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Modern, high-resolution sonar systems have prohibitive data processing re-

quirements. Sonar beamforming, in particular, has computing requirements that

challenge even the latest offerings from industry. Therefore, advanced hardware

and optimized software are necessary to satisfy the requirements of this application.

A sonar beamformer implementation for a heterogeneous nine-core architecture, the

Cell Broadband Engine, is described. The implementation leverages existing algo-

rithms and techniques in a concurrent fashion to effectively utilize the power of the

platform. The implementation exhibits performance of 38 GFlops, 25% of peak

performance. The existing prototype, developed on a Sony PlayStation 3, readily

outperforms an efficient implementation on an Intel Xeon platform, with a signifi-

cant savings in cost, power, and space.
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Chapter 1

Introduction

1.1 Motivation

The ever-increasing resolution of sonar systems in both the time and space dimen-

sions means that more powerful computer systems are needed to process and inter-

pret these increasing amounts of data. One sonar data-processing step, called beam-

forming, is particularly math-intensive, and is therefore often a bottleneck. Sonar

system developers devote much time and expense to developing computer systems

capable of executing this step quickly and efficiently. Important design variables

include power consumption, cost, and rack space, although the main constraint is

that a system must process sonar data in real-time.

The Cell Broadband Engine, the result of a joint development effort by IBM,

Toshiba, and Sony, was introduced over a year ago. This CPU excels at floating

point performance, with a theoretical peak of 200 GFlops. The Cell also has excellent

memory bandwidth, around 25 GB/s. Both of these characteristics are very impor-

tant for beamformers, which require good floating point performance and memory

bandwidth.

1



This strength in floating point performance and memory throughput makes

the Cell very suited for sonar beamforming applications. The Cell is a heteroge-

neous processor, meaning it is made up of multiple processing cores that are not

necessarily the same. The Cell uses a Power Processing Element (PPE), which

has a PowerPC-like instruction set, along with eight SPEs (Synergistic Processing

Elements), which have a SIMD (Single Instruction Multiple Data) instruction set.

Each SPE has no direct access to main memory, and must use its own local store for

data and program storage, while using explicit instructions to trade data with the

PPE. This architecture allows the Cell to realistically operate closer to its peak per-

formance than traditional homogeneous architectures currently used in many sonar

applications.

The intricate architecture of the Cell and relative newness of the program-

ming tools available means that exploiting the full performance capability of the

chip requires a low-level approach. Presented here is a beamforming algorithm that

exploits the power of this processor, while conforming to the constraints of a given

sonar system. The algorithm uses a variety of techniques to implement an effi-

cient beamformer on the Cell. Careful data layout, efficient data movement among

the processing elements, and synchronization among the elements will be discussed,

along with methods for FFT calculation using available tools and a distributed

matrix transposition.

The proposed implementation is capable of beamforming in real-time in a

given sonar system using a single Cell processor, where the same operation requires

four or more latest-generation Intel Core 2 Duo Xeon processors based on the x86-64

architecture. Fewer CPUs means fewer rack-mounted servers are required, meaning

lower power, less maintenance, and less rack space. The ability to use a single CPU
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for this application is a significant cost, space, and power savings.

1.2 Summary

Chapter 1 provides an introduction to this report. Chapter 2 of this report will dis-

cuss some of the background required to discuss this beamformer implementation.

Section 2.1 will give the reader an introduction to sonar beamforming, discuss filter-

ing using the discrete Fourier transform (DFT), and describe the circular beamform-

ing algorithm used by this implementation. Section 2.2 discusses the Cell Broadband

Engine, the platform which is used in this implementation. The architecture of the

processor, previous similar architectures, and the actual development system, the

PlayStation 3, will be discussed. Chapter 3 discusses the beamformer implementa-

tion that is the subject of this report. The implementation is first described at a high

level, and then various facets are shown at a deeper level. The method of matrix

transposition, synchronization constructs, filtering with the DFT, and performance

optimizations are all discussed. Chapter 4 discusses the performance results of the

implementation, and contrasts its performance on the Cell processor with a similar

implementation on an Intel-based system. Chapter 5 concludes the report.
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Chapter 2

Background

2.1 Sonar Signal Processing

2.1.1 Introduction to Beamforming

The objective of a submarine sonar system is to gain information about the area

around a vessel. Underwater, visual information is very limited and electromagnetic

waves at useful frequencies attenuate very quickly, so we are left only with acoustical

means to achieve this goal.

Beamforming is a technique used by sonar systems to specify a direction of

focus to an array of sensors, called hydrophones. In the simplest case for a linear

array of sensors, this will simply correspond to a delay and weighting in each sensor

such that a source, modeled as a plane wave, will appear to propagate to each

sensor at the same time. The output of each sensor is then summed together. This

is illustrated in Figure 2.1.

The conventional beamforming equation is given by [15]:
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Source Beam Direction

d1

d2
d3

...

dn

Linear Element Array

Figure 2.1: Illustration of element delays required to localize a point source given a
linear array of elements.

b(t) =

NE∑

n=1

anxn(t − τn) (2.1)

NE denotes the number of sensors, xn denotes the sensor output of sensor n,

an denotes the constant gain applied to the sensor output and τn denotes the time

delay. The result of this equation is called the beam, and the angle to which the

beam is focused is called the Maximum Response Angle (MRA). One can see that

this beamforming operation can be modeled as a series of finite impulse response

filters of each xn.

To attack this problem digitally, the sensor output must be sampled. Specif-

ically, the sensors must be sampled at a rate greater than the Nyquist frequency

in order to allow accurate reconstruction later. Given a low-pass signal with a

bandwidth of Bw, the Nyquist rate would be 2Bw. This is a reasonable rate for
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Figure 2.2: Simplified block diagram of a digital interpolation beamformer.

the A/D converters and connective cabling in typical sonar systems [13]. However,

the time delays we wish to introduce in the beamforming process are often much

smaller than 1/Bw. In order to represent these delays, a much higher sampling

rate is required. This requirement is the motivation for a technique called digital

interpolation beamforming [15].

Figure 2.2 is a typical block diagram of a digital beamforming system. We

wish to reduce the sampling rate of the signals entering the A/D converter, yet still

allow the time delays to operate at the resolution required for beamforming. To

do this, it is necessary to insert an upsampler followed by a low-pass filter between

the multiplier and the time delay. The upsampler will resample the signal at the

rate required by the beamformer time delays, and the low-pass filter will interpolate

the signal. The low-pass filter will have a cutoff frequency of π/L, where L is is

the up-sampling factor needed to satisfy the delay resolution requirements of the

beamformer [16].
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2.1.2 Filtering with the DFT

Since the beamforming operation following the upsampler can be represented as

an FIR filter, the possibility is presented of doing the calculations in the frequency

domain instead of the time domain. Since Cooley and Tukey presented a fast way to

compute the frequency domain representation of a digital signal [2], calculations of

this sort are frequently done in the frequency domain for significant computational

savings [25]. In our case, because we have a continuous stream of data, we must use

a linear filtering method tailored to the DFT, such as overlap-save [16].

While linear filtering on a long signal in the time domain using a FIR filter

is a trivial process, filtering the same type of signal using the DFT is a little more

complicated.

The discrete convolution equation,

y[n] =

∞∑

k=−∞

x[k]h[n − k], (2.2)

shows that in the time domain, each y[n] is calculated from the weighted

summation of the points in the time-domain filter. Therefore the calculation of each

output point is independent, meaning the calculation of a arbitrarily long set of data

points is simple.

Since a DFT operates only on discrete blocks of a signal, it is clearly im-

possible to calculate the filter output of a particular point independently. Using

the DFT, a technique like overlap-save is required. Take M to be the length of

the FIR filter, and L to be the length of an arbitrary segment of data, such that

L >> M . Also, let N = L + M − 1, where N is the DFT length of blocks to be

processed. Each block that enters the algorithm consists of the last M − 1 points

from the previous block concatenated with the next L points from the next block.
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The beginning M − 1 points of the first block are simply zeroes. At each step, the

N -point DFT of each block is computed and multiplied by the N -point DFT of the

FIR filter padded with L− 1 zeroes. The inverse DFT is applied to this result, and

the first M − 1 points of the output are discarded due to aliasing. The remaining

L points are the time-domain result of the linear filtering operation. The L points

from each successive step of the algorithm are concatenated together to form the

final output of the filtering operation.

The reason that L − 1 points must be discarded each time is related to the

fact that the DFT is not completely analogous to convolution in the time domain,

as the actual Fourier transform is. A DFT operation in the frequency domain is

actually equivalent to a circular convolution in the time domain, meaning that points

at the beginning of the signal are corrupted with respect to the linear convolution.

Since this corruption in circular convolution is actually due to an additive effect,

this suggests another well-known DFT filtering technique called overlap-add. This

method is arguably less efficient, and will not be described here.

2.1.3 Circular Beamforming

The previous discussion concerned a beamformer that used sensors arranged into a

linear array. However, a circular array has some desirable characteristics. One is

that we can form a beam in any direction, without the requirement of mechanical

array movement (see Figure 2.3). Another is that the variation in beam width as

the beam is rotated about the array is reduced [24]. As well, it turns out that the

beamforming operation itself can be made a great deal more efficient.

In the previous section, the operations described provided the means to form

a single beam given a set of shading coefficients and delay values. In a real sonar
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Source

Beam Direction

Circular Element Array

Figure 2.3: Illustration of element delays required to localize a point source given a
circular array of elements.

system, however, a large number of beams is required. In order to be useful, a sonar

system should be able to distinguish objects in a large number of directions, and

preferably without mechanical movement, to decrease cost and mechanical complex-

ity. The DFT provides a means to do this efficiently [18].

Farrier et al. observed that a circular beamforming operation can be likened

to a two-dimensional DFT in time and space [5]. Let α0[k] · · ·αN−1[k] be the

sampled frequency domain representation of the weights required to steer a beam

through the zero sensor, such that

Y0[k] = α0[k]X0[k] + α1[k]X1ω + · · · + αN−1[k]XN−1[k], (2.3)

where X0 · · ·XN−1 are the frequency domain representation of the sensor outputs.

Then it is easy to see that to steer the beam through sensor 1 requires that the

weights are shifted by one element:

9



Y1[k] = αN−1[k]X0[k] + α0[k]X1ω + · · · + αN−2[k]XN−1[k] (2.4)

Then

Yl[k] =
N−1∑

j=0

Xj[k]αj−l[k], (2.5)

where α
−k = αN−k. One can see intuitively that this is a circular convolution

operation, and as such, can be computed using the DFT. The final equation is

Yl[k] =
N−1∑

m=0

Xm[k]b[k]ej2πml/N . (2.6)

The full derivation is in [5].

Then for a circular array with equally spaced elements, a set of beams point-

ing outward from each element can be formed simply by computing an M×N DFT,

where M is the number of sensors, and N is the number of points in time. This is

a tremendous savings in computation, and a problem of this type can be efficiently

calculated on today’s microprocessors.

2.2 The Cell Broadband Engine Platform

The Cell Broadband Engine is a unique new microprocessor developed by a part-

nership between IBM, Sony, and Toshiba. It was designed from the ground up to

have blindingly fast floating point performance as well as memory bandwidth, even

at the expense of programming complexity. To further this goal, the development

team decided to design it as a double-core architecture. They designed it with a

PowerPC core, called the Power Processing Element (PPE), coupled with a set of

10



eight Synergistic Processing Elements (SPE), which are a novel architecture. The

PPE and the SPEs communicate using the Element Interconnect Bus (EIB).

2.2.1 Cell Architecture

The PPE is simplified PowerPC core that is designed to serve as a manager of the

SPEs. Its floating point performance is not particularly distinguished, although it

does include a vector multimedia extensions (VMX) unit, a SIMD vector processing

unit similar to Intel’s SSE. It also has SMT, a facility that allows two threads to run

independently with their own registers, although they must share execution units.

The PPE, though, unlike the SPEs, is able to run modern operating systems, and

therefore is suited to the task of delegating tasks to the SPEs, which serve as the

workhorses of the architecture. IBM and Sony, in fact, have ported the Linux kernel

to the architecture, as well as provided an extensive SDK free of charge to the public.

The SDK even contains a full-fledged processor simulator. This effort has allowed

the HPC (High Performance Computing) and scientific computing community to

develop many important applications for the architecture.

The SPE is a fully SIMD architecture, with 128 128-bit registers, and the

capability of performing four single-precision floating point operations in a single

cycle. Most incarnations of the Cell run at 3.2 GHz, meaning that 8 SPEs execut-

ing four multiply-add instructions per second each are capable of reaching a peak

performance of 204.8 GFlops.

The SPEs are not capable of accessing main memory, and therefore use a

256-kbyte LS for instruction and data storage. The SPEs use this LS in lieu of a

hardware-controlled cache. Transfers between main memory and the LS are con-

trolled only by software. Each SPE has a MFC that manages these DMAs. The

11



SPEs are capable of transferring data between their LSs as well. The peak band-

width for transfers between LS and main memory, is 25.6 Gbytes/s, given a 3.2 GHz

clock rate. This transfer rate is realistically attainable [11].

2.2.2 Precursors to the Cell

In 1994, TI introduced the TMS320C80, a double-core DSP with very good perfor-

mance at the time of its release [23]. On the C80, the MP is responsible for task

delegation among the four PPs. Although only the MP is capable of floating point

operations, the integer unit on each PP is very capable. TI claims a peak of 500

million RISC-equivalent operations per second per PP at 50 MHz. This number is

possible because of the ability of the architecture to accomplish one ALU opera-

tion, one multiply, and two memory accesses per instruction. The 32-bit ALU could

be subdivided into four 8-bit units, with three inputs per unit, meaning the ALU

by itself is capable of eight “RISC-equivalent” units, which is how the 500 million

number above was determined. In reality, for most algorithms, coding to that level

would be impossible. In the memory subsystem, the PPs have access to main mem-

ory through a DMA controller, through which software may transfer data to each

PP’s 8 kB data RAM for processing.

The C80 and the Cell share many of the same design values. Both are made

up of a number of powerful smaller processors that work together at the behest of a

larger administrative core. Both are equipped with very high memory bandwidth for

their time. The idea of a small, fast memory devoted to each processor element (the

Cell’s LS and the C80’s data RAM) is an important idea shared between the two.

One important difference is that the Cell is primarily targeted toward floating-point

applications, while the C80 targets integer applications. The biggest reason for this

12



TMS320C80 MRC6011 Cell Broadband Engine

Year Available 1994 2003 2006

Core Frequency 50 MHz 250 MHz 3.2GHz

Integer/FP 32-bit integer 8-bit integer Single-precision FP

Local Store Capacity 8 kB 4 kB 256 kB

Peak ops/s 2 Gops/s 48 Gops/s 200 GFlops

Table 2.1: A comparison of previous similar processors (where “Gops/s” is defined
as “billions of integer operations per second” with a multiply-accumulate counting
as two distinct operations)

is probably that the transistor count required for a dedicated floating point unit

for each processor using the technology of the day would have increased the chip’s

area beyond practicality. Another difference is that the interconnection network

between elements used on the C80 is the crossbar, while the Cell uses a ring. The

crossbar is more efficient, but its area grows with N2, while a ring’s area grows

only with N . The Cell designers chose a ring in order to save area[12], probably

with an eye towards future expansion of the number of SPEs. Most of the remaining

differences (more memory per chip, faster bus speeds) can be attributed to advances

in semiconductor technology (see Table 2.1).

Another processor which shares some characteristics of the Cell’s design is

the MRC6011, a chip that uses Freescale’s Reconfigurable Compute Fabric (RCF).

The MRC6011 was aimed at being a lower-cost alternative to custom ASIC designs

used primarily in cellular telephone base stations [6]. This chip consists of two

RC (Reconfigurable Computing) modules, each of which contain three RCF cores.

Again, this chip uses a DMA-style transfer mechanism to share data between cores.

The MRC6011 uses a bus for DMA transfers, rather than a crossbar or ring, meaning

there is likely more contention and less efficiency, although detailed specification of

its memory system is not available.
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While the C80 and MRC6011 were targeted at the applications primarily

served by the high-performance DSP market [22], [6], the Cell was developed pri-

marily for a gaming platform, the PlayStation 3 (PS3), with an eye toward the

scientific and HPC markets. The Cell then, has a more general-purpose architec-

ture, geared toward making a large variety of workloads fast, not just those of image

and video processing. It has optimized support for both integer and single-precision

floating point workloads.

The biggest difference, however, between the Cell and previous generations

of technology with similar hardware design philosophies, is the availability of tools

to ease the burden of programming. The C80’s core-level parallelism is based on the

use of a very extensive ALU combined with a dedicated multiplier and two address

calculation units. This means that each instruction must be intimately aware of the

hardware details of the processor in order for it to be efficient. In contrast, the Cell’s

SPEs’ parallelism is based on well-known SIMD concepts that programmers have

been using with great success for years. In addition, the SPEs’ vector unit is based

on the well-known Altivec/VMX vector unit from the PowerPC architecture, easing

the transition even more. It also appears that programming for both the MRC6011’s

and C80’s elemental cores requires the use of assembly language. Programs for the

Cell’s SPEs can use C or C++ for the vast majority of programming, with little or

no loss in optimization potential. The performance libraries provided by IBM also

negate the need for low-level programming in some cases.

Another factor is that since the introduction of these other chips, that multi-

core architectures in almost all arenas of computing have become ubiquitous. Then

the ideas in distributed and parallel software architecture that are developed for

general-purpose computing can be translated to work for the Cell. Although it

14



is improbable that the Cell will become as widespread as Intel’s latest offering,

the popularity afforded by the processor’s association with Sony’s PlayStation 3

means that researchers interested in its potential for other applications can be fairly

confident that it will be supported for years to come.

2.2.3 Communication Facilities

The Cell provides a powerful intra-chip communication system for communicating

among the PPE, SPEs and main memory called the Element Interconnect Bus (EIB).

The EIB uses a ring architecture with four buses to connect between the PPE and

the SPEs. There are two buses in each direction. A ring was used instead of a

crossbar to save space on the chip [12].

The EIB operates at half the processor clock speed and can fetch 128 bytes

per address request, meaning it has a maximum bandwidth of 128 bytes · 1.6 GHz =

204.8 GB/s. Fetches from main memory are limited by the main memory bus, which

operates at a maximum of 25.6 GB/s [11]. This also means that DMA transfers are

most efficient when their size is a multiple of 128 bytes. For transfers smaller than

128 bytes, the full size is transferred, but only the relevant data is written, meaning

that these smaller sizes are less efficient by their proportion to 128 bytes. Transfers

of greater than 128 bytes must also be aligned on a 128-byte boundary.

Each SPE interfaces with the EIB using its Memory Flow Controller (MFC).

Each MFC contains a queue of DMA requests. An SPE instruction can enqueue

a DMA command on the MFC and allow the SPE to continue execution while

the DMA commands in the queue execute independently. The MFC allows only

sixteen requests in its queue simultaneously. To allow a series of transfers to or

from disparate addresses, a DMA list is used. A DMA list command takes a pointer
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to a list of addresses and sizes in an SPE’s local store and performs the transfers

serially. This allows a long sequence of DMA transfers to be done without having

to block on placing a long series of requests onto the MFC.

Normally, the MFC does not strictly enforce ordering among the requests

in its queue. This means that request A which was placed on the queue before

request B could potentially execute after request B. Special fence and barrier flags

can be added which will enforce ordering among the DMA commands in a specific

tag group. The tag is a 5 bit number that is associated with each DMA request that

organizes the requests into groups. A fenced command will not be performed until

all of the other commands in the same tag group have been performed, although

others in the same tag group may go before. A barrier command is similar, with

the difference being that commands in the same tag group enqueued after may not

be performed before the barrier command.

Another communication method between elements are the signal notification

registers. These allow the exchange of 32 bits of data among SPEs with a low latency

penalty. These can be used to pass around small amounts of data, addresses, or

synchronization constructs. The MFC is used for commands that communicate

between these registers, so the same sort of fence and barrier flags apply to these as

well.

2.2.4 The PlayStation 3

The primary purpose for the development of the Cell was as the microprocessor

powering Sony’s gaming platform, the PlayStation 3. Sony has succeeded in mak-

ing the PS3 the most computationally powerful console yet, but has also provided

software developers with an inexpensive platform on which to develop HPC and
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Manufacturer/System Sony PlayStation 3 Microsoft XBox 360 Nintendo Wii

Units Sold (millions) 3.7 8.9 9.0

Table 2.2: A comparison of the sales figures of major game consoles in the period
from each console’s respective launch to the end of July 2007 (the end of August in
Japan). The PlayStation 3 was introduced in late November of 2006.

scientific applications on the Cell. Other offerings from IBM and companies such

as Mercury Computer Systems are in the $10,000+ range and require expensive

hardware, while one can obtain a PS3 gaming system at a local department store

for a few hundred dollars. As mentioned above, availability of the Linux operating

system and IBM’s SDK has put a fiscally viable Cell development platform into the

hands of the masses.

The future of inexpensive Cell platforms, and perhaps Cell platforms in gen-

eral, hinges to some degree on the success of the PlayStation 3. In current sales

figures, the PS3 is far behind its competitors, Microsoft’s XBox 360, and Nintendo’s

Wii. Table 2.2[20] illustrates the relative sales success of each competing console

system as of July of 2007. It’s safe to say that the lion’s share of Cell processors

being manufactured today are going into PS3s. To put this number in perspective,

compare it with some of Intel’s recent offerings. Between when Intel’s quad-core

chips were introduced in November of 2006 and the end of September of 2007, Intel

shipped approximately 3 million units [21]. While the Cell has shipped more units

in a comparable amount of time, the development costs of the Cell were high enough

that it’s unlikely that its budget has been recouped.

The PS3 as a Cell development platform is not without its limitations. To in-

crease yields on the Cell processors manufactured for the PS3, one of the eight SPEs

is disabled. Also, due to the fact that the Linux operating system actually runs on
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top of a hypervisor built in to the native PS3 Game OS, another SPE is dedicated

to that, and is therefore unavailable for computational purposes. Some Linux kernel

facilities that have been ported to the Cell, like OProfile, are unfortunately unavail-

able on the PS3 due to the inability to write to certain configuration registers. The

inaccessibility of certain registers also precludes an optimization-minded applica-

tion developer from altering them for possible performance enhancement. The PS3

does include a Gigabit Ethernet adapter, but those in need of higher bandwidth

will find it difficult or impossible to retrofit another interface like Infiniband. An

additional limitation is the inclusion of only 256MB of main memory, which could

be a problem for applications needing large data sets. Also, graphics developers will

be disappointed that the PS3’s powerful graphics coprocessor, NVIDIA’s RSX, is

disabled when running in Linux.

Despite these limitations, the PS3 is an excellent initial development platform

for the Cell. Those that wish to preview the Cell’s computing prowess would do well

to develop on Sony’s gaming system, and then perhaps upgrade to a more powerful

and suitable offering from IBM or Mercury when the application is mature.

The development for this implementation was done initially on IBM’s Cell

System Simulator. It was moved to the PlayStation 3 when the system became

widely available for purchase.
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Chapter 3

Beamformer Implementation

The Cell Broadband Engine provides in many ways an ideal system on which to

implement a beamformer of the type described. This application requires large

amounts of memory bandwidth, single-precision floating point computation speed,

and is very parallelizable. The Cell is strong on all of these points.

3.1 Implementation Overview

The array for which this beamformer was implemented consists of a circular array

of 192 sensors. Unfortunately, physical constraints dictate that the sensors cannot

be spaced evenly around the array. Most sensors are separated by a distance 2L,

with the constraint that each sixth sensor and the following have a spacing of 3L.

This arrangement can be made to work with the circular beamforming technique

described in Section 2.1.3 inserting zero samples in the spaces not occupied by

sensors, as in Figure 3.1. This is a sort of upsampling operation. Then for each 6

sensors in the array, there will be 13 samples. This leads to 13 · 192/6 = 416 total

samples in the circular array.
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Figure 3.1: Alternating sensors in the actual sonar array.

For reasons that will be discussed in Section 3.5, we will use 8192 samples in

the time dimension for the beamform calculation.

The basic steps of the circular beamforming algorithm are:

1. Do a 2D FFT on the input data points.

2. Multiply the result of Step 1 by the DFT of the filter coefficients.

3. Do an inverse 2D FFT on the result of Step 2.

Naively, one might expect to implement this on the Cell as in Figure 3.2.

Unfortunately, to harness the full power of the Cell, we must subdivide these steps

further for a number of reasons.

The input data array for this beamformer will be 416 × 8192, where each

point is a complex single-precision floating point number. Each point is therefore 8

bytes, with 4 bytes for each floating point value in the complex pair. Let B be the

number of bytes in the input data array. Then

B = 416 · 8192 · 8 = 27262976 (3.1)

The input array is 26 megabytes, which is far too large to fit on even the

aggregate memory of the Cell’s SPEs, which have only 256kB of memory each. This

is an undesirable situation because it suggests that each SPE would have to pull data
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Figure 3.2: Naive proposed implementation of the beamformer.

from main memory during computation, which is a relatively expensive operation.

Ideally, each SPE should be constantly executing computation instructions with no

stalls waiting for memory operands to return.

So the data must be partitioned somehow in order to use the SPEs for this

computation. Fortunately, two-dimensional FFTs are computed by computing a

series of one-dimensional DFTs. To compute a two-dimensional DFT, one must

first compute a one-dimensional DFT on each row of the array, and then compute

a one-dimensional DFT on each column of the result. The row and column DFTs

may be computed in any order.

This suggests that individual DFTs can be calculated on each SPE, meaning

that no main memory accesses would be required during the computation of a par-

ticular DFT. On an SPE, when the computation for a particular DFT is done, it can
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request another one until all of the computation for the 2D DFT is finished. The

row and column DFTs must be separated because once a particular one-dimensional

row DFT is calculated on an SPE, that SPE contains only one of the points neces-

sary for the column DFT. Then each row DFT must be complete before any column

DFTs can commence.

Then the algorithm now looks like this:

1. Do 1D row DFTs on the input data.

2. Do 1D column DFTs on the result of the previous step.

3. Multiply the result of Step 2 by the DFT of the filter coefficients.

4. Do inverse 1D column DFTs on the result of the previous step.

5. Do inverse 1D row DFTs on the result of the previous step.

If one looks at this from the viewpoint of implementation on the Cell, we see

that Steps 2, 3 and 4 can be implemented together on an SPE without transmitting

intermediate results to the PPE. The multiplication coefficients required for the

data in each column can be transmitted to the SPE along with the data from Step

1, allowing the multiplication to proceed directly after the DFT computation. The

inverse column DFT can then be calculated immediately after without consultation

from the PPE. The implementation flow will look like Figure 3.3.

Applications such as this one that deal with computation on large data sets

on a traditional microprocessor system are often very sensitive to the number of

intermediate writes to main memory. Although the Cell is less sensitive to this

consideration due to the use of double-buffering (see section 3.4), the above imple-

mentation minimizes the number of intermediate reads and writes to main memory
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Figure 3.3: Proposed implementation of the beamformer.

at two reads and two writes.These operations are necessary because of the ma-

trix transpositions that are required between the row DFTs and column DFT (i.e.

between Steps 1 and 2 and between 3 and 4). The matrix transposition is fundamen-

tally a data movement operation rather than a mathematical operation, like a DFT

or a multiply. It cannot therefore be parallelized in the same way. The mechanics

of the matrix transposition are described in the next section.

3.2 Distributed Matrix Transposition

3.2.1 Prior Work

There are a few examples in the literature of algorithms for fast matrix transposition.

Eklundh’s algorithm [4] is an example of one of these that overcomes the problem of

transposing a matrix whose full extent cannot be contained within available high-

speed storage. Eklundh’s algorithm will perform an in-place matrix transpose of

a square matrix of 2N × 2N size. Ramapriyan [19] presented a generalization of
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Eklundh’s method for rectangular matrices of arbitrary dimension. The PRIM al-

gorithm [8] is another example of this style of algorithm that the author claims

outperforms Eklundh’s method. These algorithms were designed for computer sys-

tems in which the main data set is stored on disk and operations are done in a

higher speed RAM. One might liken this the slower main memory and higher speed

LS of the Cell. One could in fact implement each of these on a Cell processor and

take advantage of the parallelism inherent in these algorithms. However, one char-

acteristic that all of these methods share is that they assume that the matrix is

transposed in-place. However, on the Cell there is enough main memory to store

at least two copies of our matrix in question. This means that more efficient means

that transpose the matrix out-of-place can be found.

Choi et al. [1] described some matrix transpose algorithms for distributed

networks of processors. While interesting, these algorithms also do not have much

applicability to the Cell processor. These algorithms assume that there is not a

higher-level memory to which the eventual result is to be transmitted. They assume

a framework in which the input and output matrix data is interleaved between each

processor’s memory. In the case of the Cell, we require the input and output of the

algorithm to be stored in the overarching main memory of the processor.

3.2.2 Proposed Method

As mentioned above, it’s necessary for to perform a matrix transpose of the data at

two distinct points in the algorithm. Two different approaches were considered to

accomplish this task in an expedient manner.

An obvious approach to this problem would be to perform the matrix trans-

position on the PPE. This idea has a number of disadvantages. Foremost, within
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the framework of the current method, this requires an extra read and an extra write

to memory in addition to the reads and writes performed by the DMAs to and from

the SPEs. This alone causes the speed of this operation to be prohibitively slow.

On an Intel-based workstation of similar clock speed, an out-of-place matrix trans-

position of this size takes on the order of 10 milliseconds, a non-negligible amount

of time in our application.

Since doing the transposition completely on the PPE is slow, the obvious

alternative is to somehow do it on the SPEs. As discussed in Section 2.2.3, the

Cell’s DMA engine is more efficient when the size of each individual DMA is at

least 128 contiguous bytes. Because each data point in this implementation is an

8-byte complex float, this makes it impractical to simply DMA every single point

individually as shown in Figure 3.4, although this would be possible.

To make this more efficient, the data corresponding to a particular row in

the destination should be aggregated together. This will allow the individual DMAs

to be larger, and therefore faster and more efficient. One way to do this is to make

sure that multiple rows of data are transferred to each SPE to be transformed. Then

a matrix transpose can be done on each SPE. For instance, if each SPE has N rows

of data, then each individual DMA can transfer 8N bytes at a time following each

SPE’s transpose. This operation is shown in Figure 3.5. In this case, though, one

is limited by the number of rows that can be stored, transformed, and transposed

on each SPE’s limited LS size. A transpose on non-square matrices such as these

is almost necessarily an out-of-place operation, meaning twice the amount of buffer

space is needed to store the row data is required to perform the operation.

Another way to aggregate the data together would be to share data from

other SPEs before transferring it to main memory. In this way, the amount of data
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involved in an individual DMA to main memory can be maximized. In order for this

to work, the data has to be distributed to the SPEs in contiguous discrete chunks,

e.g. SPE 0 gets the first two rows, SPE 1 gets the second two rows, etc. If the data

is distributed in this way, then after the matrix transpose on each SPE described

previously, the first row of data on each SPE will correspond to a different part of

the first row of data that will eventually go to the PPE. Each subsequent row on

each SPE will also share this same characteristic. So then it is possible to exchange

data among the SPEs so that each SPE is responsible for some fraction of the rows

that will go to the PPE. In this way, the size of the individual DMAs into main

memory is maximized, so the DMA data transfer speed is maximized.

This scheme has some disadvantages. First, an additional data read/write

is obviously required, although this is not as great of a penalty on the SPEs’ low-

latency LSs as it would be in main memory. Another disadvantage is that some

synchronization is required among the SPEs during each data exchange, which has

some overhead as will be discussed in the next section. A third is that an addi-

tional buffer is required to allow the exchange transfer to take place while other

computation is going on, potentially reducing the number of simultaneous rows of

data that each SPE can handle simultaneously. The increased number of buffers

also significantly increases the complexity of the double-buffering scheme required

to ensure computation can take place during data transfers.

While the initial version of the implementation used the SPE data exchange

method for the matrix transposition, it was found that the disadvantages were too

prohibitive. A derivative method was devised, motivated by the fact that a com-

pletely transposed result is not required during intermediate steps of the algorithm,

i.e. between Steps 1 and 2 or 4 and 5.
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The transposition can then be done in two interchangeable steps. The first

step is similar to the first part of the row transposition method discussed above. Let

the original matrix be M ×N elements. Let r be the number of rows of the matrix

that will fit in the memory of each SPE. Then each SPE will have an r ×N matrix

in its LS at the beginning. After the transpose, the matrix will be N × r. Each

SPE will then transfer its matrix to main memory in row-major order, meaning N

arrays of length r will be stored serially in memory from each SPE. Once all of the

data has been transferred to main memory, the SPEs will transfer each row of r

length individually, using a stride length of rN . When M/r rows at this stride are

concatenated together in the SPE, they make up a length M row of the transposed

matrix of dimension N × M .

It is important to note that the two steps of this algorithm can be inter-

changed. Instead of the first step being to transpose the data in the SPE, the data

can instead be transferred to main memory in the inverse of the way the data was

transferred from memory in the second step. In other words, divide the data into

packets of length r, and then transfer each to memory with a stride of rN . An

rN -sized length of data can then be pulled from memory contiguously by the next

set of SPEs and be transposed to yield a row of data of length M .

The interchangeability of these steps is important when considering the

dimensions of the data that we require. In this beamformer implementation, a

416 × 8192 data matrix will be transposed forward and backward. In the first part

of the algorithm, the SPEs will have a row of 8192 data points, which is 64 kB. It is

impossible to fit another row of data onto the SPE’s LS given the current buffering

strategy (described in Section 3.4). Then it is important to be able to transfer this

particular set of data contiguously and then use the higher value of r allowed by
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the smaller rows of 416 points when transferring the data from main memory to the

SPEs in the next step. When transposing the data back, the algorithm is performed

in the opposite direction for the same reason.

3.3 Synchronization

Synchronization is an important part of most distributed applications, and this one

is no exception. In our case, some synchronization is required between each part of

the algorithm that transfers data to and from the PPE’s main memory, so between

parts 1 and 2 and 5 and 6. The reason for this need is that a particular SPE

operates independently of other SPEs, and therefore has no way of knowing when

the other SPEs have finished their jobs. This lack of knowledge necessitates a way

for each SPE to wait for the other SPEs at a given point in the code. This sort of

synchronization construct is called a barrier.

Considered were two different methods of barrier synchronization. The first

was a model in which one node serves as a leader, with every other node denoted

as being a follower. Each follower node signals the leader when it has reached the

barrier point, and then waits. When the leader reaches the barrier point, it waits

until each one of the followers has signaled it, signals each follower, and then pro-

ceeds. When each follower receives this signal from the leader, it proceeds past the

barrier as well. This is implemented on the Cell’s SPEs using the signal notification

registers and mailbox facilities described in Section 2.2.3. The signal notification

register on the leader SPE is configured to be in OR mode, meaning that a 32-bit

value written by an SPE will be ORed with the current value of the register. By

assigning a particular bit in the register to each of the follower SPEs, the leader

SPE can be aware of which and how many SPEs have signaled it at any given time.
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When the leader SPE reaches the barrier point, it simply polls its signal notification

register until the number of bits set equals the number of follower SPEs. It then

sends a mailbox message to each of the follower SPEs, and then proceeds. The

follower SPEs block on the reception of a mailbox message after they have signaled

the leader SPE using the signal notification register facility.

The second, more egalitarian method considered was one in which each node

signals every other node that it has reached the barrier point. After signaling, each

node waits until it has received a signal from every other node. This method was

implemented on the Cell using the signal notification registers in exactly the same

way as described above.

The first method has the advantage of requiring fewer messages to be ex-

changed. Given N SPEs, the leader-follower method will require N − 1 messages

when each follower signals the leader, and then N−1 more messages when the leader

signals each follower, leading to 2(N − 1) messages total. On the other hand, the

egalitarian method requires N SPEs to send out N −1 messages, meaning N(N −1)

messages are needed.

Figure 3.6 illustrates that as the number of SPEs involved in the barrier op-

eration increases, the time needed increases somewhat linearly, at least for numbers

of SPEs this small. The data for this graph was measured by looping each barrier

type 10,000 times consecutively and averaging to get the time for a single barrier.

From the graph, it is easy to see the expected additional delay caused by the leader

follower method. From the graph, one could extrapolate the signal notification la-

tency from the difference in time required between the two types of barriers. In the

case of 2 SPEs, the latency is approximately 150 ns, or 480 cycles at 3.2 GHz.

Although this graph only measure up to the number of SPEs present on the
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Figure 3.6: Graph of the time required for a barrier for two different synchronization
methods.
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Figure 3.7: Double-buffering flow chart

PS3, this trend would probably continue up to the eight SPEs present on a normal

Cell processor. In future iterations of the chip with more SPEs, one might expect

to see the broadcast barrier times increasing faster than the leader-follower model,

due to the much greater required number of messages. For 6 SPEs, the leader-

follower method requires 2 · 5 = 10 4-byte messages, while the broadcast method

needs 6 · 5 = 30 messages.

3.4 Double-buffering

Double-buffering is simply processing data in one buffer while simultaneously trans-

mitting data in other buffers. For data-intensive applications like this one, it’s very

important to utilize this technique in order to maximize memory bandwidth and

computation performance. An application will ideally spend zero time blocking on

I/O required to process the next batch of data, and the use of double-buffering is

one technique needed to minimize this time.

Figure 3.7 illustrates the flow of input and processing of a double-buffering

application on the SPE. First, a DMA get is initiated to transfer the appropriate
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Figure 3.8: Double-buffering illustration

data into both buffers 1 and 2. Execution is then suspended until the DMA get

into buffer 1 has finished. This is accomplished using an MFC completion command

on the tag group used by the buffer 1 mfc get command (see Section 2.2.3 for

details). When completion of the buffer 1 DMA is assured, processing of buffer

1 can commence. When this processing is complete, another mfc get is initiated

to buffer 1 to replace the data just processed. Execution is then suspended while

waiting for the mfc get to buffer 2 to finish, at which point the data in buffer 2 is

executed, and a mfc get initiated to buffer 2 again. The cycle begins again.

In order for this scheme to be optimal, the amount of time required for

transferring the data should be less than the time required to process the data. In

this case, the waits in Figure 3.7 would be zero, and the entirety of CPU time would

be spent on actually processing data, which would maximize performance.

It’s necessary to introduce another wrinkle into this problem. In the case of

the beamformer implementation, the data needs to be transmitted back to the PPE

after processing on the SPEs, and the above method does not account for that. This
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is solved by issuing an mfc put followed by an mfc getf instead of the mfc get

only. The mfc put and mfc getf must share the same tag group. This will cause

the two DMA operations to be performed serially, with the mfc put completing

before the mfc getf can begin. In this case, it’s necessary for the sum of the time

it takes for one mfc getf and one mfc put to be less than the amount of time it

takes for the computation to be done on a single buffer in order to allow optimal

performance.

3.5 DFT Filtering Considerations

By adjusting the length of the DFT operations used in the overlap-save computation

described in Section 2.1.2, it is possible to minimize the number of arithmetic oper-

ations required to calculate the final result. The DFT length is decided by taking

into account the two different factors that determine its length: the effect on the

overlap-save computational efficiency, and the efficiency of FFT-style subdivision.
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These will each be explained in turn.

At each stage of the overlap-save algorithm, the efficiency E is determined by

dividing the number of points calculated by the number of points discarded. Then

for DFT length N and filter length M ,

E =
N − (M − 1)

N
(3.2)

For instance, for an overlap-save operation where the DFT length N is 1024

points, and the filter length M is 32 points, the efficiency will be 1024 − (32 −

1)/1024 = 0.97. This efficiency describes the fraction of wasted operations at each

stage of the overlap-save algorithm. Because of the nature of the FFT it is impossible

to simply eliminate the calculation of these particular points. It’s easy to see that

for a given filter length, the longer the DFT is, the more efficient each stage of the

calculation will be.

The efficiency at each stage does not tell the whole story, however. If one is

allowed to arbitrarily choose the length of an FFT calculation, a series of shorter

FFTs will have fewer operations than a single long one. In mathematical terms,

given that an FFT has 5N log2(N) operations, y x-point FFTs will always require

fewer mathematical operations than an xy-point FFT. It’s easy to see this by setting

f =
5xy log2(x)

5xy log2(xy)
=

log2(x)

log2(xy)
= logx(xy) (3.3)

where f is the fraction more computations required by y x-point FFTs over

one xy-point FFT. Since we assume y > 1, then f < 1, meaning the condition

required is true. This means that shorter FFTs will yield fewer computations pro-

portionally than longer FFTs.
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So while this metric is negatively correlated with FFT length, the stage

efficiency metric is positively correlated with FFT length. This means that there is

some value of FFT length that will yield the fewest number of computations for a

given filter length and signal length.

This value can be determined by deriving an expression for the number of

mathematical operations required for a given FFT length, and then minimizing this

expression. To do this, let X be the number of points in the signal we wish to

filter, N be the FFT length, and M be the filter length. Also let the sequence be

segmented into blocks of L points. L will satisfy the equality N = L + M − 1 or

L = N −M + 1. L will also correspond to the number of “good” points that will be

gotten from each FFT, i.e. the points that are not discarded. It can be seen that

X

L
=

X

N − M + 1
(3.4)

FFTs will be required to filter an X-point signal. It can also be seen that this will

require

X

N − M + 1
(10N log2(N) + 6N) (3.5)

operations, given that each of the two FFTs requires 5N log2(N) operations, and

the complex multiplies require 6N operations. Dividing by X to yield operations

per point rather than total operations, the quantity is then

10N log2(N) + 6N

N − M + 1
(3.6)

.

We desire
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N̂ = argmin
N

{
10N log2(N) + 6N

N − M + 1
}. (3.7)

.

That is, we wish to find N̂ , the value of N that yields the smallest value for

the function for a given value of M (the filter length). Then in order to find N̂ , we

can differentiate the expression in the curly braces and then set the result to zero.

This will yield the critical points of that function. Differentiating the expression,

setting it to zero, and simplifying yields

−(M − 1)(ln(2))N + 10 · 2x = (M − 1)(10 + 6 ln(2)) (3.8)

Here, we have an equation in the form

aN + b log2(N) = c, (3.9)

where a = 10
ln(2) , b = −10(M − 1), and c = (M − 1)( 10

ln(2) +6)). This equation

can only be solved in terms of the Lambert W function [3]. The Lambert W function

is the inverse function to y = xex, so x = W (y)eW (y). In order to solve Equation

3.9, it needs to be in the form of xex. Through more manipulation, Equation 3.9

yields

−N ln(2−a/b)e−N ln(2−a/b) = −2c/b ln(2−a/b). (3.10)

Then

N̂ =
−W (−2c/b ln(2−a/b))

ln(2−a/b)
. (3.11)
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Filter Size (M) Optimal FFT Size (N) N/M

4 12 1.10

8 35 2.90

16 88 4.34

32 210 5.53

64 478 6.55

128 1065 7.47

256 2339 8.32

512 5084 9.14

1024 10965 9.93

2048 23501 10.71

4096 50114 11.48

8192 106409 12.23

16384 225106 12.99

32768 474671 14.49

65536 998063 15.23

Table 3.1: A comparison of the filter size with its corresponding optimum Fast
Fourier Transform size and ratio of N/M

The W function has two different real branches, W0 and W−1, and therefore

the equation has two real solutions. For this equation, the W−1 branch yields the

large positive values of N that are desired. To find the optimum value for N = 2x,

x an integer, one must evaluate Equation 3.6 at the adjacent values of 2x = N .

One can see that the common rule of thumb of 4:1 for N:M is valid for smaller

filter sizes, but as M increases, so does the optimal ratio.

In reality, one would choose the value of N that yields the best performance

in the particular system. On systems with cache-based memory schemes performing

FFT calculations, one will often see a rapid drop-off in performance when the FFT

size increases beyond the size of the largest fast cache. So these calculations will

likely only affect the choice of FFT size within the size of the cache on these systems.

On the Cell, the limitation is in the size of the local store of each SPE. With a 256
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KB LS size and given double-buffering considerations, the largest practical FFT size

is 8192 points.

3.6 Optimizations

Although the details of the implementation of the beamformer have already been

discussed, there are a few optimization details that have not yet been addressed.

These details, while not integral to the implementation, have nevertheless been

important to maximizing its performance.

3.6.1 Large TLB Pages

The Translation Lookaside Buffer (TLB) is memory that caches virtual memory

translations. The TLB can greatly speed up memory accesses by storing recently

used virtual to physical address translations in a higher speed memory. Nominally,

virtual addresses will reference an entry in the page table, which is stored in main

memory. These Page Table Entries (PTEs) contain a physical address which is

then used to reference the area of physical memory that contains the data that was

requested using the virtual address. This area of physical memory is called a page.

The default size of a page in the PowerPC architecture is 4096 bytes. This suggests

that for modern systems, there will be a large number of PTEs. For example, on a

PS3, there is 256 MB of main memory. Given 8 bytes per PTE, that means that

there will be 8 ·228/4096 = 219 = 512 KB of PTEs, which is the size of the entire L2

cache of the Cell. It’s therefore advantageous to cache entries that are frequently

used.

A traditional CPU uses a Memory Management Unit (MMU) to do these

translations. In fact, this is what the Cell’s PPE does. The SPEs use a similar facility
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called a Synergistic Memory Management (SMM) unit to do their translations. Each

SPE has its own SMM unit, each of which has its own TLB. Each of these TLBs

can cache the translations for 256 different PTEs. 256 entries in the TLB means

that each SPE is capable of addressing 256 · 4096 = 1048576 = 1 MB unique bytes

before there is a capacity miss in the TLB. This indicates that if the outermost loop

of an algorithm must address more than 256 unique pages (automatically true if

addressing more than 1 MB), then the TLB will be unable to cache all of the virtual

address translations across each execution of the loop. Ideally in high-performance

applications, once one has “warmed up” the TLB by accessing all of the memory

locations where data is to be accessed, then each memory access hits in the TLB,

allowing optimal memory subsystem performance. If each execution of even the

outermost loop causes a TLB miss, then this will not be the case, and performance

will suffer.

This is a common problem with high-performance applications that deal with

large data sets. Luckily, modern architectures have provided a solution. On the Cell,

it is possible to configure pages to be as large as 16 MB, rather than 4 KB. This

facility is provided by the Linux kernel. At boot time, the user specifies a number of

large pages to the kernel, and the kernel then reserves an area of contiguous physical

memory with a size equivalent to the number of large pages specified. These pages

can then be accessed by a user with appropriate privileges by using mmap() on a

special file exposed by the kernel.

This is a special-purpose system, with a memory-use profile that is known in

advance, so many of the drawbacks to using large pages are negated [14]. The large

pages are allocated in advance by the user, so the operating system does not need to

do this allocation automatically or intelligently. There is no need for fragmentation

40



Figure 3.10: Comparison of huge pages vs. malloc

control, because the large pages will be used as specified for the duration of the

application’s run.

Figure 3.10 compares the performance of the implementation using large

pages compared with 4 KB pages.

3.6.2 FFT Software

Because this implementation spends the majority of its time calculating the results

of FFTs on the SPEs, it’s important to have FFT software that can operate as close

to the peak performance of the SPEs as possible. This requirement is complicated

by the fact that one of the FFT lengths needed, 416, has a relatively large prime

factor (13). The libraries that came with the early versions of IBM’s Cell SDK

included an optimized FFT implementation. Unfortunately, this library is only able
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to calculate FFTs whose lengths are powers of 2. Later versions of the SDK include

a library that is able to calculate arbitrary FFT lengths, but again unfortunately

only efficiently for FFT lengths with smaller prime factors (3, 5, and 7).

There are some researchers that have made available fast code for the FFT.

The most well-known of these projects is probably FFTW [7]. FFTW does fast

FFTs by stitching together a set of “codelets” in various ways. Each codelet cor-

responds to a particular part of the data path for a given transform, and each is

pre-generated automatically by code written in a higher-level language. For a given

transform size on a given computer, FFTW first generates a “plan,” which specifies

which codelets are to be used. This plan is generated by testing the performance of

different combinations of codelets and searching for the combination with the high-

est performance on that machine. Although planning can take a significant amount

of time, plans can be stored ahead of time to allow the best code to be used in a

given algorithm.

Although the bulk of the work for FFTW was done by Frigo and Johnson at

MIT, IBM has donated a port of the software to the Cell. The port, unfortunately,

was not suitable for inclusion in this beamformer implementation. This is because

the FFTW port assumes that the transform will be called from the PPE on data

stored in memory. The beamformer implementation assumes that the transform

will be called from the SPEs on data in the local store.

Another group that has taken a more general view of this problem is SPIRAL

[17]. The SPIRAL software has not limited itself to generating code for FFTs, and

has instead focused on code for general DSP transforms. Also, instead of composing

together pre-generated codelets, SPIRAL generates the code for entire transforms.

The code is generated using similar methodology, by testing the performance of
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prospective transform code with different characteristics and using the fastest, al-

though the search algorithms for SPIRAL are more sophisticated.

In this implementation, code used for FFT calculation is a combination of

code from the open-source IBM libraries and the SPIRAL project. The IBM library

code is used in the case that the FFT size is a power of two, and the SPIRAL project

has generously provided code that is used in the other case.

3.6.3 Efficient Memory Bank Utilization

In order to access memory efficiently, it’s necessary to take into account the memory

layout. The Cell uses a memory banking system that interleaves memory at strides

of 128-bytes across sixteen different memory banks [9]. A memory architecture like

this favors large contiguous accesses. If accesses of less than 128 bytes at strides of

128 · 16 = 2048 bytes, or multiples thereof are made, then access will be inefficient.

This is because these sorts of accesses will only be presented to one physical memory

bank, whose bandwidth will be less than if accesses are distributed across all of the

banks.

This sort of discontiguous access pattern has the potential of occurring at

one particular point in the Cell beamformer implementation, during the matrix

transpose. When the DMAs involved in the matrix transpose occur, they are at a

large memory stride that depends on the number of columns that are processed in

each step of the matrix transpose. The maximum number of these in this particular

implementation is 8. Given each sample is two 4-byte single-precision floating point

numbers, this means that every individual DMA transfer is 8 ·2 ·4 = 64 bytes. Since

the typical row size is 8192 elements, this also means that these transfers are done

at a stride of 8 · 8192 = 65536 bytes. Since 65536 is a multiple of 2048 and these

43



transfers are relatively small, they easily fit the profile described above.

In order to solve this problem and allow efficient memory access, a change

to the data layout was required. When Part 1 of the algorithm does the row FFTs

on the input data, instead of sending the data back to main memory as before, a

128-byte buffer between each row is inserted. This means that the first element of

each row will be 65536 + 128 bytes apart, instead of 65536. This will cause the

DMA transfers in the next part to access each memory bank in turn, instead of only

accessing a single one repetitively. The data is sent back to main memory in the

same fashion, and when the last row inverse FFTs are done, the data is sent back

to main memory without the buffer, causing the output format to remain the same

as it was before.

This change is easy to implement because it does not require any change in

the input or output format of the data. It only requires a minor change in the address

calculation of DMA transfers. The difference in performance is fairly dramatic, and

is illustrated in Figure 3.11.
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Figure 3.11: Difference in performance caused by efficient memory bank utilization
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Chapter 4

Implementation Results

In this chapter, the overall performance of the Cell processor beamforming imple-

mentation will be discussed. Along with this, the Cell’s results will be compared

with the performance of an implementation on an Intel workstation. The compara-

tive engineering effort required for each implementation will also be discussed.

4.1 Cell Processor Results

The implementation performs a beamforming operation on 192 sensing elements

arranged in a circular array. It operates on a maximum of 8192 samples at a time,

and uses the circular beamforming operation discussed in Section 2.1.3. The eventual

output is a set of beamformed points in time in 416 radial directions.

The performance results for the Cell beamformer were measured on a PlaySta-

tion 3 running Linux and IBM Cell SDK 3.0. The Cell processor under Linux on

the PS3 is limited to 6 SPEs for reasons described in Section 2.2.4.
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Number of SPEs Performance (GFlops) Speedup

1 6.583 -

2 13.147 1.997

3 19.268 2.927

4 26.191 3.979

5 32.395 4.921

6 38.012 5.774

Table 4.1: Illustration of performance and speedup by varying number of Synergistic
Processing Elements

4.1.1 Speedup

Scalability is very important when it comes to parallel computing applications. Scal-

ability is the ability of a system to increase performance with the addition of more

of some repeatable element. An important factor in scalability is the amount of

speedup gained by increasing the number of computing elements devoted to some

task. If the speedup increases linearly, meaning the addition of a computing element

to a task increases the performance on that task by the same proportion as that

addition, then the speedup is said to be linear. An application is said to have good

scalability if it has linear or near linear speedup.

Speedup is generally limited by overhead. Overhead is the amount of time

that a parallel computing system has to spend on tasks related to the parallelism that

do not perform useful work, where useful work is defined as work performed essential

to the result. Potential sources of overhead include shuffling data between computing

elements and synchronization constructs that might be required, including barriers.

The Cell beamformer implementation has shown that it has very good scal-

ability across varying numbers of SPEs. The speedup for 6 SPEs is 5.774, as shown

in Table 4.1.
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Figure 4.1: Speedup obtained for varying the number of Synergistic Processing
Elements in the beamformer
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4.1.2 Calculation versus Data Transfer Time

An important aspect of this implementation is its ability to maintain a stream of

data going into the calculation pipeline. Ideally, at a given moment, each SPE

is doing calculations on data rather than blocking on I/O. It’s important then,

to verify that the amount of time required for data transfer for each stage of the

implementation requires less time than the computation. Figure 4.2 - 4.5 show

the amount of time required for the calculation and data transfer segments of each

part for varying numbers of SPEs. The calculation segment of the implementation

is the same as the regular implementation, except that the DMA commands are

disabled. The data transfer segment disables all of the calculations required for

the beamformer calculation, although there is still some computation involved in

calculating the addresses to DMA to and from.

The double-buffering allows the implementation to perform calculations dur-

ing the time required for DMA transfers. This is shown in the figures by comparing

the time required for calculation and the time required for both calculation and

DMA transfer. For each part and the aggregate of all parts, they are very close to

the same.

Interesting to note is that the time to DMA data does not vary much with

the number of SPEs. This is evidence of both the efficiency of the EIB and the

relative bottleneck of the path to main memory. The EIB does not require all eight

SPEs to be transferring data simultaneously to saturate the path to main memory,

and only seems to require one or two. Fortunately for this implementation, there

is plenty of memory bandwidth to keep computation pipeline supplied for up to 6

SPEs. It also appears that even with 8 SPEs, the memory bandwidth would be able

to keep the pipeline supplied.
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Figure 4.2: Time required for calculation and data transfer sections for a varying
number of Synergistic Processing Elements for Stage 1 of the implementation.

Figure 4.3: Time required for calculation and data transfer sections for a varying
number of Synergistic Processing Elements for Stage 2 of the implementation.
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Figure 4.4: Time required for calculation and data transfer sections for a varying
number of Synergistic Processing Elements for Stage 3 of the implementation.

Figure 4.5: Time required for calculation and data transfer sections for a varying
number of SPEs for all stages aggregated.
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Number of Cores Performance (GFlops) Speedup

1 1.55 -

2 2.84 1.83

3 3.37 2.17

4 4.06 2.61

Table 4.2: Illustration of performance and speedup by varying number of CPU cores
utilized in the Intel-based beamformer implementation

4.2 Comparison with an Intel-based Implementation

In order to provide a comparison for the given beamformer workload, an imple-

mentation suited to an x86-64-based architecture is contrasted. The system is a

dual-processor configuration of the dual-core Intel Xeon 5148 processor, for a total

of four cores, each clocked at 2.33 GHz. Each of the two processors had 4096 kB of

L2 cache. The Front Side Bus (FSB) speed is 1.33 GTransfers/s, where each transfer

is 8 bytes [10]. This implementation uses FFTW 3.1.3alpha3 for the FFTs and a

set of custom-written functions for the matrix transposes and complex multiplies.

Each operation was optimized using SSE vector instructions where appropriate.

Parallelism was implemented at every step of the calculation using FFTW’s built-in

pthreads implementation or OpenMP. The performance was measured by repeating

a beamform calculation 100 times and then finding the average execution time. The

number of operations required for a beamform was then divided by this number to

determine the average number of GFlops obtained for each number of cores. The

results are summarized in Table 4.2 and Figure 4.6.

As demonstrated by these figures, the speedup shown by this Intel processor

configuration was much inferior compared to the Cell. The reason for the lesser

speedup can be attributed to the differences in the way that the memory is utilized

between the two architectures. In the Intel implementation, calculations are done ei-
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Figure 4.6: Speedup obtained for varying of CPU cores utilized in the Intel-based
beamformer implementation
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ther out of main memory or out of cache. In the case of operations that exhibit good

spatial and temporal locality (like the FFT), good performance can be obtained. In

the case of operations that do not exhibit this locality (matrix transposition and

streaming complex multiplies being examples), the processor is limited by the avail-

able memory bandwidth. For this particular system, the memory bandwidth is 1.33

GT/s, with 8-byte transfers, for a total of 10.66 GB/s of memory bandwidth shared

between all four cores. This means that the streaming complex multiply of 4-byte

single-precision floating point numbers are limited to 2.66 GFlops in the case of

bandwidth-limited operation, independent of the number of cores used.

Another factor in the poor speedup is the matrix transpose. In the Cell

implementation, the matrix transpose is a negligible component of the calculation

time, and therefore contributes negligibly to the loss of speedup. In the case of

the Intel implementation, each matrix transpose contributes significantly to the

calculation time without contributing any useful work to the calculation, while at

the same time, the transpose is not efficiently parallelized because it is a memory

intensive operation.

Another difference in the pure level of performance is the fact that the Cell

is able to come much closer to its peak level of performance on real workloads. The

theoretical peak performance of the 4 core Intel machine is 8 operations/cycle · 2.33

cycles/s · 4 cores = 74.56 GFlops. The Intel beamformer implementation is only

able to reach approximately 4 GFlops, 5% of this value. The peak performance of a

Cell with 6 SPEs is 25.6 GFlops · 6 SPEs = 153.6 GFlops. The Cell implementation

reaches approximately 38 GFlops, or nearly 25% of the peak performance.
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Chapter 5

Conclusion

This implementation has made it clear that the Cell is a very powerful platform

for DSP-intensive workloads. It is capable of drastically outperforming implemen-

tations based on general-purpose architectures like those of Intel. However, the

low-level programming that is necessary to fully take advantage of the Cell is very

engineering-intensive, a model that may not be suitable for all applications. While

an efficient implementation on an Intel system will require low-level programming

at the assembly level in many cases, it’s not necessary to explicitly specify memory

movement among computing elements, like it is on the Cell.

The Cell architecture has proved very suitable for the sonar beamforming

application to which it was applied in this report. However, the programming-

intensive nature of parallel programming makes it unclear if the power of the Cell

can be harnessed easily enough to make it a viable processor for a wide variety of

applications.
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