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Abstract 

 

Embedded Sensor Speed and Width Estimation 

 

Matthew Wayne DeKoning, M.S.E. 

The University of Texas at Austin, 2017 

 

Supervisor:  Brian L. Evans 

 

The goal of this report is to provide a novel system of estimating width and velocity 

of an object passing perpendicularly through a sensor field. By fixing four sensors on an 

axis at known angles the distance and velocity of an object can be estimated from the times 

of detection of each sensor using a system of equations. To develop a prototype of this 

system the scenario was modeled and simulated, a processor and sensors were selected, 

and algorithms for detection and estimation were developed. The goal of the report was to 

develop a self-contained sensor network and computing platform that would correctly 

estimate the speed of the object in miles per hour within 15% accuracy, and to estimate the 

width of the object within 20% accuracy. Due to prototype design errors, these 

requirements were not met, however useful algorithms and simulations were developed to 

lead towards successful future work. 
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Chapter 1: Introduction 

1.1: THE GOAL OF THIS EMBEDDED SYSTEM 

Electronic advancements have allowed smaller, faster, and more connected 

computers and sensors to become commonplace. With these advancements, distributed 

sensor networks have become efficient means to monitor a real world environment. 

Unattended Ground Sensors (UGS) are embedded systems that typically consist of a 

processing component, sensor elements, and a network component which are placed into 

the field on a long term mission to monitor specific environmental features. These systems 

must work without human intervention and often must arrange themselves for proper data 

gathering after being deployed dynamically (for example dropped from a plane). Many 

military and some civilian applications exist for such systems with purposes ranging from 

monitoring the weather in a region to detecting and classifying intrusions. The type or types 

of sensors integrated into such systems can vary greatly. If a UGS is self-powered through 

batteries, solar panels, or other means, the need for conservation of power becomes the 

main limiting factor on the system’s available mission time. Thus power efficiency is a key 

design consideration. This report details the simulation, prototyping, and design of a UGS 

for the purpose of detecting intrusions and estimating the width and speed of the intruding 

objects.  

An array of thermal sensors are specified as the desired environmental monitoring 

due to the simplicity of computation when analyzing thermal signatures for intrusion. The 

UGS designed in this report detects and characterizes intrusions moving perpendicular to 

a horizontal axis, movements similar to those found in real world environments like roads 

and sidewalks. Previous works related to thermal sensing and characterization rely on novel 

sensor banks and lens configurations, but this project seeks to minimize the number of 

sensors used while using simple lenses and finding their optimal orientation. Given a 
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system with four sensors and known orientation, the geometry of the sensors can be 

exploited to estimate the speed and width of the intruding objects given only intrusion times 

from each individual sensor. This system provides very low power intrusion 

characterization along a road or sidewalk by utilizing a small array of low power sensors.  

 

 

Figure 1.1: System Dataflow 
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Figure 1.2: System Geometry 

To optimally use the geometry of the system, the ideal sensor would behave like an 

infinitely small beam. This beam precisely monitors the environment at the angle the sensor 

is positioned at, recording times when the beam is broken by an intruder. The most realistic 

implementation of such a system involves a field of lasers as well as a set of sensors at the 

edge of the range of the system to monitor whether the beam is broken or not. This is 

neither power efficient, or discrete, and the system becomes quite large and difficult to 

properly place. Lasers consume a significant amount of power and placing the monitoring 

sensors at a reasonable range would require a high degree of precision. Pyroelectric 

infrared sensors (also known as passive infrared sensors or PIR) on the other hand monitor 

the environment with a much larger field of view than lasers, but consume very little power. 

Careful optical design can result in a small field of view and reasonable range for such a 

sensor. Commercially available products can monitor objects over one hundred fifty feet 
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away with a field of view less than four degrees. While a final system may ultimately use 

PIRs, the prototype presented here uses thermal camera technology due to budget and 

timing constraints. This choice ultimately pushes the amount of error in the system’s 

estimate beyond the goal of this report. 

 To better understand tradeoffs in field of view, frames per second, and the optimal 

range of the system prototype a simulation of the scenario was developed and analyzed in 

Python 2.7. Once the characteristics of the system’s sensors were decided upon, the optimal 

geometry and optimal set of test objects were also determined from the simulation. After 

simulation-aided prototype and test definition, algorithms to detect intrusions and estimate 

speed and width based on intrusion times were developed to complete the system. The 

detection algorithm must account for ambient thermal noise and temperature drift while 

providing accurate detection times. Any reduction of noise in the detection time 

measurements twice benefits the system, as the time deltas required for estimations are the 

product of two measurements, and therefore noise is added twofold. The estimation 

algorithm is written to solve the system of equations presented by the system’s geometry 

and the time differences. Finally the functioning prototype gathered data and the accuracy 

of the simulation and design was assessed. Further design and algorithm implementations, 

as well as simulation updates are informed by the discrepancies between reality and 

simulation. The simulation informs the design of the embedded system, both of which are 

refined by the experimental findings. 

1.2: RELATED WORK 

 Since they became available in the late 1970’s, PIR sensors have been used in 

general surveillance [5]. The development of the Fresnal lens allows an inexpensive and 

small device to monitor a very wide area for a short distance, making them ideal for 
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monitoring small but sensitive areas such as points of ingress or egress. Academia also 

explores ways to utilize these sensors in new and novel ways. In 2003 Gopinathan et al. 

contributed a lens and sensor network capable of characterizing the location of an object 

in a square region monitored by four PIR sensors [3]. This was accomplished by creating 

a unique mask for each of the four sensors and comparing the outputs of the sensors to 

determine the state of the object within the surveilled area. This enabled four sensors 

without fine location detection to function at a finer location granularity than normal. Their 

detection algorithm utilized four binary event signals triggered by the voltage waveform 

from the PIR sensor. These event signals were then analyzed and the state of the object in 

the field extrapolated from there. Tests on both a precisely moving robot and a human and 

successfully mapped their movement through the sensor field.  

Similar work in this field includes the carefully laid out sensor fields proposed by 

Song et al. which would track an intrusion throughout a building by carefully positioning 

slightly overlapping PIR sensors throughout a region and observing the sequence of 

triggering [1]. This system efficiently tracked an intruder in a large environment made up 

of conjoined smaller spaces, such as a building or campus. A novel three sensor solution 

was proposed by a team from the University of Bologna to monitor a hallway and classify 

intrusions by object count and direction [11]. This method characterized the waveform 

generated by different numbers of people walking side by side in a hallway, arranged three 

sensors to gather the data at different angles, and used a separate processor to fuse the data 

gathered into an estimate of count and direction. Given the presence of three sensors 

monitoring the same region, the estimate exists when the majority of the sensors are in 

agreement. Another recent exploration of PIR sensor systems by the same team focused on 

the analog waveform coming from the differential PIR sensor [12]. This study correlated 

the amplitude and duration of intrusion signals to distance from the sensor and proposes a 
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mirrored two sensor approach for PIR sensors. In yet other work, a two column sensor 

module was developed for monitoring the intersections of two hallways [4]. In total eight 

sensors, each given a unique view of the hallway, comprise the two column sensor. The 

data captured by these sensors are then fed through several estimation algorithms including 

Bayesian tracking in order to more accurately track objects. Recent work at Sandia 

National Laboratories has fused off-the-shelf sensors with more complex Lab developed 

devices in order to avoid false positives and save power [2]. The off the shelf sensor are 

arrayed around the custom sensors, and their detections trigger the specialized sensors to 

further investigate an incident. 

The work presented here draws considerable inspiration from some of the methods 

used before it, but also diverges in several key areas. Each of these IR sensing modules 

work to track an intrusion throughout a region as well as detect it. Many of them then use 

machine learning algorithms to then attempt to classify the intrusion through analyzing 

certain aspects of the data gathered. The solution proposed does not track an object, it 

assumes sequential detections will be the same object. Instead it merely detects and 

characterizes objects by speed and width. The threshold and event flag processing 

algorithm utilized by Gopinathan’s team is emulated in this work.  
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Figure 1.3: Gopinathan’s Detection Thresholds [3]  

Graphs like these can be seen throughout the test results section of this report, 

despite the fact the waveforms being analyzed are of very different nature. Many useful 

approaches to handling and estimating based on IR data were found in these projects, but 

this work aims to estimate specific characteristics of the intruding objects rather than 

tracking them or estimating direction or count.  
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 Sensor 

Arrangement 

Lens Goal 

This Work Four on an axis 

(parallel to test 

subject) 

TBD 

(likely a very 

narrow long 

range FOV 

custom lens) 

Speed and width 

estimation 

(object 

classification) 

Gopinathan et al. 

2003 

Four in a grid 

(above test 

subject) 

Custom “grid” 

lenses 

Object tracking 

Song et al. 2008 Custom 

(throughout a 

region) 

Fresnal lenses Object tracking 

Zappi et al 2010 Two sensor 

mirrored clusters 

(throughout a 

hallway) 

20° FOV limited 

Fresnal lens 

Object tracking 

and 

classification 

Hao et al. 2009 Eight per two 

column sensor 

module 

(multiple 

modules 

arranged at the 

end of halls) 

Custom slices of 

FOV exposed 

for each stacked 

sensor 

Object tracking 

and 

classification 

Zappi et al 2007 Three sensors 

along a hallway 

17° FOV limited 

Fresnal lens 

Object 

classification 

(count and 

direction) 

Table 1.2: Comparison to Previous Work 
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1.3: RELEVANT EQUATIONS  

 

Figure 1.4: System Geometry Revisited 

The goal of this embedded system is to produce an accurate output of sensor 

detection times, which are then used to calculate relevant time differences (∆t) to solve a 

geometric system of equations and obtain the speed and width estimates. The relevant ∆t 

are the differences between detection times of sensors two and three (∆𝑡23) and the 

differences between detection times of sensors one and four (∆𝑡14).  In the context of this 

system, all ∆t are therefore considered to be known, and the average value of the times 

detected by one sensor during an intrusion will be called the sensor time (objects will 

trigger multiple detections times, the average of these is the sensors ‘detection time’ used 

in the ∆t subtraction). 
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Distance from Time and Speed (1) 

𝑑14 = 𝑠 ∗ ∆𝑡14 
𝑑23 = 𝑠 ∗ ∆𝑡23 

Distance Based on the Geometry of the System (2) 

𝑑14 = 𝐿1 + 𝐿4 + 𝐷 ∗ tan (𝜃1 −
𝜋

2
) + 𝐷 ∗ tan (𝜃4 −

𝜋

2
) 

𝑑23 = 𝐿2 + 𝐿3 + 𝐷 ∗ tan (𝜃2 −
𝜋

2
) + 𝐷 ∗ tan (𝜃3 −

𝜋

2
) 

 

Combining (1) and (2) 

𝐿1 + 𝐿4 + 𝐷 ∗ tan (𝜃1 −
𝜋

2
) + 𝐷 ∗ tan (𝜃4 −

𝜋

2
) =  𝑣 ∗ ∆𝑡14 

𝐿2 + 𝐿3 + 𝐷 ∗ tan (𝜃2 −
𝜋

2
) + 𝐷 ∗ tan (𝜃3 −

𝜋

2
) =  𝑣 ∗ ∆𝑡23 

Creating a Linear Equations with Respect to the Unknowns 

𝐿1 + 𝐿4

∆𝑡14
+ 𝐷 ∗

[tan (𝜃1 −
𝜋
2) + tan (𝜃4 −

𝜋
2)]

∆𝑡14
=  𝑣 

𝐿2 + 𝐿3

∆𝑡23
+ 𝐷 ∗

[tan (𝜃2 −
𝜋
2) + tan (𝜃3 −

𝜋
2)]

∆𝑡23
=  𝑣 

Solving for D 

(
𝐿1 + 𝐿4

∆𝑡14
−

𝐿2 + 𝐿3

∆𝑡23
) + 𝐷 ∗ (

[tan (𝜃1 −
𝜋
2) + tan (𝜃4 −

𝜋
2)]

∆𝑡14

−
[tan (𝜃2 −

𝜋
2) + tan (𝜃3 −

𝜋
2)]

∆𝑡23
) =  0 

With these equations, knowing the dimensions and angles of the sensor array allows 

estimation of distance and velocity from the stream of detection times.  

Estimating Width 

𝑊 =  ∆𝑡𝑆𝑒𝑛𝑠𝑜𝑟 ∗ 𝑣 

This equation can be used to estimate the width of the object based on the duration 

of time individual sensors detected its presence and the estimated velocity.  



 11 

Embedded sensor networks provide almost unlimited potential applications. By 

utilizing cheap COTS sensors as well as processors, tracking and characterizing different 

phenomena can be accomplished. This report proposes a novel system of four IR sensors 

to monitor the speed and width of objects moving past it. Previous work has shown 

characterizing intrusions, as well as tracking intrusions is possible, even with the lack of 

precision afforded by PIR sensors. Equations have been derived to extract the speed and 

width estimates from the stream of detection times of the sensors. The next step is to define 

a system prototype. 
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Chapter 2: Prototype Design 

2.1 SENSOR SELECTION 

For the prototype it was determined that the sensors should meet the following 

criteria: range of at least 75 feet, a small field of view, and a reasonable sample rate. The 

range of 75 feet allows the geometry of angles of the sensors to spread out enough for full 

scale (i.e. human or vehicle) tests. The small field of view allows each sensor to be treated 

close to a ‘pixel’ of detection, and the smaller the field of view, the more accurate the 

estimation can be. The sample rate of the device determines how fast the test objects can 

move, a full scale vehicle test would require a high refresh rate for a camera, but a low 

sampling rate for an IR sensor (30 – 60 Samples Per Second (SPS) performs well on most 

vehicle speeds according to simulation). Given these characteristics and a budget, several 

sensors presented themselves as options. 

Four sensors were considered for this report. The first sensor considered was a 

simple passive infrared sensor, to be connected through an ADC or GPIO to the Raspberry 

Pi. The second was an off the shelf IR security sensor which would also interface to the Pi 

through a GPIO or ADC. The third option is a standard web camera with a USB connection 

to the processor. The final option is the FLIR Lepton infrared camera. This option 

interfaces to the Pi in one of two ways: SPI data and I2C command line or over USB like 

a webcam with a breakout board.  

PIR Sensors 

 A standard PIR sensor has a range of up to 20 feet and a wide field of view. This 

can be narrowed by using lenses, the smallest of which produced a 10° FOV. The signal 

out of a PIR sensor would need to be sampled by an ADC to analyze the waveform for 

intrusions, as shown in Figure 2.1. Circuits also exist to simply raise a GPIO pin if an 
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intrusion is detected, however is not sufficient for this report as it only provides one bit of 

resolution. The power consumption of these sensors can be relatively low, and they are 

easily extended to an array of four with a multi-channel ADC or multiple GPIOs. Price is 

another strong point for this type of sensor as they are very cheap. Unfortunately for this 

prototype the PIR sensor’s range and wide FOV make them nearly unusable. Ultimately in 

order to create a low power PIR solution a custom lens will need to be developed, however 

the lens design is beyond the scope of this and budget of this report.  

 

 

Figure 2.1: Standard PIR Detection Waveforms [7] 

Takex PIR-50NE (COTS Sensor) 

The Takex PIR-50NE is an off the shelf security solution with a PIR sensor at its 

core that solves the FOV and range problems of the standard PIR sensor. With a 165 foot 

range and 3.5° FOV this sensor has great range and narrow spread. The weaknesses of this 

sensor come from implementation complexity, power consumption, and cost. All TAKEX 
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sensors are produced ready to be integrated into existing security systems, meaning the 

device would need to be opened and modified to give an ADC direct access to the 

waveform from the PIR sensor at its core. In the out of the box state, the sensor sends a 

20V 100 mA pulse for two seconds upon an intrusion detection, a sampling rate that is 

much too low and a power consumption that is much too high. With an individual cost of 

$520 this sensor also boasts the highest price. The TAKEX PIR-50NE contains a sensor 

and lens system that is nearly ideal for this report, however the price and unknown 

complexity of modifying the sensor hurts its viability.  

Web Camera 

 The third option was using a basic web camera as the sensor. This option provides 

flexibility in FOV, great range, low cost, and is easy to implement. However, these cameras 

simply don’t monitor the spectrum of interest for this report. A different image processing 

project could be completed using web cameras, but for this report an IR sensor is necessary.  

FLIR Lepton 3 

 The final option was the FLIR Lepton 3 IR Cameras. This camera has a 160x120 

resolution which allows for flexible FOV settings, a good range of 100 feet, medium cost, 

and low power consumption. The PureThermal 1 breakout board changes the interface 

from SPI video and I2C command to UVC USB video format. USB interfacing is found in 

nearly every off the shelf embedded processing solution, allowing quick and easy 

compatibility. On an embedded board running Linux the v4l2 (video for Linux 2) interface 

allows frames of data to be captured and processed in many languages (C and Python 

notably). The weakness of this option is its 9 FPS. This sample rate is very low; however 

this can be worked around by slowing test objects. Due to cost, range, and flexibility the 
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FLIR Lepton 3 Cameras with PureThermal 1 breakout board was chosen as the sensor for 

this system’s prototype.  

2.2: SYSTEM DESIGN 

When considering the processor to use for this project four criteria were present: 

compatibility with the selected sensors, off the shelf availability, and my familiarity with 

the platform, and ease of deployment into the test environment. Off the shelf boards like 

the BeagleBone line of development boards, Arduino Uno, and Raspberry Pi were 

considered. Of these embedded processing solutions, only one fulfilled the two remaining 

criteria (easy interfacing to sensors and familiarity), the Raspberry Pi. While all platforms 

provide easy USB interfacing, my familiarity with the Raspberry Pi lead me to select the 

Raspberry Pi 3B board as the processing element of this project.  

 

 

Figure 2.2: System Block Diagram 
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With the prototype architecture defined as a Raspberry Pi 3B with four Lepton 3 

cameras, the remaining piece of hardware is a simple powered USB hub to allow mouse 

and keyboard connections as well as ensure proper power distribution to the cameras. 

 

 

Figure 2.3: System Prototype 

Firmware for compatibility between the third version of the Lepton camera and the 

PureThermal 1 is located on GitHub, as the previous versions had half the resolution, and 

therefore the older firmware is not compatible. After working with v4l2 libraries (in python 

and C), data from the cameras was successfully captured. A simple Python script (which 

was later converted to C to similarly validate data was good) generated a sketch of the 

thermal measurements by creating an array of Tkinter rectangles on a canvas with each 

rectangle’s color scaled between black (cold) and white (hot) based on that pixels value. 

The algorithm first finds the minimum and maximum values in the image so that this color 

is scaled relative to these local maxima and not the global maxima of a twelve bit unsigned 

integer. The resulting image is consistent with the thermal profile of the surroundings. My 

face can be seen to be warm relative to the surroundings and lights and desks can be seen 
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in the background having slightly different heat signatures than their surroundings. Given 

successful data acquisition, the next step was to write algorithms for detection and 

estimation and run them on the prototype. 

  

 

Figure 2.4: Successful Data Acquisition 

2.3: CASES 

 GroupGets, the creator of the PureThermal1 breakout board for the Lepton 

Cameras, has posted the files for a 3D printable case for the camera and board. A base was 

created to mount these cases at a fixed angle to easily orient the sensors. This base consists 

of a protractor with a swiveling attachment on top of it for easy angle configuration, along 
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with mounting holes. Ultimately, these cases were positioned properly by attaching them 

to tripods with double sided sticky Velcro strips. 

 With the sensors, processor, and method for orienting the system selected, the next 

step in prototype development was developing algorithms and selecting test objects. 

However, while the prototype was being designed, a simulation of the system was being 

written to gain a deeper understanding of the geometry of the system, as well as the 

prototype’s limitations.  

 

 

Figure 2.5: FLIR Lepton 3 Cases 
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Chapter 3: Simulation 

3.1: SIMULATION DESIGN 

 While the sensor-processor interface was being defined a simulation of the scenario 

was created to better understand the system as well as find optimal geometric parameters 

for the sensors and optimal testing conditions (width, speed, and distance of the test object. 

This simulation was written in Python 2.7. It functions by being given three sets of data: 

test object parameters, geometric parameters, and sensor parameters. Test object 

parameters are the distance, speed and width of the object passing through the system, the 

known truth that is being estimated. The geometric parameters define the distances apart 

and angles from the center the sensors are placed at. These are critical parameters for data 

that contributes to the estimation algorithm. Sensor parameters characterize the field of 

view of the sensor as well as the sampling rate. The test object data set is specified as a 

range of distances, speeds, and widths with a step size to iterate over. With the system 

configuration and test objects set, the program begins simulation of the scenarios specified 

by defining the sensor’s beam width and x-values at the specified distance.  

Next the test object is positioned beyond the most negative (left-most) sensor at the 

specified test distance (as shown by Figure 1.3). A loop then steps this object to the “right” 

across the sensor field by incrementing the front and back coordinates of the test object by 

the sampling rate multiplied by the speed of the object. This suggests the simulated system 

has a perfect sampling rate as well as uniform sampling times. As the test object moves 

across the sensor field, the range of x-values it occupies is tested against the range of x-

values that each sensor monitors, if these two ranges coincide, the current time of the 

system is added to the a list of times for that respective sensor. After the test object 

completes its run through the sensor array, the average of each list of detection times are 
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found and the simulation  uses these times to solve the relevant system of equations to 

return the estimated distance, velocity, and width estimates. For each of the test object 

parameters (a specific width, distance from the sensors, and speed) the simulation runs 10 

tests at varying starting points within the distance the object can move within one frame 

(sample rate multiplied by speed) to determine a best, worst, and average estimate for this 

specific scenario. The simulation will output the percentage of the test set that are above 

10% error when estimating velocity and the percentage of these tests above 20% error when 

estimating width.  

 A graphical user interface was developed to better show the test scenario specified 

in the simulation, as well as show the different snapshots the system would get of the object 

as it passed through the sensor field. First the geometric, sensor, and test objects of the 

system are specified.  
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Figure 3.1: Simulation Parameter Selection 

When the simulation begins, the geometry of the sensors are drawn on an x-axis, 

centered on a y-axis. This includes dotted lines to indicate the ‘one pixel wide’ perfect line 

of sight of the camera, as well as lines on either side of this to indicate the actual field of 

view of the camera. Figures 3.2, 3.3, and 3.4 show this GUI. As the simulation continues, 

an option can be checked to show the object’s location at each subsequent sampling time. 

This illustrates how the test object steps through each sensor beam and allows better 

understanding of sensor misses and other anomalous behavior.  

2.2: THE GEOMETRY OF THE SYSTEM 

The simulation was used to find an optimal geometric layout for the system. Many 

configurations of the sensors were considered. To determine which configuration was 
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preferred simulation results were considered alongside other qualities of the configuration 

such as the spread of the base (the sum of the horizontal axis lengths L1 – L4). To determine 

accuracy a wide range of test objects (characterized by distances, velocities, and widths) 

were used over several different geometric configurations to determine average 

performance.   

Configuration One 

 

 

Figure 3.2: Sensor Configuration One 

 The first configuration considered had all the sensors at acute angles with respect 

to the x axis and the y axis (Figure 3.2). This proved neither accurate nor practical as the 

distances of the sensor from the base of the axis would need to be large to allow a decent 

range and spacing between sensors. Recording the same or very similar times for multiple 

sensors leads to inaccurate estimations.  

The project proposal showed the sensors in this array, so for the first month of work 

this was the default configuration. This lead to several decisions that would later be to the 
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detriment of this report’s prototype. For example the selection of the low frame per second 

sensors reduces the viability of commonly available test objects. If the configuration 

required acute angles toward the center, PIR sensors with basic lenses on them become 

unworkable. This is due to the fact that with off the shelf and cheap lenses, the field of 

view can be reduced to 10° and the range increased to approximately 20 feet, which is 

much shorter than the desired range. The spread of the sensors at the edge of the region of 

detection is 3.5 feet, suggesting for a good amount of the 20 foot range the signals would 

be colliding and aliasing together as the same detection time if it is assumed the sensors 

face inward. Having multiple sensors with the same average detection time results in 

division by zero in the system of equations to produce an estimate, and therefore should be 

avoided. Another issue with this configuration is the width of the base. Since overlapping 

sensors produce similar average times and decrease the ability of the system to estimate 

accurately or at all, this configuration favors sensors that are a spread out along the x-axis. 

This leads to several issues including difficulty in creating a reliable setup procedure or rig 

for the sensors given such a wide base, and ensuring connections for the prototype like 

USB cables are long enough, all contributing to the fact that a compact implementation is 

preferred.  

When defining the system’s prototype and selecting sensors, the design challenges 

of this configuration led to design choices that would greatly impact the success of the 

prototype, whereas later configuration options were not hampered by the cramped nature 

of this setup and would have resulted in a different prototype design. Not too long after 

selecting a purchasing the FLIR Lepton sensors, the geometry of the system was 

reconsidered, and more optimal geometries were found. 
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Configuration Two 

  

 

Figure 3.3: Sensor Configuration Two 

The second configuration considered works considerable better for both accuracy 

and the horizontal size of the system, however, the two sensor beams in the middle are still 

closer than necessary, which can cause the sensor times to be grouped together, reducing 

the accuracy of the estimation.  
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Configuration Three 

  

 

Figure 3.4: Sensor Configuration Three 

The most accurate and space conscience configuration points the closest grouped 

cameras at the harshest angles, while allowing the further spaced cameras softer angles. 

This allows the system to be tightly spaced horizontally while still being accurate. It should 

be noted that with this configuration the object being observed and estimated should be 

beyond the points of convergence of the sensors, or aliasing can occur.  
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3.3: DETERMINING TEST OBJECTS THROUGH SIMULATION 

 

Figure 3.5: System Geometry 

In order to define both the geometry of the system and the set of test objects, many 

scenarios were simulated. First relationships between the geometry of the system and the 

error were developed.  

Optimal Angles 

To determine the best angle for the two sets of sensors to use, the angles not under 

test are held at 90°, the base is set up for the outside sensors to be ten feet from center, the 

inside sensors are five feet from center, and the field of view and frames per second were 

set to 2° and 9 FPS respectively based on the FLIR Lepton 3 camera. The distance is set 

from 30 to 40 feet, the speed set from 5 to 15 mph, and the width is set to 5. All of these 

parameters are meant to showcase a favorable test setup, with the base being wider than 

desired in order to consider acute angles.  



 27 

 

 

Figure 3.6: Angle of Cameras vs. Error in Velocity Estimate 

The results suggest the wider the angle, the more accurate the estimation, which 

agrees with previous reasoning about conflicting regions of detection and decreased sensor 

accuracy. When sensors are pointed further away from each other, accuracy increases. It is 

interesting that a local maximum occurs when the angles are equal, suggesting that the 

estimation equation does not work well when the two geometries used are similar (in this 

case two rectangles). Given a minimum approximately one mph estimation error occurred 

when angles 2 and 3 were set to 130°, the test was repeated holding angles 2 and 3 at 130° 

to determine the optimal angles 1 and 4. 
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Figure 3.7: Angle One vs. Error 

Here the velocity error was minimized beneath 1 mph per estimation when angles 

1 and 4 were at 105°. Moving forward the optimal angles for a test configuration were 

considered to be 105° for angles 1 and 4, and 130° for angles 2 and 3.  

Optimal L1 – L4 Distances 

The next step in optimizing the geometry of the system is determining the best 

distances from the center of the system to position the sensors. Again, sensors 1 and 4 

(distance 1) were considered mirrors of each other, as were sensors 2 and 3 (distance 2).  
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Figure 3.8: Outer Distances vs. Error 

The first test set the angles to their “optimal values” while holding distance 2 at 1 

foot in order to consider the smallest configuration possible (2, 1, 1, 2) while biasing the 

system towards a smaller setup. A minimum of viable sensor distances is found when the 

outside sensors are placed five feet from the center. Given this optimal location, the set of 

options for distance 2, the distance of the middle sensors from the center was now {1, 2, 3, 

4} feet. 
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Figure 3.9: Inner Distances vs. Error 

When testing this set, the minimum value is found to be where the inside sensors 

are furthest from the outside sensors. Given the inside sensors are at a hard angle of 130°, 

the range in results are much more tightly grouped than previous tests (all are within about 

1.2 mph of error). The optimal geometry of the system is determined to be outside lengths 

of 5 feet, inside lengths of 1 foot, outside angles of 105° from center, and inside angles of 

130° from center.  

3.4: DETERMINING TEST OBJECTS 

The next step towards deploying and testing a prototype width and speed estimation 

device was to determine optimal test object parameters (characterized by a distance from 

the sensors, speed, and width) to test the system with. The first test determined a testable 

range of speeds that would result in a reasonably accurate output. For this test the distance 
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and width (10 feet) are held constant (multiple distances are tested) in order to isolate the 

effect speed has on the accuracy of the system. For this part of the analysis, Configuration 

1 was considered the previously found optimal geometry of the system.  

 

 

Figure 3.10: Determining Appropriate range of Speeds for Test Objects 

From a distance of approximately 25 feet to 40 feet and a range of speeds up to 

nearly 20 mph the minimum and maximum error graphs bound the error by close to 10%. 

Thus test objects with a distance range of [25, 40] feet and a speed range of [0, 20] mph or 

some subset of these ranges would lead to an accurate test. It should be noted that the 
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effects of the low samples per second of the system were clearly shown in this test. The 

error bound grows exponentially when the speeds of the test objects rise above 20 mph.  

The next test was to determine an optimal width for test objects given the previously 

determined speed and distance ranges. The same geometric configuration is again used, 

and constant distances and speeds are picked from within this subset to test a range of 

widths on. The range is selected to be from one foot to fifty feet in order to include possible 

test subjects ranging from a person to a semi.  

 

 

Figure 3.11: Error vs. Width given previous Distance and Speed ranges 

It should be noted that an error of 16 for a 15 mph test indicates a sensor miss 

caused the estimation algorithm to fail (and return -1), or in general an error of the speed 

plus one indicates sensor misses led to failure. Thus when a high speed and a small width 

combine, the maximum error is often this number, as seen by the smaller widths on the 15 

mph and 20 mph graphs. From these graphs and analysis it can be seen that distances from 
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30 to 40 feet perform well with a speed range of 5 to 15 mph and width of around 5 to 10 

feet.  

Thus test objects for this test can optimally be defined as objects with D = [25, 40] 

feet, S = [5, 15] mph, and W = [5, 10] feet. Running the simulation over these values with 

the optimal geometric configuration yields only 0.38% of tests above speed estimation 

error. Further, to characterize a test object as a golf cart, with a standard width of 8 feet, D 

= [25, 40] feet, and S = [5, 15] mph the simulation returns 0% of tests have a speed 

estimation error of above 15%. Given these conditions, optimal test object is a golf cart – 

capable of producing the range of speed and of the width desired. However, due available 

resources, a Chrysler Town and Country with a width of 17 feet is instead used (with the 

added benefit of built in speedometer).  

 

Figure 2.12: System Geometry for Reference 
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L1, L4 5 feet 

L2, L3 1 foot 

A1, A4 105° 

A2, A3 130° 

Distances for Test [25, 40] feet 

Speeds for Test [5, 15] mph 

Width for Test 8 feet 

Expected Accuracy of Estimates Within 15% 

Table 2.1: Ideal Test Conditions, as found by simulation 

 Analysis of the system’s geometry and parameters lead to a simulated model of the 

system’s context. Analyzing this simulation lead to ideal geometric configurations, sensor 

characteristics, and test objects. The next step was to verify the simulation and its results 

with real world data. To accomplish this algorithms for intrusion detection and estimation 

were developed in parallel to the simulation’s development. Programs to gather raw 

thermal data and data from the intrusion algorithm were written for the system prototype.  
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Chapter 4: Algorithms  

4.1: DETECTION ALGORITHM 

The goal of the detection algorithm is to allow for the instability of ambient thermal 

background noise while accurately recording intrusion times. To achieve this, a sample 

average is kept for a specific window of pixels from the Lepton cameras. To approximate 

a two degree field of view, a six by six square of pixels from the center of the camera was 

analyzed. Each of these pixels has a stored window of N samples with the mean, median, 

and standard deviation of this window. For the duration of this work, N is equal to 32 

samples. The standard deviation is computed through Median Absolute Deviation.  

When new data arrives each pixel will raise an alert given the data is beyond a 

certain statistical threshold. Samples are next added either to the N sample history of the 

pixel if they lie within a thermal anomaly threshold, or they are rejected and the sample 

history remains unchanged. The samples are stored in ascending value order, each sample 

with two values: a twelve bit thermal value from the camera, and a sample age between N 

(new, 32 in the current implementation) and zero (the oldest sample). The algorithm adds 

new data to the N samples by removing the oldest data and shifting the remaining samples 

into the lower elements of the array while also decrementing their age, leaving the top 

element empty. A binary search places the new data point in the proper place in this N-1 

sorted list, and moves the values larger than the new data into the upper positions of the 

array. While the algorithm sorts the data, it tracks the index of the oldest piece of data (next 

to be removed) and stores this inside a pixel data structure which also includes the sample 

array and statistics. Finally the new statistics are calculated. The mean is obtained from a 

simple addition and shift in the current algorithm (the sum of the previous values are 

computed during the sorting loops, the shift by 5 divides by 32), the median is simply the 
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value in the middle index since the list is sorted, and the standard deviation is obtained 

through the MAD calculation [6]: 

 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)|) 

 

𝑀𝐴𝐷 =  𝜎√2𝑒𝑟𝑓−1 ≈ 0.67449𝜎 

Figure 4.1: Median Absolute Deviation Equations   

Several variables can characterize a specific implementation of this algorithm: the 

window size kept (N), the statistical threshold to determine intrusions (a multiple of 

standard deviation), and the threshold to determine thermal anomalies. After extensive 

testing in the same thermal environment outdoors, it was noted that between frames – or in 

approximately one ninth of a second – pixels could jump around ten to twenty in infrared 

value. The Lepton’s accuracy of less than 0.050° C suggests that this jump would be at 

most 1° C between samples, which could be attributed to natural phenomenon such as 

natural heating or cooling during the day or sudden cloud cover. Given events like these 

do not reflect the changing ambient temperature as much as short transient events, they are 

to be excluded from the running average. Thus the threshold to consider a change in pixel 

value a thermal anomaly was set to 30 pixel value or 1.5° C to mitigate the effects of such 

temporary events on the samples and their statistics. The commonly used N equals 32 

sample window counts for between 4 and 3.55 seconds, often providing a low standard 

deviation. Due to the low standard deviation and somewhat large thermal anomaly 

threshold, a large deviation coefficient is required to be detected as an intrusion. For 

example, two to four are commonly found to be a pixel’s standard deviation given 32 

samples, requiring five to six sigma thresholds in order to consider an alert any disturbance 
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greater than one degree Celsius. Despite this lack of statistical granularity, the combination 

of these two thresholds proves accurate in detecting intrusions in the field. 

Given the detection algorithm works at a pixel level, a new threshold is introduced 

that determines frame detection. As samples are processed, a certain number of pixels must 

indicate change for the algorithm to determine an intrusion occurred during this frame and 

report the current time to the intrusion list for the particular camera. After experimentation 

a frame threshold of twelve changed pixels seemed reasonable in producing no false 

positives and only a few failures to detect.  

4.3: DETECTION ALGORITHM REQUIREMENTS 

When designing an algorithm, it is important to consider the time and memory 

characteristics in order to better understand the architectural requirements a system running 

the algorithm. In order for the estimation algorithm to run, the microprocessor must hold 

four times the window size times the number of samples kept. In the experimental setup, 

the window was six by six pixels, with each pixel storing 32 previous two-byte values. This 

results in a requirement of 9.216 KB just to hold the sample data, and the other data the 

algorithm needs will push the memory requirement to at least 10 KB. Using the sorting 

methods described in section 4.2 takes O(N) time, as the list will at most be traversed once 

for each time it is searched (moving values into the lower N-1 values of the array and 

moving the larger value back into the upper part of the array). It should be noted that the 

O(N) time for the overall algorithm has a large coefficient, as the window size and number 

of cameras become multipliers for the number of times this algorithm is run per sample. 

4.2: ESTIMATION ALGORITHM 

Throughout the tests documented in this work, only detection was attempted on-

line during data gathering (raw data was also gathered) and the estimation algorithm was 
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purely used in off-line post processing. Thus simply transplanting the simple system of 

equation solving function from the simulation proved to be the quickest way to create an 

estimator. This function can be directly lifted from the estimation function written for the 

simulation. Determining how to group intrusions and extract speed and width estimations 

efficiently is included in the Chapter 9.2. Despite the lack of estimations, the detection 

algorithm was implemented in C and connected through the Raspberry Pi 3 to streams of 

IR data from the FLIR Lepton 3 cameras. The next step is to test the performance of these 

algorithms and ultimately compare estimates based on intrusion data from field tests to 

those of the simulation.  
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Chapter 5: Test One 

5.1: TEST ONE SETUP 

The first test site took place in an abandoned neighborhood on Kirtland Airforce 

base from 9 am to 12 pm on July 31, 2017.  

 

 

Figure 5.1: Test Site 

 The sensor array was set up 25 feet from the straight road inside of the loop. The 

farthest two cameras were configured five feet from center focused at an angle of 140° 

from center and the middle two cameras were placed one foot from the center at an angle 

of 100° from center. This experimental setup was close to the optimal setup, and tested the 

edge of detectable speeds. It should be noted that the simulation had been tested to find the 

optimal geometry when this data gathering was conducted, but the optimal solution was 

found later. 
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Figure 5.2: System Geometry for Test One 

The temperature rose from approximately 70° Fahrenheit to slightly over 80° 

Fahrenheit. A fairly linear increase of 10° from 10 am to 12 pm. 

 

Figure 5.3: Temperature environment of Test 1 [10] 
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A dodge caravan van (17 feet wide) was driven at 15 – 25 miles per hour in both 

directions along the straight road as one test subject; a person walking in front of the 

cameras was used as the second test subject. The Raspberry Pi, cameras, monitor, and input 

devices were powered with a large battery. A powered USB hub compatible with the 

Raspberry Pi had not yet been found, so a script was created to trigger the data gathering 

program on a timer, allowing the keyboard to be unplugged and the fourth Lepton to be 

plugged in (a Raspberry Pi only has 4 USB ports, so without a hub those are monopolized 

by the cameras).  

The detection algorithm tested has an N (sample history length) of 32 for each of 

the pixels in the 2° window (six by six center square) of the cameras and used them to find 

the mean, median, and standard deviation (extracted via the Median Absolute Deviation 

calculation) for each pixel. The threshold used to determine an intrusion was six sigma 

(giving a probability of 99.9999998026825 percent that an incoming temperature reading 

would lie within the acceptable bounds, given the thirty two previous samples have created 

a reasonable statistical model for the temperature drift the camera is experiencing). At this 

stage in the detection algorithm’s development when an intrusion is detected one of two 

things can happen: the alerted pixel count for this camera is incremented and the value is 

added to the thirty two value window, or the alert flag is incremented and the value is not 

added. The latter method attempts to leave the running statistics undisturbed by the 

intrusion, but the effect of the rise or fall in temperature on the value it eventually 

returns/settles to is unknown. However, the implementation of discarding intrusions was 

flawed during the first test and a pixel’s standard deviation could have become zero. Given 

any statistically unlikely data will not be added to the running average, this freezes the 

window and causes a constant alert. At this stage in development the thermal anomaly 

threshold was not implemented. 
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 A variety of outputs for the tests were possible: camera number, time stamps, and 

pixel count changed (intrusion information), pure data – the value of each pixel analyzed 

paired with its index (camera, location within the six by six window) and statistics (mean, 

median, standard deviation), or pure data and intrusion information. The most useful 

proved to be both pure data and intrusion information. It should also be noted that due to 

the constant unplugging of USB devices, the cameras did not consistently hold one of the 

‘/dev/vid#’ names throughout the experiment, as they would change each time a camera 

was unplugged. 

The algorithm did not perform well on the first test for a variety of reasons. The 

first and largest reason is the settling time of the cameras was not taken into account. Since 

the USB plugs were constantly being swapped out to allow editing and script starting with 

the keyboard or to run the algorithm with all four cameras, the cameras being swapped 

were not given time to adjust to the background temperature. The following graphs were 

created using Python and pyPlot. 
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5.2: TEST ONE PROBLEMS  

 

Figure 5.4: Power on Settling Issues 

Sub-figures 3 and 4 in Figure 5.4 show cameras that have been allowed to adjust to 

the ambient temperature landscape they are viewing. Sub-figure 4 shows a good range of 

temperature scenery being monitored, yet the intrusion around sample 140 still clearly 

changes each pixel value. Sub-figures 1 and 2 show the cameras’ response as they perform 

flat-field correction to adjust to the ambient surrounding temperature. Sub-figure 2 in 

particular shows the effect of the Far Field Correction (FFC), which is triggered every 

second or after nine frames of data.  

These graphs were obtained during post-processing. In the field it was clear the 

algorithm was not behaving well, but pinning down the underlying problem was difficult. 
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Given time to analyze data, the settling problem was quickly diagnosed and follow up tests 

were conducted indoors to determine how long the cameras needed power to become 

stable. The cameras were all positioned at 90° and spaced out with a total span of six feet 

on a lab bench. With this setup it was determined the cameras need at least one minute to 

settle before reading their data to allow their FCC functions to stabilize their thermal 

readings. The standard deviation bug was also found and corrected during this post 

processing analysis. A powered USB hub that allowed all peripherals to remain plugged in 

was also located.  

5.3: TEST ONE VALIDATIONS 

The statistics in the detection algorithm (aside from steady state standard deviation) 

worked well.  

 

Figure 5.5: Average Tracking – Intrusion Values Added to Window 
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Figure 5.6: Average Tracking during Stabilization (Intrusions Added) 

 

Figure 5.7: Average Tracking without Intrusions Added to sample window 

5.4: TEST ONE RESULTS 

The following graphs show data gathered and algorithm results versus simulated 

results run over the same data. Both the simulation and the Raspberry Pi algorithm use a 

statistical threshold of six sigma, but the field test had a changed pixel to detection 

threshold of 25 while the simulation had 30.  
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Figure 5.8: Overall System performance during test 

 

Figure 5.9: System Performance per Camera during test 
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5.5: INVESTIGATING DISCONTINUITIES 

The data below was captured in an air conditioned (more thermally stable than 

outside) lab when trying to determine the cause of the discontinuities in the previous 

graphs. 

 

Figure 5.10: Settling Values, Single Camera 

Given the powered USB hub allowed cameras to remain plugged in during all 

testing, and the rough estimate of 90 seconds for camera stability is acceptable, the cameras 

will be plugged in for multiple minutes before any future tests, so that problem is resolved, 

as shown by Figure 5.11.  
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Figure 5.11: Camera Values after One Minute 

5.6: GOALS FOR NEXT TEST 

The following are graphs created from data in a lab after debugging the algorithm. 

The statistic threshold on the Raspberry Pi was changed to 27, aside from that the test 

remained the same.  
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Figure 5.11: Successful Detection – All Cameras 

 

Figure 5.12: Each Successful Detection in Detail 

This data shows nearly a one to one detection in simulation to detection in practice 

after adjusting the algorithm and sensor setup based on the knowledge gained from the first 
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test. False alarm changed pixels – those that are triggered by thermal noise or other 

interferers – in this scenario are kept beneath five per frame while residual pixels – those 

registering a changed due to a recent intrusion – are kept beneath sixteen. This suggests the 

changed pixel threshold could be lowered to around twenty and the results would remain 

the same. However this is in a much less noisy lab environment. The next step is to conduct 

basic outdoor tests, and to set up another large data gathering day. 
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Chapter 6: Test Two 

6.1: TEST TWO SETUP 

Testing occurred outside of a lab building at Sandia National Laboratories.  

The sensors were all at 90° from the “x-axis” and spaced from the center as follows: 3’, 

0.5’, 0.5’, 3’. 

 

Figure 6.1: Test Setup 2 

Testing was performed from 9:50 am to 11:15 pm on August 11, 2017 and the 

temperature ranged from approximately 70° to 83° Fahrenheit. 

 

Figure 6.2: Temperature conditions during the second test [8] 

The test subject was a person walking back and forth in front of the sensors. Data 

was gathered six times (9:50, 10:00, 10:10, 10:20, 10:30, 11:15) and the algorithm was 

adjusted to remove false positives and more to accurately calculate statistics.  
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All Tests  

Statistic Threshold 6σ2 

Thermal anomaly 30 pixel value 

Pixel Window (N) 6x6 center pixels 

Changed pixels to trigger detection 30 pixels 

9:50 Test  

Gather first data  

10:00 Test  

Fixed algorithm – standard deviation value 

not properly divided. Pixel detection logic 

also fixed, previous changes inverted it. 

 

10:10, 10:20, 10:30, 11:15, and 11:45 Tests  

No testing values changed  

Table 6.1: Test Two Algorithm Updates and Thresholds 
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6.2: TEST TWO ANALYSIS 

 

Figure 6.3: Pixel Mean Drift Separation 

This data was gathered outside on the day before the second test. The IR data can 

be seen pulling away from the running average the algorithm should be tracking. This is 

caused by sudden shifts in a few fractions of a degree in temperature after a long period of 

stability. The standard deviation has been driven very low by at least a window’s worth of 

closely clustered samples so that the small shift in temperature (15 to 20 sensor value) 

causes the pixel to alert and reject the values from the running average window.  
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Figure 6.4: A closer look at the mean drift 

 Figure 6.4 further illustrates this problem. From sample zero to sixty the average 

is reasonably tracked and the variance of the data is reasonably stable. When the 

environment being monitored heats up slightly, around sample seventy, the standard 

deviation is low enough that the temperature is now running away from the mean, and 

every sample moving forward is rejected and triggers an alert.  

To fix this problem, an additional test was added to the algorithm. The alert 

detection will work the same: if the pixel is outside of six standard deviations it will count 

toward the alert total, but a new threshold will be introduced to determine if the sample 

should be added to the running window or not. Based on previously gathered data shifts in 

temperature between samples should not exceed 20 to 30 sensor value. Thus a simple 

window of plus or minus thirty around the current mean should be sufficient to indicate 

whether or not the incoming value should be added to the window or not, and this is the 

change introduced to the algorithm: a threshold to reject thermal anomalies.  
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9:50 

 

 

Figure 6.5: Inverted Pixel Detection Logic 

The data shown above is poor due to inverting the logic of the added algorithm. 

The mean is left behind as the environment heats up. Data was gathered for approximately 

30 seconds. 
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10:00 and 10:10 – Steady State tests 

 

Figure 6.6: Steady State Test One 

 

Figure 6.7: Steady State Test Two 
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No detections occur during the steady state tests which went on for 30 and 50 

seconds respectively. This data shows the upward trend of the temperature not triggering 

false alerts while the mean tracks closely with the IR data. The addition of the thermal 

anomaly threshold is behaving as it is designed to.  

  

10:20 – Intrusion detection 

 

 

Figure 6.8: Double Intrusion Test 

The test subject walked back and forth once in this 30 second test. The short nature 

of the test did not allow the temperature of the surroundings to shift much, however the 

algorithm successfully identified each intrusion with all cameras.  
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11:15: Longer Intrusion Test 

 

Figure 6.9: Two Minute Intrusion Test 

This test lasted approximately two minutes and fifteen seconds. The test subject 

walked back and forth twice (4 total intrusions) at distances varying between 4 feet and 25 

feet. The algorithm continues to behave admirably with at most 12 pixels signaling a false 

alarm while detections are very clear spikes.  
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Figure 6.10: A precise look at the intrusions 

11:40  
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Figure 6.11: Long Term Detection Algorithm Stability 

This test lasted 477 seconds (nearly 8 minutes) allowing the ambient temperature 

to shift. The largest range of this temperature is seen in the red graph and drifts between 

3980 and 3736 in IR sensor value. Despite this drifting the algorithm performed very well, 

only identifying the two intrusions. This test was performed by leaving the cameras 

monitoring outside of a lab building, and the intrusions were scientists walking to their 

labs. 

  After an extended period of testing the algorithm in the outdoor, thermally 

fluctuating environment, the prototype is ready for another large scale data gathering 

experiment. 
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Chapter 7: Test Three 

7.1: TEST THREE SETUP 

The second data gathering took place at the same location as the first. The testing 

time was between 11 am and 3 pm on August 16, 2017. From the following graph it can 

be seen that the temperature fluctuated between 75° Fahrenheit and 90° F.  

 

 

Figure 7.1: Test Three Temperature Conditions [9] 

Configuration 1  

L1, L4 5 feet from center 

L2, L3 1 foot from center 

A1, A4 140° from center 

A2, A3 110° from center 

Configuration 2  

L1, L4 3 feet from center 

L2, L3 1 foot from center 

A1, A4 130° from center 

A2, A3 110° from center 

Table 7.1: Test Configurations 
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The idea was to compare two configurations that are close to the ideal found in 

exploration of the simulation, and determine if the lower horizontal profile of the second 

configuration could be viable. The test objects chosen were from the following sets: 

distances of 20, 25, or 30 feet, speeds of 15, 20, 25, 30, and 40 miles per hour, and the test 

vehicle is again the Town and Country van, a 17 foot wide vehicle. This allowed for two 

speeds that should be within target accuracy bounds (15 and 20 mph) and two speeds on 

the edge or outside the capability of the system. Data was gathered three times for most of 

the distance and speed configuration: one of the object passing through the sensors headed 

one direction, and two of it passing through in the opposite direction. Seventy eight 

individual tests were run.  

7.1: DATA GATHERING RESULTS 

At first glance the data seems to exhibit the desired characteristics. The hard 140° 

configuration of the inner two cameras for the first configuration of this test did not perform 

well (possibly due to misalignment on the vertical axis), but some of the tests still generated 

valid data.  
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Figure 7.2: Test data with enough frame detections for an estimate 

Figure 7.2 shows the weak intrusion signals from the cameras at 140° (blue and 

green) graphs. As the algorithm was running, with the threshold set to require 30 pixels 

changed to determine a detection, the weak observed shift in signal was not enough to 

generate a camera detection.  

 

 

Figure 7.3: Strong detection compared to 140° weak detection 

The side by side comparison of a camera that recorded an alert versus a camera that 

did not record an alert reveals the problem – only about half of the pixels are pulled up 

strong enough to warrant a pixel detection to trigger. The bottom lines in the graph show 

that for some, this rise was less than or equal to the effects of ambient temperature drift. 

However, despite some of the pixels not reacting to the intrusion, the event in the right 

graph can still clearly be identified visually, indicating the pixel changed threshold needs 

to be lowered. In post processing, this threshold was lowered to require 11 pixels changed 

to trigger an intrusion detection.  



 64 

 

Figure 7.4: Weak Pixel Detection Close up 

A closer analysis of the picture reveals that the bottom most rows of pixels reacted 

to the intrusion, whereas the top most rows did not react at all, or reacted weakly. This 

behavior was consistent throughout the tests for this geometric configuration. It appears 

that the interior cameras were perhaps angled upwards, as the vehicle only passes through 

the top half of the camera (the cameras are upside-down). It should be noted that the 

cameras were all verified to be facing perpendicular to the ground with a level before the 

simulation began, despite the evidence suggesting they were not. It is also worth noting 

that the second test configuration saw detection from all six rows and not just three, as 

shown in figure 7.5, which proves this is not an issue with the cameras. The last column 
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does not have great detection still, but the camera is at 130° from the center, so whatever 

angular reflection problem exists at 140° must come into effect here to a lesser degree as 

well. This suggests that there is a slight horizontal refraction problem being observed, as 

well as a vertical camera angle issue. Despite this hurdle, changing the post-processing 

simulation’s pixel change threshold to 11 pixels renders most of the data collected still 

usable.   

 

 

Figure 7.5: Second configuration, consistent detection 
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The next challenge presented by the collected data is a discontinuity between data 

sets from objects passing through the sensors to the right and those passing through the 

sensors to the left.  

 

 

Figure 7.6: Inconsistent Detection Order 

The middle two sensors should not be triggered in the same order when an object 

passes through it in opposite directions. Given the configuration of the cameras, and the 

static state of their device library assignment thanks to the powered USB hub and the 

knowledge learned from the first data gathering, the correct detection sequences are: {B, 

Y, R, G} or {G, R, Y, B}. From the graphs above, it is apparent that the left detection is 

out of order and incorrect. A factor that could contribute to this incorrect detection order 

would be the rolling shutter nature of the function that gathers data. Cameras are 

sequentially asked for frames: first the camera at ‘/dev/vid0’ transfers one frame of data 

and it is analyzed, then the camera at ‘/dev/vid1’ and so on. This effect causes sampling to 

take place asynchronously, and in the case of this test setup, cause inconsistent results. 

When the object moved left across the sensor array, it was moving in the opposite direction 
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that the cameras were sampling, exasperating the rolling shutter effect and causing some 

detections to occur out of order. While this cannot be the only cause of this inconsistency, 

the fact remains that all data gathered from an object moving left across the sensor field is 

rendered useless. This narrows the valid files from 78 to only 36 data files that contain 

sound data. After considering the previously addressed problem with Configuration 1, only 

29 files detected intrusions on all four cameras and can possibly provide estimations.  

During this test gathering the Raspberry Pi itself ran out of data. Simply redirecting 

standard output from the detection algorithm to a file (using “>” in Linux) does not alert 

users when the system’s memory is exhausted, so half of the original data files were simply 

blank. A flash drive was used to free up system space, and the tests were repeated. After 

the previous problems were addressed, 29 good data files produced the following 

estimations.  
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7.2: TEST THREE ESTIMATIONS 

 

Figure 7.6: Distance Estimate Errors for Test Three Configuration One  

It should be noted that the few estimates within acceptable distance error are due to 

a clipping feature of the estimation algorithm (clip the values at a known range given the 

position of the road, in this case [20, 30]) and not due to correct estimation. All other 

estimates can be seen to be well out of the target 15% error range that will yield accurate 

speed and width estimates.  The orange dots in Figures 7.6, 7.7, 7.8, and 7.9 are the 

estimation goals and the blue dots are the actual estimates.  
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Figure 7.7: Test Three Speed Estimates for Configuration One 

All speed estimates are sufficiently wrong as well, the only one that is close to the 

15% target is the estimation at a distance of 20 and a speed of 15, which is the result of a 

clipped distance estimation, and therefore not a good representation of the estimation 

capabilities of the system. Most are within thirty to forty percent error, with a few outliers 

like the close to 100 mph error found when the distance was 30 and the speed was 20.  
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Figure 7.8: Test Three Distance Estimates Configuration Two 

Configuration 2 did not fare any better than the first. Due to the clipping of 

estimates, it shows the same 10 foot bound on the maximum error, with some exact matches 

due to this aspect of the algorithm, but all actual estimates outside of the target accuracy.  
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Figure 7.9: Test Three Speed Estimates Configuration Two 

All speed estimates are again shown to be outside of the target 15% accuracy.  

Massive errors still exist. The highly inaccurate results of this test are due to an exploration 

of algorithms to correct these estimates. 
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Chapter 8: Post Processing 

8.1: LINEAR REGRESSION SETUP 

In an attempt to fit very noisy data to the known truth, a linear best fit model was 

attempted. The only truly measured data is the two time differences: the difference between 

intrusion detections on sensors two and three and the difference on sensors one and four. 

Thus the sequence of measured time differences was extracted and coefficients for these 

measurements to accurately estimate the truth are solved for.  

∆𝑇 ∗ 𝐶 =  𝑅 

In this equation the time differences are ΔT (Nx2), the coefficients to be solved for 

are C (2x1) and the true speeds are the R matrix (Nx2). Thus calculating the coefficients 

can be done as follows.  

𝐶 = (∆𝑇𝑇∆𝑇)∆𝑇𝑇𝑅 

Multiple C matrices are calculated using different methods. The first attempt simply 

used all 29 good files’ data, making N 29. The resulting coefficients did not perform well 

enough to obtain the 15% error goal for the system.  

The C vector found was: 

[[ 18.29589238] 

 [  0.83033984]] 

Seven of the test configurations now result in estimates within the target error 

range, which is better than the previous two, however still only one fourth of the total test 

runs. For all figures in this section, the orange dots denote the 15% goal, while the blue 

dots denote actual points of data after the coefficients found in the linear regression were 

applied. 
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Figure 8.1: All Data Linear Regression Results 

The second method utilized was to break the files into groups, calculate the 

coefficients based on the majority of the good files, and use the rest to test how accurate 

the system had been tuned to be. Three different categorizations were tried. The first 

calculation treated the test configuration one data as the training data and the test 

configuration two data as the test data. This should not work all that well, as it treats the 

estimations as independent of the geometry of the system, which they are not. The C vector 

found with this method is very similar to the first: 

[[ 18.26675505] 

 [  0.21802596]]  
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Figure 8.2: Linear regression for Configuration One 

As shown by this graph, the twelve estimations of the second test configuration 

only result in two below the desired error threshold. This is better than the zero before 

scaling, but large errors in the other estimates remain. The next test sets used for the linear 

regression split each test configuration data into train and test data and calculated two 

coefficient matrices, one per configuration. This allows the geometry of the system to effect 

the estimations, as it does in the real world.  

The first configuration test broke the test data into a set of nine training points and 

three test points. The test points were selected to have each distance (20, 25, 30) and speeds 

that had duplicates within the training data if possible. This resulted in the test set of {(20 

feet, 20 mph), (25 feet, 25 mph), (30 feet, 20 mph)}.  
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Figure 8.3: Linear Regression – Configuration One Tet Set 

Here, one of the three test points has met the estimation goal of less than 15% error. 

The others remain a bit too large, but only one is outside of 20% error. Test configuration 

two is broken into a set of 10 training data and 2 test data points. The two test data points 

were again chosen to be test points that had another point of reference at the same 

configuration. They are {(20 feet, 20 mph), (20 feet, 30 mph)}. The resulting C vector is 

quite different than the first two found, demonstrating the difference in geometry of 

configuration two from the first configuration: 

[[ 12.16577953] 

 [  7.51219734]]  



 76 

 

 

Figure 8.4: Linear Regression – Configuration Two Test Set 

The results above show that neither scaled estimate managed to reach the 15% error 

goal. If truth for the two differences in sensor detection time existed, the linear regression 

model would work better scaling the existing values to that. However, no such data exists. 

Using linear regressions on all four intrusion times simply adds another time difference to 

the equation, as the three following time measurements must be considered relative to the 

first, as no true time vs distance data was gathered for the test object.  

8.2 LINEAR REGRESSION RESULTS 

Ultimately the goals of 15% error in speed estimations and 20% in width 

estimations were not met by this prototype, even with post processing techniques. The early 
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assumptions about the system geometry that led to the selection of the low FPS cameras, 

as well as choosing many test points slightly out of optimal range led to incredibly 

inaccurate test data. Unsynchronized cameras also greatly impacted system accuracy. This 

includes the rolling-shutter like effect of the sampling program also leading to 

inconsistencies in detection times and more error introduced into the system. Post 

processing tweaks to detection algorithm thresholds and attempts to use linear regressions 

to create accurate estimations improved accuracy slightly, but ultimately failed to meet the 

goals of the system. The unsynchronized and low sample rate prototype never met the 

objectives of the report.  

8.3: FURTHER TESTING ISSUES 

Along with the previously discussed flaws in the testing setup, the following issues 

also had a hand in the failure of the prototype to achieve the desired estimation accuracy.  

Alternating Sampling Rate 

In order to meet export guidelines, the FLIR Lepton 3 has a specification of less 

than 9 frames per second. This was found to be true experimentally, with more eight frame 

seconds recorded than nine frame seconds. These measurements were determined by 

counting samples recorded during the same second of Linux time. This also contributed to 

discrepancies between simulation and reality, although to a much smaller degree than the 

unsynchronized sampling. Given this issue, the ability of the program to produce accurate 

time readings for each sample was vital for the post processing to handle this fluctuating 

sampling rate. 

Wrong Time Functions Recorded 

Instead of the “/sys/time.h” file being included, which has time of day accuracy to 

the micro-second, the “time.h” and “clock.h” files were included. These files measure two 



 78 

things: time since Unix epoch in seconds, and system clocks given to a process. Both of 

these were believed to combine to something useful: a second resolution global clock, and 

overall clock register, however this understanding was incorrect. The clock time was local 

(for the process) and not global, thus the effective granularity of the time measurements 

(discarding a good measurement of time to execute the frame to frame update algorithm) 

was one second, which is simply not good enough. Milliseconds would be acceptable but 

the time information provided from the data was three orders of magnitude too large. 

 Despite several attempts to train the estimation algorithm to transform the gathered 

data into accurate estimations, problems with the prototype’s design ultimately resulted in 

failure of the system to perform to specification. Unsynchronized sampling proved a key 

difference between the simulated system and the prototype and greatly contributed to the 

system’s inaccuracy. Linear regressions were used in an attempt to train the data, however, 

these methods were unsuccessful despite a variety of techniques and test cases. While the 

detection algorithm proved successful, the estimation algorithm failed due to prototype 

design failure. 
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Chapter 9: Conclusion and Future Work 

9.1: CONCLUSION 

To meet the design challenge of speed and width estimation given four points of 

data a simulation, prototype, and multiple algorithms were developed. The simulation 

modeled the system with perfect sensors and geometry. This program led to decisions about 

the optimal geometry, optimal test subjects, and limitations due to sampling rate. The 

prototype of the system was unfortunately defined during the simulation process and not 

after the analysis was complete. Knowledge of the system’s ideal behavior was still being 

learned and understood. Thus the vital tradeoff of sampling rate versus range, which 

initially seemed to favor range, was misjudged and the low sample rate FLIR Lepton v3 

cameras became the sensors for the prototype. In another miscalculation, care was not taken 

to synchronize sampling, as the simulation did. Unfortunately, due to the myriad of design 

issues, the comparison between simulated results and measured results never amounted to 

more than observing the measured results were much more inaccurate. With a more 

accurate prototype a deeper comparison could yield interesting results. Despite these 

shortcomings of the prototype, useful algorithms were developed to track thermal drifting 

statistically in order to ignore false positives, as well as estimation algorithms. When 

moving from simulation to prototype it is vital the conditions assumed in the simulation 

are replicated as closely as possible in the prototype. While the goal of 15% error was not 

met by the prototype developed in this paper, it provides progress towards a successful low 

power four beam speed and width estimator. 
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9.2: FUTURE WORK 

Synchronize Sampling 

To accurately match the simulation, the cameras or PIR sensors need to sample 

simultaneously. This could be accomplished on the Raspberry Pi 3B, which has a quad-

core processor, by modifying the program to take advantage of these four cores, as well as 

finding the correct compiler. Given the final system will involve multiple ADCs 

monitoring voltage wave forms from PIR sensors, any further work should ensure these 

measurements are synchronized. The Lepton v3 cameras have a video sync GPIO that 

could accomplish this, and ADCs normally have synchronous sampling features. The 

“rolling shutter” of the main loop of the current program can lead to many oddities, 

including out of order detections. This greatly hindered the system’s ability to accurately 

timestamp intrusions, which happens to be the only data with which the estimation 

algorithm works.  

Real Time Operating System 

Sensors with higher sampling rates and synchronized sampling will be useless if 

the system sampling them does not have guaranteed time accuracy. A Raspberry Pi initially 

seemed to fulfill the project requirements given my familiarity with the platform and the 

ease of interfacing it with the prototype’s sensors. However, this Linux based board has no 

real-time guarantees. This system is only responsible for measuring time, and therefore a 

board running a real-time operating system is necessary to accurately measure and report 

the intrusion times. Any continued work on this system should transition away from the 

Raspberry Pi and towards a board capable of running operating systems such as RTLinux, 

VxWorks, or LynxOS to name a few.  
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PIR Sensor Implementation 

While different biases and assumptions that were later changed led to the selection 

of the Lepton v3 cameras as sensors for the prototype, much could be gained by sticking 

with PIR sensors. For example, the low frame rate on the Lepton cameras greatly decreased 

the range of speeds possible to detect. A PIR sensor sampled by and ADC would not have 

these limitations, as the sampling rate could be selected as one much higher. Thus a scaled 

down geometry of the system to allow for the smaller range of detection afforded by an off 

the shelf PIR sensors would more accurately prototype this system.  

This prototype will need a new detection algorithm as well. The voltage wave form 

coming from the PIR sensor exhibits some instabilities due to ambient temperature 

changes, but unlike the thermal cameras, this sensor relies on a differential measurement 

and is therefore more stable. Instead of reading what can be extrapolated to temperature 

values, this differential waveform takes different shapes when intrusions occur from 

different directions. Thus the sensor would be monitored for this sort of behavior, while 

featuring some of the statistics based approaches found in the current algorithm to limit 

false positives due to ambient temperature changes. The poor sensor selection for the 

implemented prototype leaves a good deal of exploration to be done with the PIR sensors.  

Given the width estimates are dependent on the speed estimates, it can be inferred 

that these estimates would be equally incorrect if not more, as they also have a factor of 

the incredibly noisy time estimates.  
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Appendix A 

All code for this report can be found at: 

https://github.com/MatthewDeKoning/Graduate-Project 
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Appendix B 

 

 

 

 

 

Sandia National Laboratories is a multimission laboratory 

managed and operated by National Technology and Engineering 

Solutions of Sandia, LLC., a wholly owned subsidiary of 

Honeywell International, Inc., for the U.S. Department of 

Energy’s National Nuclear Security Administration under 

contract DE-NA0003525. 
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Glossary 

ALL ABBREVIATIONS 

ADC: Analog to Digital Converter 

COTS: Commercially available Off The Shelf 

FFC: Far Field Correction 

FLIR: Forward Looking Infrared Radiometer (used as the name of a company) 

FOV: Field Of View 

FPS: Frames Per Second 

GPIO: General Purpose Input/Output pin 

I2C: Inter-IC bus 

MPH: Miles Per Hour 

PIR: Pyroelectric InfraRed sensor 

SPI: Serial Peripheral Interface 

SPS: Samples Per Second 

USB: Universal Serial Bus 

UVC: USB Video Class 

V4L2: Video For Linux (version 2) 
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