

Copyright

by

Matthew Wayne DeKoning

2017

The Report Committee for Matthew Wayne DeKoning

Certifies that this is the approved version of the following report:

Embedded Sensor Speed and Width Estimation

APPROVED BY

SUPERVISING COMMITTEE:

Brian L. Evans

Jonathan Valvano

Supervisor:

Embedded Sensor Speed and Width Estimation

by

Matthew Wayne DeKoning

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2017

Dedication

This work is dedicated to my wife, Anna DeKoning, who makes it all worthwhile.

 v

Acknowledgements

Without the technical and financial support of Sandia National Laboratories this

work as well as my continued education would not have been possible. Special thanks to

Reinhard Stotzer and Sara Pecak for their constant support and help coordinating this

project, as well as Jason Krein and Mark Koch for the concept that led to this report and

their technical expertise, and Jeremy Giron for his technical expertise as well. The 3D

printed cases for the sensors used in this project were both designed and fabricated by Jared

Bare, whose work greatly improved how field tests were conducted. Finally, thanks to

Raymond Sand and Lonnie Dahl whose help during field tests allowed me to gather all the

data for this project.

 At the University of Texas at Austin Dr. Brian L. Evan’s advising ensured the

success of this report. His deep knowledge, both technical and administrative, proved

invaluable countless times throughout this work.

 I thank Dr. Valvano for lending his technical expertise through the editing of this

work.

 vi

Abstract

Embedded Sensor Speed and Width Estimation

Matthew Wayne DeKoning, M.S.E.

The University of Texas at Austin, 2017

Supervisor: Brian L. Evans

The goal of this report is to provide a novel system of estimating width and velocity

of an object passing perpendicularly through a sensor field. By fixing four sensors on an

axis at known angles the distance and velocity of an object can be estimated from the times

of detection of each sensor using a system of equations. To develop a prototype of this

system the scenario was modeled and simulated, a processor and sensors were selected,

and algorithms for detection and estimation were developed. The goal of the report was to

develop a self-contained sensor network and computing platform that would correctly

estimate the speed of the object in miles per hour within 15% accuracy, and to estimate the

width of the object within 20% accuracy. Due to prototype design errors, these

requirements were not met, however useful algorithms and simulations were developed to

lead towards successful future work.

 vii

Table of Contents

List of Tables ...x

List of Figures .. xi

Chapter 1: Introduction ..1

1.1: The Goal of this Embedded System ..1

1.2: Related Work ...4

1.3: Relevant Equations ..9

Distance from Time and Speed (1) ..10

Distance Based on the Geometry of the System (2)10

Combining (1) and (2) ...10

Creating a Linear Equations with Respect to the Unknowns10

Solving for D..10

Estimating Width ...10

Chapter 2: Prototype Design ..12

2.1 Sensor Selection ..12

PIR Sensors ..12

Takex PIR-50NE (COTS Sensor) ..13

Web Camera...14

FLIR Lepton 3..14

2.2: System Design ...15

2.3: Cases ..17

Chapter 3: Simulation ..19

3.1: Simulation Design..19

2.2: The Geometry of the System ...21

Configuration One ...22

Configuration Two ...24

Configuration Three ...25

3.3: Determining Test Objects through Simulation26

Optimal Angles ..26

 viii

Optimal L1 – L4 Distances ..28

3.4: Determining Test Objects ..30

Chapter 4: Algorithms..35

4.1: Detection Algorithm ..35

4.3: Detection Algorithm Requirements ...37

4.2: Estimation Algorithm ..37

Chapter 5: Test One ...39

5.1: Test One Setup ...39

5.2: Test One Problems ...43

5.3: Test One Validations ...44

5.4: Test One Results ..45

5.5: Investigating Discontinuities ...47

5.6: Goals for Next Test ..48

Chapter 6: Test Two...51

6.1: Test Two Setup ..51

6.2: Test Two Analysis ...53

9:50 55

10:00 and 10:10 – Steady State tests..56

10:20 – Intrusion detection ..57

11:15: Longer Intrusion Test ...58

11:40 ..59

Chapter 7: Test Three...61

7.1: Test Three Setup ..61

7.1: Data Gathering Results ..62

7.2: Test Three Estimations ..68

Chapter 8: Post Processing...72

8.1: Linear Regression Setup ..72

8.2 Linear Regression Results ...76

8.3: Further Testing Issues ..77

 ix

Alternating Sampling Rate ...77

Wrong Time Functions Recorded ..77

Chapter 9: Conclusion and Future Work ...79

9.1: Conclusion ...79

9.2: Future Work ...80

Synchronize Sampling ...80

Real Time Operating System ...80

PIR Sensor Implementation ...81

Appendix ..82

Glossary ...84

All Abbreviations ..84

References ..85

 x

List of Tables

Table 1.2: Comparison to Previous Work..8

Table 2.1: Ideal Test Conditions, as found by simulation34

Table 6.1: Test Two Settings ...52

Table 7.1: Test Configurations ..61

 xi

List of Figures

Figure 1.1: System Dataflow ...2

Figure 1.2: System Geometry ..3

Figure 1.3: Gopinathan’s Detection Thresholds [3] ..7

Figure 1.4: System Geometry Revisited ..9

Figure 2.1: Standard PIR Detection Waveforms [7] ..13

Figure 2.2: System Block Diagram ..15

Figure 2.3: System Prototype ...16

Figure 2.4: Successful Data Acquisition ..17

Figure 2.5: FLIR Lepton 3 Cases ...18

Figure 3.1: Simulation Parameter Selection ..21

Figure 3.2: Sensor Configuration One ...22

Figure 3.3: Sensor Configuration Two ..24

Figure 3.4: Sensor Configuration Three ..25

Figure 3.5: System Geometry ..26

Figure 3.6: Angle of Cameras vs. Error in Velocity Estimate27

Figure 3.7: Angle One vs. Error...28

Figure 3.8: Outer Distances vs. Error ..29

Figure 3.9: Inner Distances vs. Error ...30

Figure 3.10: Determining Appropriate range of Speeds for Test Objects31

Figure 3.11: Error vs. Width given previous Distance and Speed ranges32

Figure 2.12: System Geometry for Reference ...33

Figure 4.1: Median Absolute Deviation Equations..36

Figure 5.1: Test Site ...39

 xii

Figure 5.2: System Geometry for Test One ...40

Figure 5.3: Temperature environment of Test 1 [10] ..40

Figure 5.4: Power on Settling Issues..43

Figure 5.5: Average Tracking – Intrusion Values Added to Window44

Figure 5.6: Average Tracking during Stabilization (Intrusions Added)45

Figure 5.7: Average Tracking without Intrusions Added to sample window45

Figure 5.8: Overall System performance during test ...46

Figure 5.9: System Performance per Camera during test46

Figure 5.10: Settling Values, Single Camera ...47

Figure 5.11: Camera Values after One Minute ..48

Figure 5.11: Successful Detection – All Cameras ...49

Figure 5.12: Each Successful Detection in Detail ...49

Figure 6.1: Test Setup 2 ...51

Figure 6.2: Temperature conditions during the second test [8]51

Figure 6.3: Pixel Mean Drift Separation ..53

Figure 6.4: A closer look at the mean drift ..54

Figure 6.5: Inverted Pixel Detection Logic..55

Figure 6.6: Steady State Test One..56

Figure 6.7: Steady State Test Two ...56

Figure 6.8: Double Intrusion Test ..57

Figure 6.9: Two Minute Intrusion Test ..58

Figure 6.10: A precise look at the intrusions ...59

Figure 6.11: Long Term Detection Algorithm Stability ..60

Figure 7.1: Test Three Temperature Conditions [9] ..61

Figure 7.2: Test data with enough frame detections for an estimate63

 xiii

Figure 7.3: Strong detection compared to 140° weak detection63

Figure 7.4: Weak Pixel Detection Close up ...64

Figure 7.5: Second configuration, consistent detection ...65

Figure 7.6: Inconsistent Detection Order ...66

Figure 7.6: Distance Estimate Errors for Test Three Configuration One68

Figure 7.7: Test Three Speed Estimates for Configuration One69

Figure 7.8: Test Three Distance Estimates Configuration Two70

Figure 7.9: Test Three Speed Estimates Configuration Two71

Figure 8.1: All Data Linear Regression Results ..73

Figure 8.2: Linear regression for Configuration One ..74

Figure 8.3: Linear Regression – Configuration One Tet Set75

Figure 8.4: Linear Regression – Configuration Two Test Set76

 1

Chapter 1: Introduction

1.1: THE GOAL OF THIS EMBEDDED SYSTEM

Electronic advancements have allowed smaller, faster, and more connected

computers and sensors to become commonplace. With these advancements, distributed

sensor networks have become efficient means to monitor a real world environment.

Unattended Ground Sensors (UGS) are embedded systems that typically consist of a

processing component, sensor elements, and a network component which are placed into

the field on a long term mission to monitor specific environmental features. These systems

must work without human intervention and often must arrange themselves for proper data

gathering after being deployed dynamically (for example dropped from a plane). Many

military and some civilian applications exist for such systems with purposes ranging from

monitoring the weather in a region to detecting and classifying intrusions. The type or types

of sensors integrated into such systems can vary greatly. If a UGS is self-powered through

batteries, solar panels, or other means, the need for conservation of power becomes the

main limiting factor on the system’s available mission time. Thus power efficiency is a key

design consideration. This report details the simulation, prototyping, and design of a UGS

for the purpose of detecting intrusions and estimating the width and speed of the intruding

objects.

An array of thermal sensors are specified as the desired environmental monitoring

due to the simplicity of computation when analyzing thermal signatures for intrusion. The

UGS designed in this report detects and characterizes intrusions moving perpendicular to

a horizontal axis, movements similar to those found in real world environments like roads

and sidewalks. Previous works related to thermal sensing and characterization rely on novel

sensor banks and lens configurations, but this project seeks to minimize the number of

sensors used while using simple lenses and finding their optimal orientation. Given a

 2

system with four sensors and known orientation, the geometry of the sensors can be

exploited to estimate the speed and width of the intruding objects given only intrusion times

from each individual sensor. This system provides very low power intrusion

characterization along a road or sidewalk by utilizing a small array of low power sensors.

Figure 1.1: System Dataflow

 3

Figure 1.2: System Geometry

To optimally use the geometry of the system, the ideal sensor would behave like an

infinitely small beam. This beam precisely monitors the environment at the angle the sensor

is positioned at, recording times when the beam is broken by an intruder. The most realistic

implementation of such a system involves a field of lasers as well as a set of sensors at the

edge of the range of the system to monitor whether the beam is broken or not. This is

neither power efficient, or discrete, and the system becomes quite large and difficult to

properly place. Lasers consume a significant amount of power and placing the monitoring

sensors at a reasonable range would require a high degree of precision. Pyroelectric

infrared sensors (also known as passive infrared sensors or PIR) on the other hand monitor

the environment with a much larger field of view than lasers, but consume very little power.

Careful optical design can result in a small field of view and reasonable range for such a

sensor. Commercially available products can monitor objects over one hundred fifty feet

 4

away with a field of view less than four degrees. While a final system may ultimately use

PIRs, the prototype presented here uses thermal camera technology due to budget and

timing constraints. This choice ultimately pushes the amount of error in the system’s

estimate beyond the goal of this report.

 To better understand tradeoffs in field of view, frames per second, and the optimal

range of the system prototype a simulation of the scenario was developed and analyzed in

Python 2.7. Once the characteristics of the system’s sensors were decided upon, the optimal

geometry and optimal set of test objects were also determined from the simulation. After

simulation-aided prototype and test definition, algorithms to detect intrusions and estimate

speed and width based on intrusion times were developed to complete the system. The

detection algorithm must account for ambient thermal noise and temperature drift while

providing accurate detection times. Any reduction of noise in the detection time

measurements twice benefits the system, as the time deltas required for estimations are the

product of two measurements, and therefore noise is added twofold. The estimation

algorithm is written to solve the system of equations presented by the system’s geometry

and the time differences. Finally the functioning prototype gathered data and the accuracy

of the simulation and design was assessed. Further design and algorithm implementations,

as well as simulation updates are informed by the discrepancies between reality and

simulation. The simulation informs the design of the embedded system, both of which are

refined by the experimental findings.

1.2: RELATED WORK

 Since they became available in the late 1970’s, PIR sensors have been used in

general surveillance [5]. The development of the Fresnal lens allows an inexpensive and

small device to monitor a very wide area for a short distance, making them ideal for

 5

monitoring small but sensitive areas such as points of ingress or egress. Academia also

explores ways to utilize these sensors in new and novel ways. In 2003 Gopinathan et al.

contributed a lens and sensor network capable of characterizing the location of an object

in a square region monitored by four PIR sensors [3]. This was accomplished by creating

a unique mask for each of the four sensors and comparing the outputs of the sensors to

determine the state of the object within the surveilled area. This enabled four sensors

without fine location detection to function at a finer location granularity than normal. Their

detection algorithm utilized four binary event signals triggered by the voltage waveform

from the PIR sensor. These event signals were then analyzed and the state of the object in

the field extrapolated from there. Tests on both a precisely moving robot and a human and

successfully mapped their movement through the sensor field.

Similar work in this field includes the carefully laid out sensor fields proposed by

Song et al. which would track an intrusion throughout a building by carefully positioning

slightly overlapping PIR sensors throughout a region and observing the sequence of

triggering [1]. This system efficiently tracked an intruder in a large environment made up

of conjoined smaller spaces, such as a building or campus. A novel three sensor solution

was proposed by a team from the University of Bologna to monitor a hallway and classify

intrusions by object count and direction [11]. This method characterized the waveform

generated by different numbers of people walking side by side in a hallway, arranged three

sensors to gather the data at different angles, and used a separate processor to fuse the data

gathered into an estimate of count and direction. Given the presence of three sensors

monitoring the same region, the estimate exists when the majority of the sensors are in

agreement. Another recent exploration of PIR sensor systems by the same team focused on

the analog waveform coming from the differential PIR sensor [12]. This study correlated

the amplitude and duration of intrusion signals to distance from the sensor and proposes a

 6

mirrored two sensor approach for PIR sensors. In yet other work, a two column sensor

module was developed for monitoring the intersections of two hallways [4]. In total eight

sensors, each given a unique view of the hallway, comprise the two column sensor. The

data captured by these sensors are then fed through several estimation algorithms including

Bayesian tracking in order to more accurately track objects. Recent work at Sandia

National Laboratories has fused off-the-shelf sensors with more complex Lab developed

devices in order to avoid false positives and save power [2]. The off the shelf sensor are

arrayed around the custom sensors, and their detections trigger the specialized sensors to

further investigate an incident.

The work presented here draws considerable inspiration from some of the methods

used before it, but also diverges in several key areas. Each of these IR sensing modules

work to track an intrusion throughout a region as well as detect it. Many of them then use

machine learning algorithms to then attempt to classify the intrusion through analyzing

certain aspects of the data gathered. The solution proposed does not track an object, it

assumes sequential detections will be the same object. Instead it merely detects and

characterizes objects by speed and width. The threshold and event flag processing

algorithm utilized by Gopinathan’s team is emulated in this work.

 7

Figure 1.3: Gopinathan’s Detection Thresholds [3]

Graphs like these can be seen throughout the test results section of this report,

despite the fact the waveforms being analyzed are of very different nature. Many useful

approaches to handling and estimating based on IR data were found in these projects, but

this work aims to estimate specific characteristics of the intruding objects rather than

tracking them or estimating direction or count.

 8

 Sensor

Arrangement

Lens Goal

This Work Four on an axis

(parallel to test

subject)

TBD

(likely a very

narrow long

range FOV

custom lens)

Speed and width

estimation

(object

classification)

Gopinathan et al.

2003

Four in a grid

(above test

subject)

Custom “grid”

lenses

Object tracking

Song et al. 2008 Custom

(throughout a

region)

Fresnal lenses Object tracking

Zappi et al 2010 Two sensor

mirrored clusters

(throughout a

hallway)

20° FOV limited

Fresnal lens

Object tracking

and

classification

Hao et al. 2009 Eight per two

column sensor

module

(multiple

modules

arranged at the

end of halls)

Custom slices of

FOV exposed

for each stacked

sensor

Object tracking

and

classification

Zappi et al 2007 Three sensors

along a hallway

17° FOV limited

Fresnal lens

Object

classification

(count and

direction)

Table 1.2: Comparison to Previous Work

 9

1.3: RELEVANT EQUATIONS

Figure 1.4: System Geometry Revisited

The goal of this embedded system is to produce an accurate output of sensor

detection times, which are then used to calculate relevant time differences (∆t) to solve a

geometric system of equations and obtain the speed and width estimates. The relevant ∆t

are the differences between detection times of sensors two and three (∆𝑡23) and the

differences between detection times of sensors one and four (∆𝑡14). In the context of this

system, all ∆t are therefore considered to be known, and the average value of the times

detected by one sensor during an intrusion will be called the sensor time (objects will

trigger multiple detections times, the average of these is the sensors ‘detection time’ used

in the ∆t subtraction).

 10

Distance from Time and Speed (1)

𝑑14 = 𝑠 ∗ ∆𝑡14
𝑑23 = 𝑠 ∗ ∆𝑡23

Distance Based on the Geometry of the System (2)

𝑑14 = 𝐿1 + 𝐿4 + 𝐷 ∗ tan (𝜃1 −
𝜋

2
) + 𝐷 ∗ tan (𝜃4 −

𝜋

2
)

𝑑23 = 𝐿2 + 𝐿3 + 𝐷 ∗ tan (𝜃2 −
𝜋

2
) + 𝐷 ∗ tan (𝜃3 −

𝜋

2
)

Combining (1) and (2)

𝐿1 + 𝐿4 + 𝐷 ∗ tan (𝜃1 −
𝜋

2
) + 𝐷 ∗ tan (𝜃4 −

𝜋

2
) = 𝑣 ∗ ∆𝑡14

𝐿2 + 𝐿3 + 𝐷 ∗ tan (𝜃2 −
𝜋

2
) + 𝐷 ∗ tan (𝜃3 −

𝜋

2
) = 𝑣 ∗ ∆𝑡23

Creating a Linear Equations with Respect to the Unknowns

𝐿1 + 𝐿4

∆𝑡14
+ 𝐷 ∗

[tan (𝜃1 −
𝜋
2) + tan (𝜃4 −

𝜋
2)]

∆𝑡14
= 𝑣

𝐿2 + 𝐿3

∆𝑡23
+ 𝐷 ∗

[tan (𝜃2 −
𝜋
2) + tan (𝜃3 −

𝜋
2)]

∆𝑡23
= 𝑣

Solving for D

(
𝐿1 + 𝐿4

∆𝑡14
−

𝐿2 + 𝐿3

∆𝑡23
) + 𝐷 ∗ (

[tan (𝜃1 −
𝜋
2) + tan (𝜃4 −

𝜋
2)]

∆𝑡14

−
[tan (𝜃2 −

𝜋
2) + tan (𝜃3 −

𝜋
2)]

∆𝑡23
) = 0

With these equations, knowing the dimensions and angles of the sensor array allows

estimation of distance and velocity from the stream of detection times.

Estimating Width

𝑊 = ∆𝑡𝑆𝑒𝑛𝑠𝑜𝑟 ∗ 𝑣

This equation can be used to estimate the width of the object based on the duration

of time individual sensors detected its presence and the estimated velocity.

 11

Embedded sensor networks provide almost unlimited potential applications. By

utilizing cheap COTS sensors as well as processors, tracking and characterizing different

phenomena can be accomplished. This report proposes a novel system of four IR sensors

to monitor the speed and width of objects moving past it. Previous work has shown

characterizing intrusions, as well as tracking intrusions is possible, even with the lack of

precision afforded by PIR sensors. Equations have been derived to extract the speed and

width estimates from the stream of detection times of the sensors. The next step is to define

a system prototype.

 12

Chapter 2: Prototype Design

2.1 SENSOR SELECTION

For the prototype it was determined that the sensors should meet the following

criteria: range of at least 75 feet, a small field of view, and a reasonable sample rate. The

range of 75 feet allows the geometry of angles of the sensors to spread out enough for full

scale (i.e. human or vehicle) tests. The small field of view allows each sensor to be treated

close to a ‘pixel’ of detection, and the smaller the field of view, the more accurate the

estimation can be. The sample rate of the device determines how fast the test objects can

move, a full scale vehicle test would require a high refresh rate for a camera, but a low

sampling rate for an IR sensor (30 – 60 Samples Per Second (SPS) performs well on most

vehicle speeds according to simulation). Given these characteristics and a budget, several

sensors presented themselves as options.

Four sensors were considered for this report. The first sensor considered was a

simple passive infrared sensor, to be connected through an ADC or GPIO to the Raspberry

Pi. The second was an off the shelf IR security sensor which would also interface to the Pi

through a GPIO or ADC. The third option is a standard web camera with a USB connection

to the processor. The final option is the FLIR Lepton infrared camera. This option

interfaces to the Pi in one of two ways: SPI data and I2C command line or over USB like

a webcam with a breakout board.

PIR Sensors

 A standard PIR sensor has a range of up to 20 feet and a wide field of view. This

can be narrowed by using lenses, the smallest of which produced a 10° FOV. The signal

out of a PIR sensor would need to be sampled by an ADC to analyze the waveform for

intrusions, as shown in Figure 2.1. Circuits also exist to simply raise a GPIO pin if an

 13

intrusion is detected, however is not sufficient for this report as it only provides one bit of

resolution. The power consumption of these sensors can be relatively low, and they are

easily extended to an array of four with a multi-channel ADC or multiple GPIOs. Price is

another strong point for this type of sensor as they are very cheap. Unfortunately for this

prototype the PIR sensor’s range and wide FOV make them nearly unusable. Ultimately in

order to create a low power PIR solution a custom lens will need to be developed, however

the lens design is beyond the scope of this and budget of this report.

Figure 2.1: Standard PIR Detection Waveforms [7]

Takex PIR-50NE (COTS Sensor)

The Takex PIR-50NE is an off the shelf security solution with a PIR sensor at its

core that solves the FOV and range problems of the standard PIR sensor. With a 165 foot

range and 3.5° FOV this sensor has great range and narrow spread. The weaknesses of this

sensor come from implementation complexity, power consumption, and cost. All TAKEX

 14

sensors are produced ready to be integrated into existing security systems, meaning the

device would need to be opened and modified to give an ADC direct access to the

waveform from the PIR sensor at its core. In the out of the box state, the sensor sends a

20V 100 mA pulse for two seconds upon an intrusion detection, a sampling rate that is

much too low and a power consumption that is much too high. With an individual cost of

$520 this sensor also boasts the highest price. The TAKEX PIR-50NE contains a sensor

and lens system that is nearly ideal for this report, however the price and unknown

complexity of modifying the sensor hurts its viability.

Web Camera

 The third option was using a basic web camera as the sensor. This option provides

flexibility in FOV, great range, low cost, and is easy to implement. However, these cameras

simply don’t monitor the spectrum of interest for this report. A different image processing

project could be completed using web cameras, but for this report an IR sensor is necessary.

FLIR Lepton 3

 The final option was the FLIR Lepton 3 IR Cameras. This camera has a 160x120

resolution which allows for flexible FOV settings, a good range of 100 feet, medium cost,

and low power consumption. The PureThermal 1 breakout board changes the interface

from SPI video and I2C command to UVC USB video format. USB interfacing is found in

nearly every off the shelf embedded processing solution, allowing quick and easy

compatibility. On an embedded board running Linux the v4l2 (video for Linux 2) interface

allows frames of data to be captured and processed in many languages (C and Python

notably). The weakness of this option is its 9 FPS. This sample rate is very low; however

this can be worked around by slowing test objects. Due to cost, range, and flexibility the

 15

FLIR Lepton 3 Cameras with PureThermal 1 breakout board was chosen as the sensor for

this system’s prototype.

2.2: SYSTEM DESIGN

When considering the processor to use for this project four criteria were present:

compatibility with the selected sensors, off the shelf availability, and my familiarity with

the platform, and ease of deployment into the test environment. Off the shelf boards like

the BeagleBone line of development boards, Arduino Uno, and Raspberry Pi were

considered. Of these embedded processing solutions, only one fulfilled the two remaining

criteria (easy interfacing to sensors and familiarity), the Raspberry Pi. While all platforms

provide easy USB interfacing, my familiarity with the Raspberry Pi lead me to select the

Raspberry Pi 3B board as the processing element of this project.

Figure 2.2: System Block Diagram

 16

With the prototype architecture defined as a Raspberry Pi 3B with four Lepton 3

cameras, the remaining piece of hardware is a simple powered USB hub to allow mouse

and keyboard connections as well as ensure proper power distribution to the cameras.

Figure 2.3: System Prototype

Firmware for compatibility between the third version of the Lepton camera and the

PureThermal 1 is located on GitHub, as the previous versions had half the resolution, and

therefore the older firmware is not compatible. After working with v4l2 libraries (in python

and C), data from the cameras was successfully captured. A simple Python script (which

was later converted to C to similarly validate data was good) generated a sketch of the

thermal measurements by creating an array of Tkinter rectangles on a canvas with each

rectangle’s color scaled between black (cold) and white (hot) based on that pixels value.

The algorithm first finds the minimum and maximum values in the image so that this color

is scaled relative to these local maxima and not the global maxima of a twelve bit unsigned

integer. The resulting image is consistent with the thermal profile of the surroundings. My

face can be seen to be warm relative to the surroundings and lights and desks can be seen

 17

in the background having slightly different heat signatures than their surroundings. Given

successful data acquisition, the next step was to write algorithms for detection and

estimation and run them on the prototype.

Figure 2.4: Successful Data Acquisition

2.3: CASES

 GroupGets, the creator of the PureThermal1 breakout board for the Lepton

Cameras, has posted the files for a 3D printable case for the camera and board. A base was

created to mount these cases at a fixed angle to easily orient the sensors. This base consists

of a protractor with a swiveling attachment on top of it for easy angle configuration, along

 18

with mounting holes. Ultimately, these cases were positioned properly by attaching them

to tripods with double sided sticky Velcro strips.

 With the sensors, processor, and method for orienting the system selected, the next

step in prototype development was developing algorithms and selecting test objects.

However, while the prototype was being designed, a simulation of the system was being

written to gain a deeper understanding of the geometry of the system, as well as the

prototype’s limitations.

Figure 2.5: FLIR Lepton 3 Cases

 19

Chapter 3: Simulation

3.1: SIMULATION DESIGN

 While the sensor-processor interface was being defined a simulation of the scenario

was created to better understand the system as well as find optimal geometric parameters

for the sensors and optimal testing conditions (width, speed, and distance of the test object.

This simulation was written in Python 2.7. It functions by being given three sets of data:

test object parameters, geometric parameters, and sensor parameters. Test object

parameters are the distance, speed and width of the object passing through the system, the

known truth that is being estimated. The geometric parameters define the distances apart

and angles from the center the sensors are placed at. These are critical parameters for data

that contributes to the estimation algorithm. Sensor parameters characterize the field of

view of the sensor as well as the sampling rate. The test object data set is specified as a

range of distances, speeds, and widths with a step size to iterate over. With the system

configuration and test objects set, the program begins simulation of the scenarios specified

by defining the sensor’s beam width and x-values at the specified distance.

Next the test object is positioned beyond the most negative (left-most) sensor at the

specified test distance (as shown by Figure 1.3). A loop then steps this object to the “right”

across the sensor field by incrementing the front and back coordinates of the test object by

the sampling rate multiplied by the speed of the object. This suggests the simulated system

has a perfect sampling rate as well as uniform sampling times. As the test object moves

across the sensor field, the range of x-values it occupies is tested against the range of x-

values that each sensor monitors, if these two ranges coincide, the current time of the

system is added to the a list of times for that respective sensor. After the test object

completes its run through the sensor array, the average of each list of detection times are

 20

found and the simulation uses these times to solve the relevant system of equations to

return the estimated distance, velocity, and width estimates. For each of the test object

parameters (a specific width, distance from the sensors, and speed) the simulation runs 10

tests at varying starting points within the distance the object can move within one frame

(sample rate multiplied by speed) to determine a best, worst, and average estimate for this

specific scenario. The simulation will output the percentage of the test set that are above

10% error when estimating velocity and the percentage of these tests above 20% error when

estimating width.

 A graphical user interface was developed to better show the test scenario specified

in the simulation, as well as show the different snapshots the system would get of the object

as it passed through the sensor field. First the geometric, sensor, and test objects of the

system are specified.

 21

Figure 3.1: Simulation Parameter Selection

When the simulation begins, the geometry of the sensors are drawn on an x-axis,

centered on a y-axis. This includes dotted lines to indicate the ‘one pixel wide’ perfect line

of sight of the camera, as well as lines on either side of this to indicate the actual field of

view of the camera. Figures 3.2, 3.3, and 3.4 show this GUI. As the simulation continues,

an option can be checked to show the object’s location at each subsequent sampling time.

This illustrates how the test object steps through each sensor beam and allows better

understanding of sensor misses and other anomalous behavior.

2.2: THE GEOMETRY OF THE SYSTEM

The simulation was used to find an optimal geometric layout for the system. Many

configurations of the sensors were considered. To determine which configuration was

 22

preferred simulation results were considered alongside other qualities of the configuration

such as the spread of the base (the sum of the horizontal axis lengths L1 – L4). To determine

accuracy a wide range of test objects (characterized by distances, velocities, and widths)

were used over several different geometric configurations to determine average

performance.

Configuration One

Figure 3.2: Sensor Configuration One

 The first configuration considered had all the sensors at acute angles with respect

to the x axis and the y axis (Figure 3.2). This proved neither accurate nor practical as the

distances of the sensor from the base of the axis would need to be large to allow a decent

range and spacing between sensors. Recording the same or very similar times for multiple

sensors leads to inaccurate estimations.

The project proposal showed the sensors in this array, so for the first month of work

this was the default configuration. This lead to several decisions that would later be to the

 23

detriment of this report’s prototype. For example the selection of the low frame per second

sensors reduces the viability of commonly available test objects. If the configuration

required acute angles toward the center, PIR sensors with basic lenses on them become

unworkable. This is due to the fact that with off the shelf and cheap lenses, the field of

view can be reduced to 10° and the range increased to approximately 20 feet, which is

much shorter than the desired range. The spread of the sensors at the edge of the region of

detection is 3.5 feet, suggesting for a good amount of the 20 foot range the signals would

be colliding and aliasing together as the same detection time if it is assumed the sensors

face inward. Having multiple sensors with the same average detection time results in

division by zero in the system of equations to produce an estimate, and therefore should be

avoided. Another issue with this configuration is the width of the base. Since overlapping

sensors produce similar average times and decrease the ability of the system to estimate

accurately or at all, this configuration favors sensors that are a spread out along the x-axis.

This leads to several issues including difficulty in creating a reliable setup procedure or rig

for the sensors given such a wide base, and ensuring connections for the prototype like

USB cables are long enough, all contributing to the fact that a compact implementation is

preferred.

When defining the system’s prototype and selecting sensors, the design challenges

of this configuration led to design choices that would greatly impact the success of the

prototype, whereas later configuration options were not hampered by the cramped nature

of this setup and would have resulted in a different prototype design. Not too long after

selecting a purchasing the FLIR Lepton sensors, the geometry of the system was

reconsidered, and more optimal geometries were found.

 24

Configuration Two

Figure 3.3: Sensor Configuration Two

The second configuration considered works considerable better for both accuracy

and the horizontal size of the system, however, the two sensor beams in the middle are still

closer than necessary, which can cause the sensor times to be grouped together, reducing

the accuracy of the estimation.

 25

Configuration Three

Figure 3.4: Sensor Configuration Three

The most accurate and space conscience configuration points the closest grouped

cameras at the harshest angles, while allowing the further spaced cameras softer angles.

This allows the system to be tightly spaced horizontally while still being accurate. It should

be noted that with this configuration the object being observed and estimated should be

beyond the points of convergence of the sensors, or aliasing can occur.

 26

3.3: DETERMINING TEST OBJECTS THROUGH SIMULATION

Figure 3.5: System Geometry

In order to define both the geometry of the system and the set of test objects, many

scenarios were simulated. First relationships between the geometry of the system and the

error were developed.

Optimal Angles

To determine the best angle for the two sets of sensors to use, the angles not under

test are held at 90°, the base is set up for the outside sensors to be ten feet from center, the

inside sensors are five feet from center, and the field of view and frames per second were

set to 2° and 9 FPS respectively based on the FLIR Lepton 3 camera. The distance is set

from 30 to 40 feet, the speed set from 5 to 15 mph, and the width is set to 5. All of these

parameters are meant to showcase a favorable test setup, with the base being wider than

desired in order to consider acute angles.

 27

Figure 3.6: Angle of Cameras vs. Error in Velocity Estimate

The results suggest the wider the angle, the more accurate the estimation, which

agrees with previous reasoning about conflicting regions of detection and decreased sensor

accuracy. When sensors are pointed further away from each other, accuracy increases. It is

interesting that a local maximum occurs when the angles are equal, suggesting that the

estimation equation does not work well when the two geometries used are similar (in this

case two rectangles). Given a minimum approximately one mph estimation error occurred

when angles 2 and 3 were set to 130°, the test was repeated holding angles 2 and 3 at 130°

to determine the optimal angles 1 and 4.

 28

Figure 3.7: Angle One vs. Error

Here the velocity error was minimized beneath 1 mph per estimation when angles

1 and 4 were at 105°. Moving forward the optimal angles for a test configuration were

considered to be 105° for angles 1 and 4, and 130° for angles 2 and 3.

Optimal L1 – L4 Distances

The next step in optimizing the geometry of the system is determining the best

distances from the center of the system to position the sensors. Again, sensors 1 and 4

(distance 1) were considered mirrors of each other, as were sensors 2 and 3 (distance 2).

 29

Figure 3.8: Outer Distances vs. Error

The first test set the angles to their “optimal values” while holding distance 2 at 1

foot in order to consider the smallest configuration possible (2, 1, 1, 2) while biasing the

system towards a smaller setup. A minimum of viable sensor distances is found when the

outside sensors are placed five feet from the center. Given this optimal location, the set of

options for distance 2, the distance of the middle sensors from the center was now {1, 2, 3,

4} feet.

 30

Figure 3.9: Inner Distances vs. Error

When testing this set, the minimum value is found to be where the inside sensors

are furthest from the outside sensors. Given the inside sensors are at a hard angle of 130°,

the range in results are much more tightly grouped than previous tests (all are within about

1.2 mph of error). The optimal geometry of the system is determined to be outside lengths

of 5 feet, inside lengths of 1 foot, outside angles of 105° from center, and inside angles of

130° from center.

3.4: DETERMINING TEST OBJECTS

The next step towards deploying and testing a prototype width and speed estimation

device was to determine optimal test object parameters (characterized by a distance from

the sensors, speed, and width) to test the system with. The first test determined a testable

range of speeds that would result in a reasonably accurate output. For this test the distance

 31

and width (10 feet) are held constant (multiple distances are tested) in order to isolate the

effect speed has on the accuracy of the system. For this part of the analysis, Configuration

1 was considered the previously found optimal geometry of the system.

Figure 3.10: Determining Appropriate range of Speeds for Test Objects

From a distance of approximately 25 feet to 40 feet and a range of speeds up to

nearly 20 mph the minimum and maximum error graphs bound the error by close to 10%.

Thus test objects with a distance range of [25, 40] feet and a speed range of [0, 20] mph or

some subset of these ranges would lead to an accurate test. It should be noted that the

 32

effects of the low samples per second of the system were clearly shown in this test. The

error bound grows exponentially when the speeds of the test objects rise above 20 mph.

The next test was to determine an optimal width for test objects given the previously

determined speed and distance ranges. The same geometric configuration is again used,

and constant distances and speeds are picked from within this subset to test a range of

widths on. The range is selected to be from one foot to fifty feet in order to include possible

test subjects ranging from a person to a semi.

Figure 3.11: Error vs. Width given previous Distance and Speed ranges

It should be noted that an error of 16 for a 15 mph test indicates a sensor miss

caused the estimation algorithm to fail (and return -1), or in general an error of the speed

plus one indicates sensor misses led to failure. Thus when a high speed and a small width

combine, the maximum error is often this number, as seen by the smaller widths on the 15

mph and 20 mph graphs. From these graphs and analysis it can be seen that distances from

 33

30 to 40 feet perform well with a speed range of 5 to 15 mph and width of around 5 to 10

feet.

Thus test objects for this test can optimally be defined as objects with D = [25, 40]

feet, S = [5, 15] mph, and W = [5, 10] feet. Running the simulation over these values with

the optimal geometric configuration yields only 0.38% of tests above speed estimation

error. Further, to characterize a test object as a golf cart, with a standard width of 8 feet, D

= [25, 40] feet, and S = [5, 15] mph the simulation returns 0% of tests have a speed

estimation error of above 15%. Given these conditions, optimal test object is a golf cart –

capable of producing the range of speed and of the width desired. However, due available

resources, a Chrysler Town and Country with a width of 17 feet is instead used (with the

added benefit of built in speedometer).

Figure 2.12: System Geometry for Reference

 34

L1, L4 5 feet

L2, L3 1 foot

A1, A4 105°

A2, A3 130°

Distances for Test [25, 40] feet

Speeds for Test [5, 15] mph

Width for Test 8 feet

Expected Accuracy of Estimates Within 15%

Table 2.1: Ideal Test Conditions, as found by simulation

 Analysis of the system’s geometry and parameters lead to a simulated model of the

system’s context. Analyzing this simulation lead to ideal geometric configurations, sensor

characteristics, and test objects. The next step was to verify the simulation and its results

with real world data. To accomplish this algorithms for intrusion detection and estimation

were developed in parallel to the simulation’s development. Programs to gather raw

thermal data and data from the intrusion algorithm were written for the system prototype.

 35

Chapter 4: Algorithms

4.1: DETECTION ALGORITHM

The goal of the detection algorithm is to allow for the instability of ambient thermal

background noise while accurately recording intrusion times. To achieve this, a sample

average is kept for a specific window of pixels from the Lepton cameras. To approximate

a two degree field of view, a six by six square of pixels from the center of the camera was

analyzed. Each of these pixels has a stored window of N samples with the mean, median,

and standard deviation of this window. For the duration of this work, N is equal to 32

samples. The standard deviation is computed through Median Absolute Deviation.

When new data arrives each pixel will raise an alert given the data is beyond a

certain statistical threshold. Samples are next added either to the N sample history of the

pixel if they lie within a thermal anomaly threshold, or they are rejected and the sample

history remains unchanged. The samples are stored in ascending value order, each sample

with two values: a twelve bit thermal value from the camera, and a sample age between N

(new, 32 in the current implementation) and zero (the oldest sample). The algorithm adds

new data to the N samples by removing the oldest data and shifting the remaining samples

into the lower elements of the array while also decrementing their age, leaving the top

element empty. A binary search places the new data point in the proper place in this N-1

sorted list, and moves the values larger than the new data into the upper positions of the

array. While the algorithm sorts the data, it tracks the index of the oldest piece of data (next

to be removed) and stores this inside a pixel data structure which also includes the sample

array and statistics. Finally the new statistics are calculated. The mean is obtained from a

simple addition and shift in the current algorithm (the sum of the previous values are

computed during the sorting loops, the shift by 5 divides by 32), the median is simply the

 36

value in the middle index since the list is sorted, and the standard deviation is obtained

through the MAD calculation [6]:

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)|)

𝑀𝐴𝐷 = 𝜎√2𝑒𝑟𝑓−1 ≈ 0.67449𝜎

Figure 4.1: Median Absolute Deviation Equations

Several variables can characterize a specific implementation of this algorithm: the

window size kept (N), the statistical threshold to determine intrusions (a multiple of

standard deviation), and the threshold to determine thermal anomalies. After extensive

testing in the same thermal environment outdoors, it was noted that between frames – or in

approximately one ninth of a second – pixels could jump around ten to twenty in infrared

value. The Lepton’s accuracy of less than 0.050° C suggests that this jump would be at

most 1° C between samples, which could be attributed to natural phenomenon such as

natural heating or cooling during the day or sudden cloud cover. Given events like these

do not reflect the changing ambient temperature as much as short transient events, they are

to be excluded from the running average. Thus the threshold to consider a change in pixel

value a thermal anomaly was set to 30 pixel value or 1.5° C to mitigate the effects of such

temporary events on the samples and their statistics. The commonly used N equals 32

sample window counts for between 4 and 3.55 seconds, often providing a low standard

deviation. Due to the low standard deviation and somewhat large thermal anomaly

threshold, a large deviation coefficient is required to be detected as an intrusion. For

example, two to four are commonly found to be a pixel’s standard deviation given 32

samples, requiring five to six sigma thresholds in order to consider an alert any disturbance

 37

greater than one degree Celsius. Despite this lack of statistical granularity, the combination

of these two thresholds proves accurate in detecting intrusions in the field.

Given the detection algorithm works at a pixel level, a new threshold is introduced

that determines frame detection. As samples are processed, a certain number of pixels must

indicate change for the algorithm to determine an intrusion occurred during this frame and

report the current time to the intrusion list for the particular camera. After experimentation

a frame threshold of twelve changed pixels seemed reasonable in producing no false

positives and only a few failures to detect.

4.3: DETECTION ALGORITHM REQUIREMENTS

When designing an algorithm, it is important to consider the time and memory

characteristics in order to better understand the architectural requirements a system running

the algorithm. In order for the estimation algorithm to run, the microprocessor must hold

four times the window size times the number of samples kept. In the experimental setup,

the window was six by six pixels, with each pixel storing 32 previous two-byte values. This

results in a requirement of 9.216 KB just to hold the sample data, and the other data the

algorithm needs will push the memory requirement to at least 10 KB. Using the sorting

methods described in section 4.2 takes O(N) time, as the list will at most be traversed once

for each time it is searched (moving values into the lower N-1 values of the array and

moving the larger value back into the upper part of the array). It should be noted that the

O(N) time for the overall algorithm has a large coefficient, as the window size and number

of cameras become multipliers for the number of times this algorithm is run per sample.

4.2: ESTIMATION ALGORITHM

Throughout the tests documented in this work, only detection was attempted on-

line during data gathering (raw data was also gathered) and the estimation algorithm was

 38

purely used in off-line post processing. Thus simply transplanting the simple system of

equation solving function from the simulation proved to be the quickest way to create an

estimator. This function can be directly lifted from the estimation function written for the

simulation. Determining how to group intrusions and extract speed and width estimations

efficiently is included in the Chapter 9.2. Despite the lack of estimations, the detection

algorithm was implemented in C and connected through the Raspberry Pi 3 to streams of

IR data from the FLIR Lepton 3 cameras. The next step is to test the performance of these

algorithms and ultimately compare estimates based on intrusion data from field tests to

those of the simulation.

 39

Chapter 5: Test One

5.1: TEST ONE SETUP

The first test site took place in an abandoned neighborhood on Kirtland Airforce

base from 9 am to 12 pm on July 31, 2017.

Figure 5.1: Test Site

 The sensor array was set up 25 feet from the straight road inside of the loop. The

farthest two cameras were configured five feet from center focused at an angle of 140°

from center and the middle two cameras were placed one foot from the center at an angle

of 100° from center. This experimental setup was close to the optimal setup, and tested the

edge of detectable speeds. It should be noted that the simulation had been tested to find the

optimal geometry when this data gathering was conducted, but the optimal solution was

found later.

 40

Figure 5.2: System Geometry for Test One

The temperature rose from approximately 70° Fahrenheit to slightly over 80°

Fahrenheit. A fairly linear increase of 10° from 10 am to 12 pm.

Figure 5.3: Temperature environment of Test 1 [10]

 41

A dodge caravan van (17 feet wide) was driven at 15 – 25 miles per hour in both

directions along the straight road as one test subject; a person walking in front of the

cameras was used as the second test subject. The Raspberry Pi, cameras, monitor, and input

devices were powered with a large battery. A powered USB hub compatible with the

Raspberry Pi had not yet been found, so a script was created to trigger the data gathering

program on a timer, allowing the keyboard to be unplugged and the fourth Lepton to be

plugged in (a Raspberry Pi only has 4 USB ports, so without a hub those are monopolized

by the cameras).

The detection algorithm tested has an N (sample history length) of 32 for each of

the pixels in the 2° window (six by six center square) of the cameras and used them to find

the mean, median, and standard deviation (extracted via the Median Absolute Deviation

calculation) for each pixel. The threshold used to determine an intrusion was six sigma

(giving a probability of 99.9999998026825 percent that an incoming temperature reading

would lie within the acceptable bounds, given the thirty two previous samples have created

a reasonable statistical model for the temperature drift the camera is experiencing). At this

stage in the detection algorithm’s development when an intrusion is detected one of two

things can happen: the alerted pixel count for this camera is incremented and the value is

added to the thirty two value window, or the alert flag is incremented and the value is not

added. The latter method attempts to leave the running statistics undisturbed by the

intrusion, but the effect of the rise or fall in temperature on the value it eventually

returns/settles to is unknown. However, the implementation of discarding intrusions was

flawed during the first test and a pixel’s standard deviation could have become zero. Given

any statistically unlikely data will not be added to the running average, this freezes the

window and causes a constant alert. At this stage in development the thermal anomaly

threshold was not implemented.

 42

 A variety of outputs for the tests were possible: camera number, time stamps, and

pixel count changed (intrusion information), pure data – the value of each pixel analyzed

paired with its index (camera, location within the six by six window) and statistics (mean,

median, standard deviation), or pure data and intrusion information. The most useful

proved to be both pure data and intrusion information. It should also be noted that due to

the constant unplugging of USB devices, the cameras did not consistently hold one of the

‘/dev/vid#’ names throughout the experiment, as they would change each time a camera

was unplugged.

The algorithm did not perform well on the first test for a variety of reasons. The

first and largest reason is the settling time of the cameras was not taken into account. Since

the USB plugs were constantly being swapped out to allow editing and script starting with

the keyboard or to run the algorithm with all four cameras, the cameras being swapped

were not given time to adjust to the background temperature. The following graphs were

created using Python and pyPlot.

 43

5.2: TEST ONE PROBLEMS

Figure 5.4: Power on Settling Issues

Sub-figures 3 and 4 in Figure 5.4 show cameras that have been allowed to adjust to

the ambient temperature landscape they are viewing. Sub-figure 4 shows a good range of

temperature scenery being monitored, yet the intrusion around sample 140 still clearly

changes each pixel value. Sub-figures 1 and 2 show the cameras’ response as they perform

flat-field correction to adjust to the ambient surrounding temperature. Sub-figure 2 in

particular shows the effect of the Far Field Correction (FFC), which is triggered every

second or after nine frames of data.

These graphs were obtained during post-processing. In the field it was clear the

algorithm was not behaving well, but pinning down the underlying problem was difficult.

 44

Given time to analyze data, the settling problem was quickly diagnosed and follow up tests

were conducted indoors to determine how long the cameras needed power to become

stable. The cameras were all positioned at 90° and spaced out with a total span of six feet

on a lab bench. With this setup it was determined the cameras need at least one minute to

settle before reading their data to allow their FCC functions to stabilize their thermal

readings. The standard deviation bug was also found and corrected during this post

processing analysis. A powered USB hub that allowed all peripherals to remain plugged in

was also located.

5.3: TEST ONE VALIDATIONS

The statistics in the detection algorithm (aside from steady state standard deviation)

worked well.

Figure 5.5: Average Tracking – Intrusion Values Added to Window

 45

Figure 5.6: Average Tracking during Stabilization (Intrusions Added)

Figure 5.7: Average Tracking without Intrusions Added to sample window

5.4: TEST ONE RESULTS

The following graphs show data gathered and algorithm results versus simulated

results run over the same data. Both the simulation and the Raspberry Pi algorithm use a

statistical threshold of six sigma, but the field test had a changed pixel to detection

threshold of 25 while the simulation had 30.

 46

Figure 5.8: Overall System performance during test

Figure 5.9: System Performance per Camera during test

 47

5.5: INVESTIGATING DISCONTINUITIES

The data below was captured in an air conditioned (more thermally stable than

outside) lab when trying to determine the cause of the discontinuities in the previous

graphs.

Figure 5.10: Settling Values, Single Camera

Given the powered USB hub allowed cameras to remain plugged in during all

testing, and the rough estimate of 90 seconds for camera stability is acceptable, the cameras

will be plugged in for multiple minutes before any future tests, so that problem is resolved,

as shown by Figure 5.11.

 48

Figure 5.11: Camera Values after One Minute

5.6: GOALS FOR NEXT TEST

The following are graphs created from data in a lab after debugging the algorithm.

The statistic threshold on the Raspberry Pi was changed to 27, aside from that the test

remained the same.

 49

Figure 5.11: Successful Detection – All Cameras

Figure 5.12: Each Successful Detection in Detail

This data shows nearly a one to one detection in simulation to detection in practice

after adjusting the algorithm and sensor setup based on the knowledge gained from the first

 50

test. False alarm changed pixels – those that are triggered by thermal noise or other

interferers – in this scenario are kept beneath five per frame while residual pixels – those

registering a changed due to a recent intrusion – are kept beneath sixteen. This suggests the

changed pixel threshold could be lowered to around twenty and the results would remain

the same. However this is in a much less noisy lab environment. The next step is to conduct

basic outdoor tests, and to set up another large data gathering day.

 51

Chapter 6: Test Two

6.1: TEST TWO SETUP

Testing occurred outside of a lab building at Sandia National Laboratories.

The sensors were all at 90° from the “x-axis” and spaced from the center as follows: 3’,

0.5’, 0.5’, 3’.

Figure 6.1: Test Setup 2

Testing was performed from 9:50 am to 11:15 pm on August 11, 2017 and the

temperature ranged from approximately 70° to 83° Fahrenheit.

Figure 6.2: Temperature conditions during the second test [8]

The test subject was a person walking back and forth in front of the sensors. Data

was gathered six times (9:50, 10:00, 10:10, 10:20, 10:30, 11:15) and the algorithm was

adjusted to remove false positives and more to accurately calculate statistics.

 52

All Tests

Statistic Threshold 6σ2

Thermal anomaly 30 pixel value

Pixel Window (N) 6x6 center pixels

Changed pixels to trigger detection 30 pixels

9:50 Test

Gather first data

10:00 Test

Fixed algorithm – standard deviation value

not properly divided. Pixel detection logic

also fixed, previous changes inverted it.

10:10, 10:20, 10:30, 11:15, and 11:45 Tests

No testing values changed

Table 6.1: Test Two Algorithm Updates and Thresholds

 53

6.2: TEST TWO ANALYSIS

Figure 6.3: Pixel Mean Drift Separation

This data was gathered outside on the day before the second test. The IR data can

be seen pulling away from the running average the algorithm should be tracking. This is

caused by sudden shifts in a few fractions of a degree in temperature after a long period of

stability. The standard deviation has been driven very low by at least a window’s worth of

closely clustered samples so that the small shift in temperature (15 to 20 sensor value)

causes the pixel to alert and reject the values from the running average window.

 54

Figure 6.4: A closer look at the mean drift

 Figure 6.4 further illustrates this problem. From sample zero to sixty the average

is reasonably tracked and the variance of the data is reasonably stable. When the

environment being monitored heats up slightly, around sample seventy, the standard

deviation is low enough that the temperature is now running away from the mean, and

every sample moving forward is rejected and triggers an alert.

To fix this problem, an additional test was added to the algorithm. The alert

detection will work the same: if the pixel is outside of six standard deviations it will count

toward the alert total, but a new threshold will be introduced to determine if the sample

should be added to the running window or not. Based on previously gathered data shifts in

temperature between samples should not exceed 20 to 30 sensor value. Thus a simple

window of plus or minus thirty around the current mean should be sufficient to indicate

whether or not the incoming value should be added to the window or not, and this is the

change introduced to the algorithm: a threshold to reject thermal anomalies.

 55

9:50

Figure 6.5: Inverted Pixel Detection Logic

The data shown above is poor due to inverting the logic of the added algorithm.

The mean is left behind as the environment heats up. Data was gathered for approximately

30 seconds.

 56

10:00 and 10:10 – Steady State tests

Figure 6.6: Steady State Test One

Figure 6.7: Steady State Test Two

 57

No detections occur during the steady state tests which went on for 30 and 50

seconds respectively. This data shows the upward trend of the temperature not triggering

false alerts while the mean tracks closely with the IR data. The addition of the thermal

anomaly threshold is behaving as it is designed to.

10:20 – Intrusion detection

Figure 6.8: Double Intrusion Test

The test subject walked back and forth once in this 30 second test. The short nature

of the test did not allow the temperature of the surroundings to shift much, however the

algorithm successfully identified each intrusion with all cameras.

 58

11:15: Longer Intrusion Test

Figure 6.9: Two Minute Intrusion Test

This test lasted approximately two minutes and fifteen seconds. The test subject

walked back and forth twice (4 total intrusions) at distances varying between 4 feet and 25

feet. The algorithm continues to behave admirably with at most 12 pixels signaling a false

alarm while detections are very clear spikes.

 59

Figure 6.10: A precise look at the intrusions

11:40

 60

Figure 6.11: Long Term Detection Algorithm Stability

This test lasted 477 seconds (nearly 8 minutes) allowing the ambient temperature

to shift. The largest range of this temperature is seen in the red graph and drifts between

3980 and 3736 in IR sensor value. Despite this drifting the algorithm performed very well,

only identifying the two intrusions. This test was performed by leaving the cameras

monitoring outside of a lab building, and the intrusions were scientists walking to their

labs.

 After an extended period of testing the algorithm in the outdoor, thermally

fluctuating environment, the prototype is ready for another large scale data gathering

experiment.

 61

Chapter 7: Test Three

7.1: TEST THREE SETUP

The second data gathering took place at the same location as the first. The testing

time was between 11 am and 3 pm on August 16, 2017. From the following graph it can

be seen that the temperature fluctuated between 75° Fahrenheit and 90° F.

Figure 7.1: Test Three Temperature Conditions [9]

Configuration 1

L1, L4 5 feet from center

L2, L3 1 foot from center

A1, A4 140° from center

A2, A3 110° from center

Configuration 2

L1, L4 3 feet from center

L2, L3 1 foot from center

A1, A4 130° from center

A2, A3 110° from center

Table 7.1: Test Configurations

 62

The idea was to compare two configurations that are close to the ideal found in

exploration of the simulation, and determine if the lower horizontal profile of the second

configuration could be viable. The test objects chosen were from the following sets:

distances of 20, 25, or 30 feet, speeds of 15, 20, 25, 30, and 40 miles per hour, and the test

vehicle is again the Town and Country van, a 17 foot wide vehicle. This allowed for two

speeds that should be within target accuracy bounds (15 and 20 mph) and two speeds on

the edge or outside the capability of the system. Data was gathered three times for most of

the distance and speed configuration: one of the object passing through the sensors headed

one direction, and two of it passing through in the opposite direction. Seventy eight

individual tests were run.

7.1: DATA GATHERING RESULTS

At first glance the data seems to exhibit the desired characteristics. The hard 140°

configuration of the inner two cameras for the first configuration of this test did not perform

well (possibly due to misalignment on the vertical axis), but some of the tests still generated

valid data.

 63

Figure 7.2: Test data with enough frame detections for an estimate

Figure 7.2 shows the weak intrusion signals from the cameras at 140° (blue and

green) graphs. As the algorithm was running, with the threshold set to require 30 pixels

changed to determine a detection, the weak observed shift in signal was not enough to

generate a camera detection.

Figure 7.3: Strong detection compared to 140° weak detection

The side by side comparison of a camera that recorded an alert versus a camera that

did not record an alert reveals the problem – only about half of the pixels are pulled up

strong enough to warrant a pixel detection to trigger. The bottom lines in the graph show

that for some, this rise was less than or equal to the effects of ambient temperature drift.

However, despite some of the pixels not reacting to the intrusion, the event in the right

graph can still clearly be identified visually, indicating the pixel changed threshold needs

to be lowered. In post processing, this threshold was lowered to require 11 pixels changed

to trigger an intrusion detection.

 64

Figure 7.4: Weak Pixel Detection Close up

A closer analysis of the picture reveals that the bottom most rows of pixels reacted

to the intrusion, whereas the top most rows did not react at all, or reacted weakly. This

behavior was consistent throughout the tests for this geometric configuration. It appears

that the interior cameras were perhaps angled upwards, as the vehicle only passes through

the top half of the camera (the cameras are upside-down). It should be noted that the

cameras were all verified to be facing perpendicular to the ground with a level before the

simulation began, despite the evidence suggesting they were not. It is also worth noting

that the second test configuration saw detection from all six rows and not just three, as

shown in figure 7.5, which proves this is not an issue with the cameras. The last column

 65

does not have great detection still, but the camera is at 130° from the center, so whatever

angular reflection problem exists at 140° must come into effect here to a lesser degree as

well. This suggests that there is a slight horizontal refraction problem being observed, as

well as a vertical camera angle issue. Despite this hurdle, changing the post-processing

simulation’s pixel change threshold to 11 pixels renders most of the data collected still

usable.

Figure 7.5: Second configuration, consistent detection

 66

The next challenge presented by the collected data is a discontinuity between data

sets from objects passing through the sensors to the right and those passing through the

sensors to the left.

Figure 7.6: Inconsistent Detection Order

The middle two sensors should not be triggered in the same order when an object

passes through it in opposite directions. Given the configuration of the cameras, and the

static state of their device library assignment thanks to the powered USB hub and the

knowledge learned from the first data gathering, the correct detection sequences are: {B,

Y, R, G} or {G, R, Y, B}. From the graphs above, it is apparent that the left detection is

out of order and incorrect. A factor that could contribute to this incorrect detection order

would be the rolling shutter nature of the function that gathers data. Cameras are

sequentially asked for frames: first the camera at ‘/dev/vid0’ transfers one frame of data

and it is analyzed, then the camera at ‘/dev/vid1’ and so on. This effect causes sampling to

take place asynchronously, and in the case of this test setup, cause inconsistent results.

When the object moved left across the sensor array, it was moving in the opposite direction

 67

that the cameras were sampling, exasperating the rolling shutter effect and causing some

detections to occur out of order. While this cannot be the only cause of this inconsistency,

the fact remains that all data gathered from an object moving left across the sensor field is

rendered useless. This narrows the valid files from 78 to only 36 data files that contain

sound data. After considering the previously addressed problem with Configuration 1, only

29 files detected intrusions on all four cameras and can possibly provide estimations.

During this test gathering the Raspberry Pi itself ran out of data. Simply redirecting

standard output from the detection algorithm to a file (using “>” in Linux) does not alert

users when the system’s memory is exhausted, so half of the original data files were simply

blank. A flash drive was used to free up system space, and the tests were repeated. After

the previous problems were addressed, 29 good data files produced the following

estimations.

 68

7.2: TEST THREE ESTIMATIONS

Figure 7.6: Distance Estimate Errors for Test Three Configuration One

It should be noted that the few estimates within acceptable distance error are due to

a clipping feature of the estimation algorithm (clip the values at a known range given the

position of the road, in this case [20, 30]) and not due to correct estimation. All other

estimates can be seen to be well out of the target 15% error range that will yield accurate

speed and width estimates. The orange dots in Figures 7.6, 7.7, 7.8, and 7.9 are the

estimation goals and the blue dots are the actual estimates.

 69

Figure 7.7: Test Three Speed Estimates for Configuration One

All speed estimates are sufficiently wrong as well, the only one that is close to the

15% target is the estimation at a distance of 20 and a speed of 15, which is the result of a

clipped distance estimation, and therefore not a good representation of the estimation

capabilities of the system. Most are within thirty to forty percent error, with a few outliers

like the close to 100 mph error found when the distance was 30 and the speed was 20.

 70

Figure 7.8: Test Three Distance Estimates Configuration Two

Configuration 2 did not fare any better than the first. Due to the clipping of

estimates, it shows the same 10 foot bound on the maximum error, with some exact matches

due to this aspect of the algorithm, but all actual estimates outside of the target accuracy.

 71

Figure 7.9: Test Three Speed Estimates Configuration Two

All speed estimates are again shown to be outside of the target 15% accuracy.

Massive errors still exist. The highly inaccurate results of this test are due to an exploration

of algorithms to correct these estimates.

 72

Chapter 8: Post Processing

8.1: LINEAR REGRESSION SETUP

In an attempt to fit very noisy data to the known truth, a linear best fit model was

attempted. The only truly measured data is the two time differences: the difference between

intrusion detections on sensors two and three and the difference on sensors one and four.

Thus the sequence of measured time differences was extracted and coefficients for these

measurements to accurately estimate the truth are solved for.

∆𝑇 ∗ 𝐶 = 𝑅

In this equation the time differences are ΔT (Nx2), the coefficients to be solved for

are C (2x1) and the true speeds are the R matrix (Nx2). Thus calculating the coefficients

can be done as follows.

𝐶 = (∆𝑇𝑇∆𝑇)∆𝑇𝑇𝑅

Multiple C matrices are calculated using different methods. The first attempt simply

used all 29 good files’ data, making N 29. The resulting coefficients did not perform well

enough to obtain the 15% error goal for the system.

The C vector found was:

[[18.29589238]

 [0.83033984]]

Seven of the test configurations now result in estimates within the target error

range, which is better than the previous two, however still only one fourth of the total test

runs. For all figures in this section, the orange dots denote the 15% goal, while the blue

dots denote actual points of data after the coefficients found in the linear regression were

applied.

 73

Figure 8.1: All Data Linear Regression Results

The second method utilized was to break the files into groups, calculate the

coefficients based on the majority of the good files, and use the rest to test how accurate

the system had been tuned to be. Three different categorizations were tried. The first

calculation treated the test configuration one data as the training data and the test

configuration two data as the test data. This should not work all that well, as it treats the

estimations as independent of the geometry of the system, which they are not. The C vector

found with this method is very similar to the first:

[[18.26675505]

 [0.21802596]]

 74

Figure 8.2: Linear regression for Configuration One

As shown by this graph, the twelve estimations of the second test configuration

only result in two below the desired error threshold. This is better than the zero before

scaling, but large errors in the other estimates remain. The next test sets used for the linear

regression split each test configuration data into train and test data and calculated two

coefficient matrices, one per configuration. This allows the geometry of the system to effect

the estimations, as it does in the real world.

The first configuration test broke the test data into a set of nine training points and

three test points. The test points were selected to have each distance (20, 25, 30) and speeds

that had duplicates within the training data if possible. This resulted in the test set of {(20

feet, 20 mph), (25 feet, 25 mph), (30 feet, 20 mph)}.

 75

Figure 8.3: Linear Regression – Configuration One Tet Set

Here, one of the three test points has met the estimation goal of less than 15% error.

The others remain a bit too large, but only one is outside of 20% error. Test configuration

two is broken into a set of 10 training data and 2 test data points. The two test data points

were again chosen to be test points that had another point of reference at the same

configuration. They are {(20 feet, 20 mph), (20 feet, 30 mph)}. The resulting C vector is

quite different than the first two found, demonstrating the difference in geometry of

configuration two from the first configuration:

[[12.16577953]

 [7.51219734]]

 76

Figure 8.4: Linear Regression – Configuration Two Test Set

The results above show that neither scaled estimate managed to reach the 15% error

goal. If truth for the two differences in sensor detection time existed, the linear regression

model would work better scaling the existing values to that. However, no such data exists.

Using linear regressions on all four intrusion times simply adds another time difference to

the equation, as the three following time measurements must be considered relative to the

first, as no true time vs distance data was gathered for the test object.

8.2 LINEAR REGRESSION RESULTS

Ultimately the goals of 15% error in speed estimations and 20% in width

estimations were not met by this prototype, even with post processing techniques. The early

 77

assumptions about the system geometry that led to the selection of the low FPS cameras,

as well as choosing many test points slightly out of optimal range led to incredibly

inaccurate test data. Unsynchronized cameras also greatly impacted system accuracy. This

includes the rolling-shutter like effect of the sampling program also leading to

inconsistencies in detection times and more error introduced into the system. Post

processing tweaks to detection algorithm thresholds and attempts to use linear regressions

to create accurate estimations improved accuracy slightly, but ultimately failed to meet the

goals of the system. The unsynchronized and low sample rate prototype never met the

objectives of the report.

8.3: FURTHER TESTING ISSUES

Along with the previously discussed flaws in the testing setup, the following issues

also had a hand in the failure of the prototype to achieve the desired estimation accuracy.

Alternating Sampling Rate

In order to meet export guidelines, the FLIR Lepton 3 has a specification of less

than 9 frames per second. This was found to be true experimentally, with more eight frame

seconds recorded than nine frame seconds. These measurements were determined by

counting samples recorded during the same second of Linux time. This also contributed to

discrepancies between simulation and reality, although to a much smaller degree than the

unsynchronized sampling. Given this issue, the ability of the program to produce accurate

time readings for each sample was vital for the post processing to handle this fluctuating

sampling rate.

Wrong Time Functions Recorded

Instead of the “/sys/time.h” file being included, which has time of day accuracy to

the micro-second, the “time.h” and “clock.h” files were included. These files measure two

 78

things: time since Unix epoch in seconds, and system clocks given to a process. Both of

these were believed to combine to something useful: a second resolution global clock, and

overall clock register, however this understanding was incorrect. The clock time was local

(for the process) and not global, thus the effective granularity of the time measurements

(discarding a good measurement of time to execute the frame to frame update algorithm)

was one second, which is simply not good enough. Milliseconds would be acceptable but

the time information provided from the data was three orders of magnitude too large.

 Despite several attempts to train the estimation algorithm to transform the gathered

data into accurate estimations, problems with the prototype’s design ultimately resulted in

failure of the system to perform to specification. Unsynchronized sampling proved a key

difference between the simulated system and the prototype and greatly contributed to the

system’s inaccuracy. Linear regressions were used in an attempt to train the data, however,

these methods were unsuccessful despite a variety of techniques and test cases. While the

detection algorithm proved successful, the estimation algorithm failed due to prototype

design failure.

 79

Chapter 9: Conclusion and Future Work

9.1: CONCLUSION

To meet the design challenge of speed and width estimation given four points of

data a simulation, prototype, and multiple algorithms were developed. The simulation

modeled the system with perfect sensors and geometry. This program led to decisions about

the optimal geometry, optimal test subjects, and limitations due to sampling rate. The

prototype of the system was unfortunately defined during the simulation process and not

after the analysis was complete. Knowledge of the system’s ideal behavior was still being

learned and understood. Thus the vital tradeoff of sampling rate versus range, which

initially seemed to favor range, was misjudged and the low sample rate FLIR Lepton v3

cameras became the sensors for the prototype. In another miscalculation, care was not taken

to synchronize sampling, as the simulation did. Unfortunately, due to the myriad of design

issues, the comparison between simulated results and measured results never amounted to

more than observing the measured results were much more inaccurate. With a more

accurate prototype a deeper comparison could yield interesting results. Despite these

shortcomings of the prototype, useful algorithms were developed to track thermal drifting

statistically in order to ignore false positives, as well as estimation algorithms. When

moving from simulation to prototype it is vital the conditions assumed in the simulation

are replicated as closely as possible in the prototype. While the goal of 15% error was not

met by the prototype developed in this paper, it provides progress towards a successful low

power four beam speed and width estimator.

 80

9.2: FUTURE WORK

Synchronize Sampling

To accurately match the simulation, the cameras or PIR sensors need to sample

simultaneously. This could be accomplished on the Raspberry Pi 3B, which has a quad-

core processor, by modifying the program to take advantage of these four cores, as well as

finding the correct compiler. Given the final system will involve multiple ADCs

monitoring voltage wave forms from PIR sensors, any further work should ensure these

measurements are synchronized. The Lepton v3 cameras have a video sync GPIO that

could accomplish this, and ADCs normally have synchronous sampling features. The

“rolling shutter” of the main loop of the current program can lead to many oddities,

including out of order detections. This greatly hindered the system’s ability to accurately

timestamp intrusions, which happens to be the only data with which the estimation

algorithm works.

Real Time Operating System

Sensors with higher sampling rates and synchronized sampling will be useless if

the system sampling them does not have guaranteed time accuracy. A Raspberry Pi initially

seemed to fulfill the project requirements given my familiarity with the platform and the

ease of interfacing it with the prototype’s sensors. However, this Linux based board has no

real-time guarantees. This system is only responsible for measuring time, and therefore a

board running a real-time operating system is necessary to accurately measure and report

the intrusion times. Any continued work on this system should transition away from the

Raspberry Pi and towards a board capable of running operating systems such as RTLinux,

VxWorks, or LynxOS to name a few.

 81

PIR Sensor Implementation

While different biases and assumptions that were later changed led to the selection

of the Lepton v3 cameras as sensors for the prototype, much could be gained by sticking

with PIR sensors. For example, the low frame rate on the Lepton cameras greatly decreased

the range of speeds possible to detect. A PIR sensor sampled by and ADC would not have

these limitations, as the sampling rate could be selected as one much higher. Thus a scaled

down geometry of the system to allow for the smaller range of detection afforded by an off

the shelf PIR sensors would more accurately prototype this system.

This prototype will need a new detection algorithm as well. The voltage wave form

coming from the PIR sensor exhibits some instabilities due to ambient temperature

changes, but unlike the thermal cameras, this sensor relies on a differential measurement

and is therefore more stable. Instead of reading what can be extrapolated to temperature

values, this differential waveform takes different shapes when intrusions occur from

different directions. Thus the sensor would be monitored for this sort of behavior, while

featuring some of the statistics based approaches found in the current algorithm to limit

false positives due to ambient temperature changes. The poor sensor selection for the

implemented prototype leaves a good deal of exploration to be done with the PIR sensors.

Given the width estimates are dependent on the speed estimates, it can be inferred

that these estimates would be equally incorrect if not more, as they also have a factor of

the incredibly noisy time estimates.

 82

Appendix A

All code for this report can be found at:

https://github.com/MatthewDeKoning/Graduate-Project

 83

Appendix B

Sandia National Laboratories is a multimission laboratory

managed and operated by National Technology and Engineering

Solutions of Sandia, LLC., a wholly owned subsidiary of

Honeywell International, Inc., for the U.S. Department of

Energy’s National Nuclear Security Administration under

contract DE-NA0003525.

 84

Glossary

ALL ABBREVIATIONS

ADC: Analog to Digital Converter

COTS: Commercially available Off The Shelf

FFC: Far Field Correction

FLIR: Forward Looking Infrared Radiometer (used as the name of a company)

FOV: Field Of View

FPS: Frames Per Second

GPIO: General Purpose Input/Output pin

I2C: Inter-IC bus

MPH: Miles Per Hour

PIR: Pyroelectric InfraRed sensor

SPI: Serial Peripheral Interface

SPS: Samples Per Second

USB: Universal Serial Bus

UVC: USB Video Class

V4L2: Video For Linux (version 2)

 85

References

[1] B. Song, H. Choi, and H. S. Lee, “Surveillance tracking system using passive infrared

motion sensors in wireless sensor network,” in Proc. Int. Conf. Inf. Netw. (ICOIN

2008), Jan. 2008, pp. 1–5.

[2] Burroughs, C. (2006, December 4). Sandia researchers develop better sensor detection

system. Retrieved November 09, 2017, from https://share-

ng.sandia.gov/news/resources/releases/2006/sensor.html

[3] Gopinathan, U., Brady, D. J., & Pitsianis, N. P. (2003). Coded apertures for efficient

pyroelectric motion tracking. Optics express, 11(18), 2142-2152.

[4] Hao, Q., Hu, F., & Xiao, Y. (2009). Multiple human tracking and identification with

wireless distributed pyroelectric sensor systems. IEEE Systems Journal, 3(4), 428-

439.

[5] Keller, H. J. 30 Years of Passive Infrared Motion Detectors-a Technology Review. In

Proc. OPTO/IRS2 Conf, Chicago

[6] Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do

not use standard deviation around the mean, use absolute deviation around the

median. Journal of Experimental Social Psychology, 49(4), 764-766.

[7] PIR motion detector - a sensor for Arduino and Raspberry Pi (1st part). (n.d.). Retrieved

November 09, 2017, from http://www.meccanismocomplesso.org/en/pir-motion-

detector/

[8] Weather History for KABQ - August 11, 2017. (n.d.). Retrieved November 09, 2017,

from

https://www.wunderground.com/history/airport/KABQ/2017/8/11/DailyHistory.ht

ml?req_city=&req_state=&req_statename=&reqdb.zip=&reqdb.magic=&reqdb.w

mo=

[9] Weather History for KABQ - August 16, 2017. (n.d.). Retrieved November 09, 2017,

from

https://www.wunderground.com/history/airport/KABQ/2017/8/16/DailyHistory.ht

ml?req_city=&req_state=&req_statename=&reqdb.zip=&reqdb.magic=&reqdb.w

mo

[10] Weather History for KABQ - July 31, 2017. (n.d.). Retrieved November 09, 2017,

from

https://www.wunderground.com/history/airport/KABQ/2017/7/31/DailyHistory.ht

ml?req_city=&req_state=&req_statename=&reqdb.zip=&reqdb.magic=&reqdb.w

mo=

[11] Zappi, P., Farella, E., & Benini, L. (2010). Tracking motion direction and distance

with pyroelectric IR sensors. IEEE Sensors Journal, 10(9), 1486-1494.

 86

[12] Zappi, P., Farella, E., & Benini, L. (2007, September). Enhancing the spatial resolution

of presence detection in a PIR based wireless surveillance network. In Advanced

Video and Signal Based Surveillance, 2007. AVSS 2007. IEEE Conference on (pp.

295-300). IEEE.

