. However, as described in §3.4.2, flood_solicitate6 floods a

victim’s network with packets to and from random IPv6 addresses. The observation of

and alerting on these packets could be considered a true positive. As stated in §3.4.2,

flood_solicitate6 was able to generate approximately 660,000 packets for the 10 second

duration of each DoS attack before network degradation is accounted for.

 74

Figure 5.19: Run time distributions of both Snort and Bro detection of flood_solicitate6

across 9 different network degradation scenarios

Snort and Bro both processed the packet delay scenarios much more quickly than

the rest of them, and Snort required approximately 30 seconds to process the packet loss

and packet corruption scenarios compared to only 15 for the ideal network (see Figure

 75

5.19). Overall, Bro processed flood_solicitate6 PCAPs in roughly half the time. At ~30

seconds of run time for most scenarios but some outliers exceeding 35 seconds, Snort is

close to being able to process packets in real-time. Bro, on the other hand, is well below

the 35 second threshold.

Figure 5.20: Memory usage distributions of both Snort and Bro detection of

flood_solicitate6 across 9 different network degradation scenarios

 76

The cost of quickly processing so many connections due to the DoS nature of

flood_solicitate6 was magnitudes of difference in memory allocation. Bro allocated ~4.5

GB compared to Snort’s consistent 156 MB (see Figure 5.20). Again, this can be

explained by Bro’s data structures that it uses to build a large, informed perspective of the

traffic which scales directly with the number of unique flows it observes in a short time.

Because flood_solicitate6 creates ICMPv6 packets to and from random addresses, Bro

requires large amounts of memory to successfully track them.

Once again, Bro’s lower memory allocation for the packet delay scenarios can be

explained by a limited observation window that expires when Bro does not observe

enough activity in a particular flow. The effectiveness of DoS attacks rely on the rapid

fire approach of flooding work-intensive packets and significant packet delay can lessen

the damaging effects.

5.2.5: covert_send6

Figure 5.21: True positive distributions of Snort detection of covert_send6 across 9

different network degradation scenarios

 77

Figure 5.22: False positive distributions of both Snort and Bro detection of covert_send6

across 9 different network degradation scenarios

Snort’s true positive detection of covert_send6 demonstrates its excellent

accuracy as a detection engine. To covertly send the Conficker binary in ICMPv6

headers, covert_send6 transmitted 64 packets. As an ICMPv6 Echo Request, each of the

 78

64 packets should receive a symmetrical reply by TARGET. The interquartile range

(IQR) of Snort’s true positive detection is narrow and the median centers on 128 packets

(see Figure 5.21). This indicates that Snort correctly identifies almost all covert_send6

packets, except for those in packet delay scenarios, as symmetric replies are delayed.

Figure 5.22 shows Snort and Bro detecting similar relative numbers of alerts

across the scenarios with Bro’s detection between 1/3 and 1/2 of Snort’s number of alerts.

There is no explanation for Bro’s false positive detection of the ideal network being near

non-existent.

The ROC-like scatter plot for Snort’s detection of covert_send6 shows the ideal

detection scenario being either delay_2 or none (ideal network) (see Figure 5.23).

Figure 5.23: ROC-like scatter plot of Snort detection of covert_send6 with line segments

connecting points of similar scenarios

 79

Figure 5.24: Run time distributions of both Snort and Bro detection of covert_send6

across 9 different network degradation scenarios

The IQR of the run time distributions of each scenario for both Snort and Bro are

narrow (see Figure 5.24). Both Snort and Bro are well below the 35 second threshold for

a real-time detection system. Snort and Bro detection of covert_send6 result in rather

 80

favorable resource usage because covert_send6 is not a voluminous attack like the 3 DoS

attacks mentioned prior. Bro requires roughly 1/4 of the time that Snort requires. As

always, Snort allocates its 156 MB of memory, while Bro allocates less (see Figure 5.25).

Figure 5.25: Memory usage distributions of both Snort and Bro detection of covert_send6

across 9 different network degradation scenarios

 81

5.2.6: exploit6

Figure 5.26: True positive distributions of Snort detection of exploit6 across 9 different

network degradation scenarios

Bro’s extensive header checking capabilities detect true positives for the CVE-

based attacks which abuse ICMPv6 headers (see Figure 5.26). Packet delay introduces

 82

the most variance in the true positive distributions for both IDSs. The IQR of the false

positive distributions for both IDSs are minimal. Because exploit6 is not a DoS attack

and the benign traffic does not differ significantly from other scenarios and trials, the

false positive detection does not vary much within each scenario (see Figure 5.27).

Figure 5.27: False positive distributions of both Snort and Bro detection of exploit6

across 9 different network degradation scenarios

 83

Figure 5.28: ROC-like scatter plot of Snort detection of exploit6 with line segments

connecting points of similar scenarios

Because Snort’s header checking rules are not as detailed as Bro’s are, corrupt_2

is one of the better scenarios for Snort’s detection based on it’s ROC-like scatter plot (see

Figure 5.28). The delay_1 scenario also seems a favorable condition for detection of

exploit6.

On the other hand, as shown in Figure 5.27, Bro’s high false positive detection of

the packet corruption scenarios makes them the least effective scenarios for Bro’s

detection of exploit6 (see Figure 5.29). Because the corrupt_1 and corrupt_2 cluster is so

high in false positives, I also include the ROC-like scatter plot while omitting the packet

corruption scenario data. It is clear from the resulting plot that the none and loss_3

scenario are the most favorable to effective Bro detection of exploit6.

 84

Figure 5.29: ROC-like scatter plots of Bro detection of exploit6 across 9 different

network degradation scenarios (top) and across 7 scenarios omitting bit corruption

scenarios

 85

Figure 5.30: Run time distributions of both Snort and Bro detection of exploit6 across 9

different network degradation scenarios

exploit6 is one of the lightest of the attacks transmitting only a handful of packets

with precisely incorrect header values and payloads (see §3.4.4). This can be expected of

a CVE-based attack. The lightness of the attack results in narrow IQRs of resource usage

 86

in processing the traffic with relatively fewer and closer outliers (see Figures 5.30-5.31).

As noted in previous sections, Bro predictably requires more time and allocates more

memory to process the packet corruption scenarios due to more extensive header

validation rules.

Figure 5.31: Memory usage distributions of both Snort and Bro detection of exploit6

across 9 different network degradation scenarios

 87

5.3: ANALYSIS OF FALSE POSITIVE RESULTS

It is important to note the qualitative messages of false positive results detected by

both Bro and Snort. These messages are common to all settings and attacks because they

are primarily caused by the benign traffic generated by Ostinato and its interactions with

malicious traffic. The most common false positive messages are presented in Table 5.1

for Bro detection and Table 5.2 for Snort detection.

Number Qualitative false positive messages produced by Bro detection

1 TCP_seq_underflow_or_misorder

2 window_recision

3 above_hole_data_without_any_acks

4 UDP_datagram_length_mismatch

5 bad_TCP_header_len

6 unknown_protocol

7 SYN_with_data

8 data_before_established

9 active_connection_reuse

10 data_after_reset

11 inner_IP_payload_length_mismatch

12 bad_HTTP_request

13 dns_unmatched_msg

Table 5.1: False positive messages produced by Bro throughout experiment

 88

Number Qualitative false positive messages produced by Snort detection

1 [1:24303:6] PROTOCOL-ICMP IPv6 multicast neighbor add attempt

2 [1:18474:3] PROTOCOL-ICMP ICMPv6 Echo Request

3 [119:14:1] (http_inspect) NON-RFC DEFINED CHAR

4 [3:39065:1] SERVER-OTHER Cisco IOS NX invalid ICMPv6 neighbor

discovery hop limit denial of service attempt

5 [1:27611:1] PROTOCOL-ICMP Truncated ICMPv6 denial of service

attempt

6 [138:5:1] SENSITIVE-DATA Email Addresses

7 [139:1:1] (spp_sdf) SDF Combination Alert

Table 5.2: False positive messages produced by Snort throughout experiment

Most of the alerts in Table 5.1 describe network events which fall into two

categories: improper packet headers (#4, 5, 6, and 11) and non-traditional/prohibited

TCP/UDP conversations (#1, 7, 8, 9, and 10). I suspect that most of the alerts pertaining

to improper packet headers are related to packet corruption events caused by NetEm’s bit

flipping scenario. This is satisfactory because it demonstrates how Layer-2 packet

corruption affects IDS performance. Additionally, I suspect that most of the alerts

pertaining to non-traditional/prohibited TCP/UDP conversations are related to how

Ostinato creates and transmits packets. The TCP/UDP packets all contain variable length

payloads containing random bits without regard to details in the header. Hence, many

TCP/UDP packets end up containing mismatching headers and payloads or packets with

payloads are received when either packets or payloads are not expected. The nature of a

virtualized host-only test network that does not contain its own DHCP or DNS servers

 89

also leads to a small number of DNS errors (#13). The vast majority of these alert

messages are different from the true positive alert messages.

Many of the alert messages found in Table 5.2 are also associated with true

positives identified in this experiment (#1, 2, 3). This occurs because many of Snort’s

alerts trigger on general ICMPv6 types. Since various ICMPv6 types were included in the

generation of benign traffic, this phenomenon is unavoidable. No. 5 in Table 5.2 is an

artifact of the explanation given in §5.1.4 about how flood_solicitate6 could artificially

inflate the false positive statistics returned by either IDS. Other false positive Snort

messages seem to occur for miscellaneous reasons or are related to improper headers. The

explanation for these is similar to that given for Bro and its detection of improper

headers.

5.4: ANALYSIS OF DETECTION RESULTS

Overall, for the selected IPv6 attacks, it is clear that Snort is more effective in

achieving an IDS’s main purpose: true positive detection. It detects all IPv6 attacks tested

while Bro only detects flood_advertise6 and exploit6. Snort casts a wider net by

triggering on more general rules like ICMPv6 message types such as Echo Requests or

Echo Replies. It also triggers very specifically on flood attempts and neighbor add

attempts (see Tables 4.6, 4.10). The network degradation scenarios that most drastically

affect Snort’s true positive detection are those including packet delay, which caused

drastic drops in true positive rates as delay was increased for denial6, flood_advertise6,

and covert_send6. Otherwise, Snort performed relatively evenly across all network

scenarios.

Where Snort employs slightly more general rules that catch more potentially

malicious packets, Bro seems to use more specific rules that catch less potentially

 90

malicious packets with more detail. This results in lower overall false positive detection

by Bro, which is especially clear for non-DoS attacks alive6 and exploit6 (see Figures 5.2

and 5.27). Because 0.7% of all benign Ostinato-generated traffic in all trials were

ICMPv6, much of Snort’s false positive alerts probably come from benign ICMPv6

traffic.

As stated above, true and false positives in this experiment are differentiated by

whether or not the source or destination IPv6 addresses of the observed packet matches

that of ATTACKER or TARGET. In a production IDS system with more specific

network architectures and more unique, known host attributes, a network security

administrator should be able to create stronger rules to differentiate between a true and

false alert. For example, some hosts on the network may be vulnerable to specific attacks,

protocols, or services, and these types of communications could trigger alerts while hosts

immune to such mechanisms can ignore them as false positives. In this way, malicious

packets correctly addressed to hosts on a victim network can be dismissed as incredible

threats if they are malicious but of no cause for concern. Such qualification would be

helpful in improving the general Echo Request/Reply alerts that Snort produced for

benign and malicious ICMPv6 packets alike.

It should be noted that both Snort and Bro required local configuration. They

should not be considered plug and play solutions to the network security problem.

Configuration for either IDS can include: specifying known good/bad IP addresses,

inclusion/exclusion of any rule, severity level of any alert, custom behavior-specific/site-

specific rules, whether or not to verify checksums, specifying reading PCAPs versus live

monitoring, which logs/alerts to evaluate as output, multi-node architectures, among

many other helpful configurable aspects of using the systems. A source of error for true

 91

positive and false positive detection is the specific configuration used. In configuring

both IDSs, I took care to use the most general configurations available while still

enabling rules that are relevant to IPv6, ICMPv4, ICMPv6, and DoS attacks. Where rules

alerting on irrelevant behavior existed, I chose the default configuration.

5.5: ANALYSIS OF RESOURCE USAGE RESULTS

Perhaps just as important to the detection performance of the detection systems

are their management of resources. The two most significant metrics to measure resource

usage are run times and memory allocation. Passive network monitors must meet a run

time threshold to analyze live network traffic without dropping packets and risk

significant reductions in detection performance. Even if an IDS is processing traffic

offline, it must process it faster than traffic is extracted from the live wire for inspection.

Memory allocation is another helpful metric that helps to assess the hardware needs of

the IDS to maintain effective operability and sufficient run times. Moreover, observing

memory allocation also helps establish expectations for the performance of the IDS when

it is processing different kinds of traffic.

Finally, it is important to consider memory allocation and run time together, as

they are interdependent. One method is to hold memory allocation constant while

observing run time. Perhaps what offers a better view into the IDS’s efficiency is

observing how both variables trend with each other as different scenarios and traffic are

observed.

On both metrics, Bro proved more computationally efficient in most cases.

Because the IDS philosophies are so disparate, resource usage comes down to more than

just the efficiency of the code. Bro creates different kinds and numbers of data structures

to track complex overall behaviors in traffic, while Snort runs all packets through all

 92

preprocessors (see §2.2.1-2.2.2). It appeared that Bro’s data structures caused memory

allocation to positively correlate with the number of unique IPv6 flows while decreasing

sharply for increases in packet delay. This trend is evident in Bro’s high memory

allocation (~4-5 GB) while processing PCAPs containing flood_advertise6 and

flood_solicitate6. Other than those attacks, Bro’s memory usage was less than Snort’s

rather constant 156 MB with most scenarios only requiring 30-140 MB allocations.

Across all attacks, Bro’s memory usage dips sharply for processing scenarios containing

packet delay. As previously mentioned, I expect that this is caused by Bro rebalancing its

data structures and optimizing memory allocation once observation windows of unique

IPv6 flows expire. Finally, the variance in Bro’s memory allocation for a given attack and

scenario is higher for the DoS attacks compared to the other attacks. This occurs because

the DoS attacks create a large, varying number of unique conversations every trial, while

unique conversations are relatively constant in PCAPs for other attacks.

Bro’s data structures help its engine extrapolate salient characteristics of observed

flows. It is not unexpected that Bro’s engine processes significantly faster than Snort’s.

Between the scenarios, the two IDS engines require similar relative run times: across all

attacks, both IDSs showed dramatic drops in run time for scenarios containing packet

delay. Perhaps more noticeably, Snort’s run time consistently averages 4-6 times that of

Bro’s for non-DoS attacks. Bro’s run times for non-DoS attacks sits around 1-1.5 seconds

while Snort’s varies from 4-9 sec. For these attacks, both Snort and Bro satisfy real-time

requirements for operation on live networks, but Bro shows better invulnerability to time-

intensive calculations. For DoS attacks, specifically flood_advertse6 and

flood_solicitate6, Bro still beats Snort but by less time. Bro took 15-20 seconds to

process the 35-second PCAPs, while Snort needed 25-35 seconds. The fact that Snort

 93

averages near the 35-second threshold with a statistically significant minority of trials

exceeding the threshold distinguishes these run time results in particular from the rest.

Snort no longer can be considered real-time for those trials.

To my knowledge, PCAP reading modes for both IDSs are not significantly

different from monitoring traffic live. However, site-specific architecture of the

processing node(s) for either IDS could make each IDS significantly more adaptable to a

site’s needs. For example, Bro’s multi-node architecture could leverage separate servers

for high volume traffic. Alternatively, whether an IDS is configured to process traffic

inline versus offline would impact network traffic. Both Snort and Bro, by default, fail

open, meaning when they malfunction, potentially harmful traffic still reaches its target.

This occurs by design because they are inherently detection systems, not prevention

systems. However, administrators are able to configure them differently, and a different

configuration could affect both run time and memory allocation.

 94

Chapter 6: Conclusion

6.1: ANSWERS TO RESEARCH QUESTIONS

The original research questions are revisited below:

(1) For current state-of-the-art IPv6 attacks, which IDS philosophy is more

effective in detecting attempts to compromise a network: signature-based

detection or behavior-based detection?

(2) As network conditions deteriorate and routing becomes less reliable or as

traffic load overwhelms each IDS, which IDS approach maintains better

performance?

(3) Does the more resource-intensive reassembly operations of a behavior-

based detection system ultimately render it inferior when it is

overwhelmed?

To answer (1), I reference the general trends for true positive detection observed.

In this category, Snort and its signature-based detection, are clear winners. As a Layer-3

protocol with its protocol-specific behaviors clearly defined in various RFCs, IPv6

exhibits predictable enough behavior that Snort’s per packet inspection is more than

sufficient to alert a security analyst of malicious traffic for the attacks tested. It is

arguable whether Snort or Bro are superior in mitigation of false positive detection. To its

advantage, Bro’s false positive rates fall when packet delay is introduced, but it also

decreases in some cases when packet corruption is introduced. Snort is more consistent

across the network scenarios. Overall, I believe Snort’s signature-based detection

surpasses Bro’s behavior-based detection in detection effectiveness.

Answering (2), Snort is largely immune to varying the network conditions by

introducing packet loss, packet delay, and packet corruption. Snort demonstrates greater

 95

resistance to changing network conditions while Bro’s true positive and false positive

detection increased for situations in which packet corruption was introduced. While the

introduction of packet delay did significantly affect both engines for both detection

metrics, they seemed to be affected in similar ways—generally lower detection. On the

other hand, Bro’s detection with degraded network conditions differed more from the

ideal network more, being especially affected by packet corruption. This indicates that if

networks suffer infrastructural errors, Bro is more likely to alert in error. For this reason,

Snort is more resilient to adverse network conditions. This may be because in

compensation for fundamentally not being a signature-based detection engine, Bro’s rules

alert less proficiently on malicious activity evident in signatures. In other words, since

adverse network conditions primarily affect headers and signatures and Bro is inferior in

signature-based detection, a fundamentally signature-based method performs better.

In answer to (3), the results and distributions for run time and memory allocation

are more easily compared between the two IDSs on an absolute scale. Because of this,

most of the time, Bro is the winner in its ability to quickly initialize its engine, process

the PCAP, and produce an actionable result. Only in outlier trials, does Bro’s run time

exceed Snort’s for the same PCAP. Additionally, besides for the DoS attacks, Bro’s

memory allocation is lower than Snort’s consistent 156 MB allocation. When processing

DoS attacks however, Bro uses 4-5 GB while Snort maintains its 156 MB load. Bro

shows a remarkably wide variance in its memory allocation and extreme efficiency for

normal benign traffic. Even though memory allocation is so traffic-specific, comparing

Snort and Bro side-by-side with the scenarios tested in this experiment give reasonable

confidence that Bro’s memory allocation is not only more efficient than Snort’s, but it

even allows Bro to report more important and specific details about the traffic it sees.

 96

This is proven by the number of logs that Bro creates such as conn.log and dns.log which

allow a white hat researcher a better picture into the state of a network at any given time.

In some tests, Snort automatically fails the real-time analysis test by exceeding 35

seconds of run time. In short, the answer to (3) is multi-faceted. Bro fails miserably in

memory allocation for DoS attacks, but even when processing DoS attacks, its run time is

shorter than Snort’s. For non-DoS attacks, Bro is a clear winner.

I conclude that with the proper hardware to handle or ignore DoS attacks, Bro’s

computational efficiency is superior to Snort’s. I believe this is consistent with the

differences in their philosophies as well. A signature-based IDS checks traffic on a per

packet basis. The single, most important traffic characteristic for such an IDS is the

volume of traffic. On the other hand, a behavior-based IDS tracks flows and high level

behaviors that manifest themselves progressively throughout time. This requires

allocating more memory for larger windows of traffic in order to revisit details on traffic

already seen. For this reason, traffic that contains many long or unfinished conversations

will cause spikes in memory allocation.

To summarize these conclusions, Table 6.1 shows the winner in each high level

category.

Metric Snort Bro

True positive Winner

False positive Winner

Run Time Winner

Memory Usage Winner; excepting DoS

Table 6.1: High level Snort and Bro comparison

 97

As mentioned in §2.3, a hybrid approach to both IDS philosophies offers the best

realistic solution between the two. Even though Snort is superior in overall true positive

detection, Bro can provide more detail on malicious true positives. Bro’s helpful logs can

offer even a Snort user, better visibility into the network at an arbitrary point in time.

Bro’s unique language allows custom rule/analytic writers to create site-specific alerts

that can monitor more complex behaviors and be efficiently executed in terms of run time

and memory allocation. Bro’s computational efficiency seems to lack only better rules,

which may not be a problem for sufficiently resourced security groups. Meanwhile, Snort

provides a great, community-supported rules database that is easily installed and casts

wide nets for potential malicious activity. Its signature-based approach uses predictable

allocations of memory and detects every single IPv6 attack tested in this experiment. Its

comprehensiveness and frequent rule updates make its detection superior. If one approach

had to be chosen, I would recommend Snort and signature-based detection since not

detecting large majority of true positives puts Bro and behavior-based detection at a

serious disadvantage.

6.2: FUTURE WORK

One important contribution of this work is the methodology and framework for

testing IDSs and CLI-initiated attacks. The Python scripting and other automated

procedure and data generation mechanisms create a sort of plug and play capability for

testing any network attack with Bro or Snort. A future researcher can easily scale to

hundreds of trials, creating PCAPs, evaluating the results, and presenting them in a

spreadsheet. Additionally, great effort was made to assemble an apparatus of many

software projects and tools to test IDS engines in realistic conditions such as load, high

false positives, and adverse network conditions. The limitations to these contributions lie

 98

in the architecture and assumptions made. These methods were not perfect models of real

world network security problems. With significant lab hardware, the test network does

not have to be virtualized and with sufficient time, Snort and Bro are not required to run

in PCAP read mode. It is possible that different architecture and use cases of the IDSs

could lead to different results.

Besides for modifying experimental setup, more IPv6 attacks can and should be

tested. Only a handful of attacks from the THC-IPv6 tool suite were sampled based on

the Cyber Kill Chain steps. The source code for these tools can even be modified for

more precise testing. All of the tools used in this experiment are open source.

I am providing all of my code and data under copyright for public use for the

purpose of leveraging this work to create better experiments. These can be found at:

[GinCode2017] and [GinData2017].

 99

Glossary

ALL ABBREVIATIONS

ACK: TCP Acknowledge

AH: Authentication Header

APT: Advanced Persistent Threat

ARP: Address Resolution Protocol

ARPANET: Advanced Research Projects Agency Network

AS: Autonomous System

ASCII: American Standard Code for Information Interchange

CLI: Command-line Interface

CRC: Cyclic Redundancy Check

CVE: Common Vulnerabilities and Exposures

DAD: Duplicate Address Detection

DDoS: Distributed Denial of Service

DHCP: Dynamic Host Control Protocol

DNS: Domain Name Service

DoS or DOS: Denial of Service

DPI: Deep Packet Inspection

DUT: Device Under Test

ESP: Encapsulating Security Payload

FID: Flow-based Intrusion Detection

FTP: File Transfer Protocol

GB: Gigabyte

GUI: Graphical User Interface

 100

HIDS: Host-based Intrusion Detection System

HTTP: Hypertext Transfer Protocol

IANA: International Assigned Numbers Authority

ICMP: Internet Control Message Protocol

ICMPv6: Internet Control Message Protocol version 6

IDPS: Intrusion Detection and Prevention System

IDS: Intrusion Detection System(s)

IETF: Internet Engineering Task Force

IGMP: Internet Group Management Protocol

IMAP: Internet Message Access Protocol

IoT: Internet of Things

IP: Internet Protocol

IPS: Intrusion Prevention System

IPSec: Internet Protocol Security

IPv4: Internet Protocol version 4

IPv6: Internet Protocol version 6

IQR: Interquartile Range

ISAKMP: Internet Security Association and Key Management Protocol

ISO: International Standards Organization

ISP: Internet Service Provider

LAN: Local Area Network

MAC: Media Access Control

MB: Megabyte

MITM: Man-In-The-Middle

 101

MLD: Multicast Listener Discovery

MRD: Multicast Router Discovery

MTU: Maximum Transmission Unit

NA: Neighbor Advertisement

NAT: Network Address Translation

ND: Neighbor Discovery

NDP: Neighbor Discovery Protocol

NetEm: Network Emulator

NIC: Network Interface Card

NIDS: Network Intrusion Detection System(s)

NIQ: Node Information Query

NS: Neighbor Solicitation

OS: Operating System

OSI: Open Systems Interconnection

PCAP: Packet capture (.pcap file format)

PMTUD: Path Maximum Transmission Unit Discovery

POP: Post Office Protocol

RA: Router Advertisement

RAM: Random Access Memory

RFC: Request for Comment

ROC: Receiver Operating Characteristics

RS: Router Solicitations

SCADA: Supervisory Control and Data Acquisition

SEND: Secure Neighbor Discovery

 102

SLAAC: Stateless Autoconfiguration

SMTP: Simple Mail Transfer Protocol

SPAN: Switched Port Analysis

SYN: Synchronize

TCP: Transmission Control Protocol

THC: The Hacker’s Choice

UDP: User Datagram Protocol

VM: Virtual Machine

 103

References

[Bro2016] The Bro Project. “Bro Manual.” Accessed: 9 Feb 2017.
https://www.bro.org/sphinx/index.html

[Caicedo2009] Caicedo, Carlos E., James BD Joshi, and Summit R. Tuladhar. “IPv6
security challenges.” Computer 42.2 (2009): 36-42. Accessed 3 Feb 2017.
https://pdfs.semanticscholar.org/8c31/c745c6caf4ee4185453459069f4dfcd1d54f.p
df

[Deering1998] Deering, Stephen E. “Internet protocol, version 6 (IPv6) specification.”
(1998). Accessed: 3 Feb 2017. https://www.ietf.org/rfc/rfc2460.txt

[Denning1987] Denning, Dorothy E. “An intrusion-detection model.” IEEE Transactions
on software engineering 2 (1987): 222-232. Accessed: 3 Feb 2017.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6234848

[Elejla2016] Elejla, Omar E., et al. “Intrusion Detection Systems of ICMPv6-based
DDoS attacks.” Neural Computing and Applications (2016): 1-12. Accessed: 3
Feb 2017. http://link.springer.com/article/10.1007/s00521-016-2812-8

[Garcia-Teodoro2009] Garcia-Teodoro, Pedro, et al. "Anomaly-based network intrusion
detection: Techniques, systems and challenges." computers & security 28.1
(2009): 18-28. http://ac.els-cdn.com/S0167404808000692/1-s2.0-
S0167404808000692-main.pdf?_tid=954f5e7e-fd30-11e6-9bdd-
00000aab0f27&acdnat=1488229758_431304e30f94ed91048b26b580c2af31

[Gates2008] Gates, Carrie E. “A case study in testing a network security
algorithm.” Proceedings of the 4th International Conference on Testbeds and
research infrastructures for the development of networks & communities. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2008. Accessed: 3 Feb 2017.
https://web.cs.dal.ca/~gates/papers/trident08.pdf

[Gehrke2012] Gehrke, Keith A. The unexplored impact of IPv6 on intrusion detection
systems. Diss. Monterey, California. Naval Postgraduate School, 2012. Accessed
3 Feb 2017. http://calhoun.nps.edu/handle/10945/6800

[GinCode2017] Gin, Jeremy. Python scripts for MS Report: IDS IPv6 Analysis
[Software]. 2017. Available at: https://github.com/jgin1

[GinData2017] Gin, Jeremy. PCAP and Excel Datasets for MS Report: IDS IPv6
Analysis [Dataset]. 2017. Available at:
http://users.ece.utexas.edu/~bevans/students/ms/jeremy_gin/

[Gont2014] Gont, Fernando. "Security implications of IPv6 on IPv4 networks." (2014).
Accessed: 3 Feb 2017. https://tools.ietf.org/html/rfc7123.html

 104

[Google2017] Google IPv6. “Statistics.” Web. Accessed 1 Feb 2017.
https://www.google.com/intl/en/ipv6/statistics.html

[Hauser2017] Hauser, Van. “THC-IPv6 Attack Tool Kit.” The Hacker’s Choice. January
2017. Web. Accessed 1 Feb 2017. http://www.thc.org/thc-ipv6

[Hemminger2005] Hemminger, Stephen. “Network emulation with NetEm.” Linux conf
au. 2005.
https://pdfs.semanticscholar.org/9180/aa7b7978c62363e4af3a9053371775
fbcbdc.pdf

[Hogg2008] Hogg, Scott, and Eric Vyncke. IPv6 security. Pearson Education, 2008.
[IC32016] IC3. “Amount of Monetary Damage Caused by Reported Cyber Crime to The

Ic3 from 2001 to 2015 (in Million U.S. Dollars).” Statista - The Statistics Portal.
Statista. May 2016. Web. Accessed: 1 Feb 2017. https://www-statista-
com.ezproxy.lib.utexas.edu/statistics/267132/total-damage-caused-by-by-cyber-
crime-in-the-us/

[Koziol2003] Koziol, Jack. Intrusion detection with Snort. Sams Publishing, 2003.
[Labovitz2008] Labovitz, Craig, et al. “Internet traffic trends-a view from 67

ISPs.” North American Network Operators Meeting. Vol. 33. 2008. Accessed 23
Mar 2017.
https://www.nanog.org/meetings/nanog43/presentations/Labovitz_internetstats_N
43.pdf

[Levine2015] Levine, Mike and Date, Jack. “22 Million Affected by OPM Hack,
Officials Say.” abc NEWS. July 2015. Web. Accessed: 1 Feb 2017.
http://abcnews.go.com/US/exclusive-25-million-affected-opm-hack-
sources/story?id=32332731

[Lockheed2017] Official Lockheed Martin Website. Cyber Kill Chain Model Web Page.
Web. Accessed 5 Apr 2016. http://www.lockheedmartin.com/us/what-we-
do/aerospace-defense/cyber/cyber-kill-chain.html

[Mehra2012] Mehra, Pritika. “A brief study and comparison of snort and bro open source
network intrusion detection systems.” International Journal of Advanced
Research in Computer and Communication Engineering 1.6 (2012): 383-386.
Accessed: 3 Feb 2017. http://www.ijarcce.com/upload/august/4-
A%20brief%20study%20and%20comparison%20of.pdf

[Mitre2017] Common Vulnerabilities and Exposures. Web. Accessed 23 Mar 2017.
https://cve.mitre.org

[Moya2008] Moya, Miguel A. Calvo. “Analysis and evaluation of the snort and bro
network intrusion detection systems.” Intrusion Detection System, Universidad
Pontificia Comillas (2008). Accessed: 3 Feb 2017.
https://www.iit.comillas.edu/pfc/resumenes/48cd357480a88.pdf

 105

[Netem2016] The Linux Foundation. NetEm manual page. Web. Accessed 23 Feb 2017.
https://wiki.linuxfoundation.org/networking/netem

 [O’Brien2016] O’Brien, Sara Ashley. “Widespread cyberattack takes down sites
worldwide.” CNN Tech. October 2016. Web. Accessed: 1 Feb 2017.
http://money.cnn.com/2016/10/21/technology/ddos-attack-popular-sites/

[P2016] P, Srivats. Official Ostinato Website. Web. Accessed 23 Feb 2017.
http://ostinato.org/

[Papadogiannakis2010] Papadogiannakis, Antonis, Michalis Polychronakis, and
Evangelos P. Markatos. “Improving the accuracy of network intrusion detection
systems under load using selective packet discarding.” Proceedings of the Third
European Workshop on System Security. ACM, 2010. Accessed 3 Feb 2017.
https://www.ics.forth.gr/_publications/discarding.eurosec10.pdf

[Parkour2017] Parkour, Mila. Contagio Blog Malware Dump Collection. Accessed 23
Mar 2017. Web. http://contagiodump.blogspot.com/

[Paxson1999] Paxson, Vern. “Bro: a system for detecting network intruders in real-
time.” Computer networks 31.23 (1999): 2435-2463. Accessed: 3 Feb 2017.
https://pdfs.semanticscholar.org/f121/cde8d3d5364717caf2b91d27a270ec004cac.
pdf

[Peterson2007] Peterson, Larry L., and Bruce S. Davie. Computer networks: a systems
approach. Elsevier, 2007.

[Pilihanto2011] Pilihanto, Atik. “A Complete Guide on IPv6 Attack and
Defense.” Sans.org November 2011. Web. Accessed 1 Feb 2017.
https://www.sans.org/reading-room/whitepapers/detection/complete-guide-ipv6-
attack-defense-33904

[Postel1981] Postel, Jon. “RFC 791: Internet protocol.” (1981). Accessed 3 Feb 2017.
https://tools.ietf.org/html/rfc791

[Ptacek1998] Ptacek, Thomas H., and Timothy N. Newsham. Insertion, evasion, and
denial of service: Eluding network intrusion detection. SECURE NETWORKS
INC CALGARY ALBERTA, 1998.
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD
A391565

[Puketza1996] Puketza, Nicholas J., et al. “A methodology for testing intrusion detection
systems.” IEEE Transactions on Software Engineering 22.10 (1996): 719-729.
Accessed 3 Feb 2017.
http://ieeexplore.ieee.org/abstract/document/544350/?reload=true

[Rehman2003] Rehman, Rafeeq Ur. Intrusion detection systems with Snort: advanced
IDS techniques using Snort, Apache, MySQL, PHP, and ACID. Prentice Hall
Professional, 2003. Accessed 3 Feb 2017.

 106

https://books.google.com/books?hl=en&lr=&id=1WKrLbh23LAC&oi=fnd&pg=
PA1&dq=intrusion+detection+systems+with+snort+advanced+ids+techniques+us
ing+snort+apache&ots=5p9809RLaA&sig=1xfhjpCDbbgtu78UknDAtZM6jbY#v
=onepage&q=intrusion%20detection%20systems%20with%20snort%20advanced
%20ids%20techniques%20using%20snort%20apache&f=false

[Roesch1999] Roesch, Martin. "Snort: Lightweight intrusion detection for
networks." Lisa. Vol. 99. No. 1. 1999.
http://static.usenix.org/publications/library/proceedings/lisa99/full_papers/roesch/
roesch.pdf

[Sarrar2012] Sarrar, Nadi, et al. “Investigating IPv6 Traffic.” International Conference
on Passive and Active Network Measurement. Springer Berlin Heidelberg, 2012.
Accessed 3 Feb 2017. http://link.springer.com/chapter/10.1007%2F978-3-642-
28537-0_2#page-1

[Scarfone2007] Scarfone, Karen, and Peter Mell. “Guide to intrusion detection and
prevention systems (idps).” NIST special publication 800.2007 (2007): 94.
Accessed 3 Feb 2017. http://ecinetworks.com/wp-content/uploads/bsk-files-
manager/86_SP800-94.pdf

[Schütte2016] Schütte, Martin, Thomas Scheffler, and Bettina Schnor. "Development of
a snort ipv6 plugin." (2012). Web. Accessed 4 Mar 2017. https://prof.beuth-
hochschule.de/fileadmin/user/scheffler/Publikationen/SECRYPT_2012.pdf

[Shearer2013] Shearer, Jarrad. “W32.Downadup”. (2013). Symantec. Web. Accessed 7
Mar 2017.
https://www.symantec.com/security_response/writeup.jsp?docid=2008-112203-
2408-99

[Snort2016] Official Snort Website. Web. Accessed 1 Feb 2017. http://www.snort.org
[Sperotto2012] Sperotto, Anna, et al. “An overview of ip flow-based intrusion

detection.” IEEE Communications Surveys and Tutorials 12.3 (2010): 343-356.
Accessed 3 Feb 2017.
http://eprints.eemcs.utwente.nl/18341/01/Surveys_and_tutorial.pdf

[tcpdump2017] tcpdump version 4.9.0. Web. Accessed 27 Feb 2017.
http://www.tcpdump.org/

[VirusTotal] VirusTotal Website. Web. Accessed 25 Feb 2017.
https://www.virustotal.com/

[VMWare2017] Fusion for Mac. Web. Accessed 23 Feb 2017.
http://www.vmware.com/products/fusion.html

[Warfield2003] Warfield, Michael H. “Security implications of IPv6.” Internet Security
Systems 4.1 (2003): 2-5. Accessed 3 Feb 2017.

 107

https://www.blackhat.com/presentations/bh-federal-03/bh-federal-03-warfield/bh-
fed-03-paper-warfield.doc

[Werny2014] Werny, Christopher and Schaefer, Rafael. “IPv6 Attack & Defense
Strategies”. Blackhat Conference. August 2014. Presentation. Accessed 1 Feb
2017. https://www.blackhat.com/docs/sp-14/materials/arsenal/sp-14-Schaefer-
Workshop-Slides.pdf

[WorldIPv6] World IPv6 Launch “Participants.” Web. Accessed 1 Feb 2017.
http://www.worldipv6launch.org/participants/

 108

Vita

Jeremy Gin earned his Bachelor of Science in Electrical and Computer

Engineering from the University of Arizona in 2015. During his studies at the University

of Texas at Austin, Jeremy has been interested securing networks, communications and

control systems through robust architecture and algorithms. An updated resume can be

found at: https://www.linkedin.com/in/jgin1/.

Jeremy is a follower of Jesus Christ.

 “I have been crucified with Christ. It is no longer I who live, but Christ who lives

in me. And the life I now live in the flesh I live by faith in the Son of God, who loved me

and gave himself for me.” - Galatians 2:20 (ESV)

Permanent email: jgin@utexas.edu

This report was typed by the author.

