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Three-dimensional real-time digital sonar beamforming requires 4 to

12 GFLOPS, 1 to 2 GB of memory, and 100-200 MB/s of I/O bandwidth. Allen

and Evans have implemented a 4-GFLOP sonar beamformer in real-time on a

Sun UltraSPARC II server with 16 336-MHz processors by utilizing the Visual

Instruction Set (VIS) single-instruction multiple-data (SIMD) extensions and

the Computational Process Network (CPN) data
ow model. In the report, I

rewrite the horizontal and vertical beamforming kernels to use the Motorola

AltiVec SIMD extension for the PowerPC. Then I develop a scalable beamform-

ing software system using the CPN on a Synergy Quad 333-MHz PowerPC G4

symmetric multiprocessing (SMP) board.

While the SPARC VIS o�ers performance increases for signal process-

ing kernels, AltiVec o�ers better performance due to its wider SIMD register

size. In addition to SIMD integer operations, AltiVec can execute up to four 32-

bit 
oating-point multiply and accumulate (MAC) operations per instruction.

For the 128-bit SIMD AltiVec register operations, using data prefetching and

permutation instructions are necessary to utilize the full capability of AltiVec.
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For example, transposing matrices in the 3-D sonar beamformer is handled

without computational overhead using permutation instructions. I evaluate

the performance of vertical and horizontal beamforming kernels on the Pow-

erPC and the UltraSPARC-II to compare the impact of the compiler, SIMD

word alignment, and cache block alignment on performance.

For computationally intensive applications such as the 3-D sonar

beamformer, scalability is a key aspect of the system. Thus, the Computa-

tional Process Network model is the design framework of the beamforming sys-

tem. This programming model decouples the computation processes (nodes)

from the communication processes (queues). In a 3-D beamforming system,

the nodes consist of the sonar sensors, the vertical beamforming kernels and

the horizontal beamforming kernels. These nodes communicate through the

preallocated memory which work as FIFO queues. On an UltraSPARC-II mul-

tiprocessor system, the CPN 3-D sonar beamformer shows near-linear speedup

up to 16 processors.

I port the CPN 3-D sonar beamformer form the Sun to the Quad

PowerPC G4 SMP board using the new beamforming kernels and transposed

queues. On the PowerPC board, I discover performance limitations due to

the cache hierarchy. I evaluate the importance of interconnection in determin-

ing scalable performance with the high-memory bandwidth application which

require relatively high memory bandwidth.
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1. Introduction

The digital signal processor (DSP) market has been growing at an

approximate rate of 40% per year since 1992 [1]. These predictions are based

on the economic �gures of ever increasing integration of the signal processors

in many di�erent consumer products such as cellular telephones, voiceband

modems, ADSL modems, and audio CD players, as well as industrial applica-

tions that are computationally intensive.

As fast signal processing becomes essential part of the growing number

of products and applications, 
exible and inexpensive development platforms

will become very important. To incorporate fast signal processing functions

on desktop computers and servers, popular general-purpose processors such

as Intel Pentium III, AMD K-7, UltraSPARC II, and PowerPC G4 include

signal processing acceleration in the instruction set architecture. Since these

are extensions to the core processor instruction set for the special purpose

of signal processing, they are referred to as native signal processing (NSP)

instructions. The general-purpose processors with NSP extensions are emerging

system solutions for multimedia and signal processing applications, especially

for desktop and server applications requiring high performance.

1.1 Motivation

NSP extensions to general-purpose processors allow programmers to

implement signal processing algorithms eÆciently in a convenient development

1
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Custom Hardware Embedded COTS Workstation

Development cost $2,000 K $500 K $100 K

Development time 24 months 12 months 6 months

Physical size (m3) 0.067 0.067 0.089

Recon�gurability low medium high

Software portability low medium high

Hardware upgradability low medium high

Table 1.1: Three generations of low-volume 4-GFLOP sonar beamformer.

COTS refers to commercial-of-the-shelf technology [2].

environment that is the same as the target environment. In recent times,

NSP extensions have featured fast and powerful functionality that is compa-

rable to specialized digital signal processors. Digital signal processors have a

throughput of one or two multiply-accumulate operations per cycle. Multiply-

accumulate operations are fundamental in vector dot products, matrix multipli-

cation, �lters, and fast Fourier transforms. NSP instructions have a throughput

of four or eight multiply-accumulate operations per clock cycle. Clock rates are

currently three times higher for general-purpose processors. This motivated

Allen and Evans [2] to explore the use of servers and desktop computers as

target platforms for high-performance signal processing applications.

One high-performance signal processing application is real-time 3-D

digital beamforming. Real-time 3-D digital sonar beamforming can require

several billions of 
oating-point operations per second (GFLOPS) of compu-

tation and 100-200 MB/s of I/O. Before the 1990s, these beamformers were

implemented in custom hardware because they required higher accuracy and

memory bandwidth then commodity hardware systems could o�er. However,

with the rapid growth in demand and technological advances in programmable
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digital signal processors, beamformers were built using commercial o�-the-shelf

(COTS) components by the mid 90s. The addition of native signal process-

ing extensions to the Sun SPARC in 1995 and support by Unix operating

systems for symmetric multiprocessing (SMP) made it possible to implement

high-performance signal processing application on commodity multiprocessor

servers. Allen and Evans use a commercial general-purpose 16-processor SMP

server from Sun Microsystems to realize a 3-D sonar beamformer in real-

time [2]. A comparison of these three generations of beamformer implementa-

tions is shown in Table 1.1.

1.2 Report Summary

Signal processing kernels of the beamformer exploit data parallelism

by using Single Instruction Multiple Data (SIMD) arithmetic operations, which

are available in native signal processing extensions, such as the Visual Instruc-

tion Set (VIS) on the Sun UltraSPARC-II processor. By using a Sun Ultra

Enterprise server with at least 10 450-MHz UltraSPARC-II processors and 1.2

GB of memory, a real-time beamformer delivering 4 GFLOPS on 160 MB/s of

streaming input data can be realized.

In Chapter 2, I �rst de�ne two native signal processing extensions,

Sun's VIS and Motorola's AltiVec, which are used to implement the beamform-

ing system. Then I summarize the components of the beamforming algorithm

in [3]. I also brie
y present the practical design decisions made for the im-

plementation. In my multiprocessor implementation, I use the Computational

Process Network model [2]. The Computational Process Network model de-
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couples computation from communication and maps well to scalable software.

Chapter 3 describes the Allen and Evans implementation [2] of the

beamformer and its real-time performance on an UltraSPARC II server. Then I

further explore the e�ectiveness of NSP extensions by optimizing and assessing

the performance of beamforming kernels using the Motorola AltiVec NSP ex-

tension on the PowerPC G4. I evaluate the performance of these beamforming

kernels on the PowerPC and the UltraSPARC-II to evaluate the impact of the

compiler, SIMD word alignment, and cache block alignment on performance.

Also in Chapter 3, I expand the implementation as a scalable software system

framed under the Computational Process Network model. The scalability of

the previous beamformer was tested on a 16-processor UltraSPARC II server,

whereas the proposed beamformer was tested on a four-processor PowerPC

G4 board. Although they are architecturally di�erent targets, they are both

symmetric multiprocessor (SMP) systems.

Chapter 4 begins with a brief summary of multiprocessor systems.

When comparing the performance scalability of the system in Synergy Quad

PowerPC G4 with UltraSPARC II SMP system, I address the impact of di�er-

ent software design techniques for the given hardware architectures.

In the concluding chapter, I summarize the performance compari-

son results of the beamforming kernel in UltraSPARC II and PowerPC G4

processors. I end the report with general suggestions for the software design

techniques of high-performance applications to approach optimal performance

with di�erent multiple SIMD processor hardware architecture.



2. Background

2.1 Native Signal Processing Extensions

Many high-performance embedded applications are programmed on

systems with a few general-purpose processors as system controllers and a larger

number (possibly hundreds) of specialized digital signal processors (DSPs) to

perform scienti�c calculations. However, this type of system has many disad-

vantages. First, the development environment (a workstation) is completely

di�erent from the target environment. Second, DSPs show unequal perfor-

mance advances in processor technologies. Since 1995, many manufacturers

of high-performance general-purpose processors have integrated native signal

processing instructions onto their processor cores to o�er integrated solutions

that combine the functions of both DSP and general-purpose processors. Such

processors usually have a common programming and execution environment,

which allows easier and faster software development. This allows the devel-

opment and target environments to be the same. It allows leverage of the

commodity desktop computers for system development and commodity servers

for system deployment [4].

A SIMD architecture allows one instruction to be performed on multi-

ple pieces of data, thereby potentially increasing the computation performance

proportional to the size of the SIMD registers. However, most SIMD architec-

tures require that the input data be aligned in memory according to the size

of the SIMD register. Therefore, if the data were not aligned in memory, then

5
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Figure 2.1: PowerPC G4 AltiVec vector Unit

additional instructions would be needed for the data permutation to align the

data.

2.1.1 UltraSPARC Visual Instruction Set

The Visual Instruction Set (VIS) is a set of signal processing instruc-

tions based on a SIMD architecture. The 
oating-point data of the Ultra-

SPARC processor core is enhanced with a graphics integer unit to support

VIS. With 50 new CPU instructions, VIS can perform an integer operation on

multiple words with a single instruction. VIS registers are 64 bits long. Thus,

VIS can achieve up to a four times speedup with an 8-bit by 16-bit �xed-point

multiplication using the SIMD arithmetic logic [5].

2.1.2 PowerPC AltiVec

The vector unit for the AltiVec NSP extension is partitioned into a

separate sub-unit of the processor as are with the 
oating-point and integer

units. As shown in Figure 2.1, the vector unit has its own 32 by 128-bit wide

register �le for use with 150 new 
oating-point and integer SIMD instructions.

It allows execution of up to four 32-bit 
oating-point MAC operations per
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Figure 2.2: Sonar Beamformer

instruction [6].

In addition to SIMD arithmetic, the unit is capable of performing

fast permutation on 128-bit wide data. The hardware permutation unit allows

eÆcient implementation of signal processing algorithms such as matrix multi-

plication and fast Fourier transform. With such a powerful vector unit, AltiVec

o�ers greater computing resources than VIS.

2.2 Beamformer

Sonar beamformers use the output of an array of sensor elements

to determine from which direction a sound is coming. I implement a time-

domain beamforming algorithm that weights, delays, and sums the outputs of

the sensor array. The weighting of the sensor outputs helps to improve the

spatial response.

The time delay resolution required is typically several times the Nyquist

rate (the sampling rate must be higher than the Nyquist rate to preserve the

frequency content of the signals). Instead of sampling at a higher rate, digital

interpolation with Finite Impulse Response (FIR) �lters to gives a satisfactory

time delay resolution. This is called digital interpolation beamforming, and is

shown in Figure 2.2. Analog data is sampled at just above the Nyquist rate
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Figure 2.3: Ten vertical samples form a stave. An array of 800 sensors consists

of 80 staves.

Sensors

800
V

HorizontalVertical
Beamformer Beamformers

40 MB/s

40 MB/s

40 MB/s

40 MB/s
H

H

H

32 MB/s

32 MB/s

32 MB/s 24 MB/s

24 MB/s

24 MB/s

Queues Queues

Fan 1 Beam

Fan 3 Beam

Fan 2 Beam

Figure 2.4: Block diagram of 3-D Sonar Beamformer. The input data rate is

160 MB/s and the output data rate is 72 MB/s.

and then interpolated, delayed, and summed [3].

For implementation, a 3-D beamformer can be decomposed into hor-

izontal and vertical beamforming subsystems. This method of beamforming

enables 3-D mapping of underwater surfaces. The vertical beamformer com-

putes three sets of vertical outputs called staves. Three dot products are com-

puted with each column of 10 vertical transducers and three coeÆcient vectors

as shown in Figures 2.3 and 2.4. For improved performance of the vertical

beamformer, I use SIMD integer computation. The vertical beamformer also
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converts the data to 
oating-point format for the following horizontal stages [8].

With the data input rate of 160 MB/s, the vertical subsystem needs to perform

at 500 MFLOPS to run in real-time.

Three identical horizontal beamformers process the three sets of stave

results to calculate horizontal beams. The horizontal beamformers use digital

interpolation beamforming. The interpolation in the horizontal beamforming

kernel is simpli�ed by using a two-point FIR �lter, which gives enough accuracy

for this system [1]. Each horizontal beamformer needs to process at the rate of

1200 MFLOPS to run in real-time. The overall system description is shown in

Figure 2.4.

The system can also leverage the Computational Process Network

model which is described in the next section [2]. The beamforming kernels

are broken into many process nodes (threads) connected by queues. Since the

application will run in real time, dynamically changing the queue sizes is not

desirable. The queue sizes are set at initialization time to be large enough to

avoid arti�cial deadlock from writing to a full queue [9].

2.3 Computational Process Network Model

The Process Network programming model can be used to construct

parallel applications. In this model, each independent process communicate

with other independent processes through unidirectional �rst-in �rst-out (FIFO)

queues. There can be more than one input or output queue connected to each

process. According to the model semantics, a process blocks (stops execution)

when it attempts to read data from an empty queue. Otherwise, each process
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500 MFLOPS

Beamformer
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Beamformer

Beamformer
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Figure 2.5: Beamformer diagram in nodes and directed edge

is allowed to produce output continually. Since the data producing process can

potentially push more data to the queue than the consuming process, FIFO

queues could grow in�nitely large [10].

Since bounded memory is necessary in any practical system, in�nite

queues should not be allowed if at all possible. Thus, Parks [9] developed

dynamic scheduling rules for a Process Network that always �nd a bounded

memory schedule if one exists. The rules dictate that the process halts exe-

cution when reading from an empty queue or writing into a full queue. If the

process is halted due to a full queue, i.e. arti�cial deadlock, then the length of

the smallest full queue is increased until the corresponding process can write

into the queue. When using a directed graph syntax for specifying a Process

Network, each process is a node and each FIFO queues is a directed edge [2].

The Computational Process Network (CPN) model modi�es the Pro-
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cess Network model to allow all memory management operations to be per-

formed by the unidirectional queues. CPN adds a �ring threshold to each

unidirectional queue. This enables the node to consume (dequeue) a smaller

number of samples than the number of samples read. This better matches

the processing of streaming data using overlapping blocks, e.g. �ltering. If a

bounded implementation were possible, then all of the streaming data could

be managed by the bounded memory queue when the threshold is set with

a experimentally determined value. The modi�ed model allows each node to

work on the memory itself directly, which makes data copying unnecessary.

The CPN programming model is suitable for constructing computa-

tionally intensive, streaming signal processing applications such as the real-time

3-D sonar beamformer in scalable software. Each of the sensor, vertical, and

horizontal beamforming processes can be constructed into nodes and the path

ways from the sensors to the vertical beamformer, from the vertical to horizon-

tal beamformers, and to the resulting outputs can be represented with directed

edges, as shown in Figure 2.5.

2.4 Conclusion

This chapter describes the background information necessary for con-

structing a scalable real-time 3-D sonar beamforming system on SMP worksta-

tions that have processors with native signal processing extensions.

First, NSP extensions on UltraSPARC-II and PowerPC G4 processors

are examined. UltraSPARC-II's Visual Instruction Set (VIS) is specialized to

process SIMD integer operations. AltiVec extension on PowerPC G4 has a
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more powerful instruction set than VIS in that it uses registers twice as wide

as VIS. In addition to integer operations, AltiVec also includes 
oating-point

instructions that can execute up to four MAC per instruction cycle.

Second, the beamformer algorithm from [3] is described. The real-

time 3-D sonar beamformer uses an 80 by 10 sensor array, one 500-MFLOP

vertical beamformer, and three 1200-MFLOP horizontal beamformers.

The beamforming kernels can take advantage of NSP extensions of

UltraSPARC-II and PowerPC G4 processors. However, the computational re-

quirement exceeds the capability of a single processor. Thus, in order to achieve

scalable performance on SMP machines, the kernels can be put into Computa-

tional Process Network model of the 3-D sonar beamformer.

The previous beamformer implementation by Allen and Evans [1] can

meet the real-time constraints of the 3-D sonar beamformer on an UltraSPARC-

II SMP server. The performance of new beamforming kernels using the AltiVec

extension from Motorola is described in the next chapter for comparison with

the previous UltraSPARC implementation.



3. Beamformers using AltiVec

Using Motorola PowerPC G4/7400 processors with AltiVec, I con�rm

the evaluations assessed with PowerPC AltiVec simulators, Sim G4 and Ap-

ple AltiVec Emulator [11]. I evaluate the results of the beamforming kernels

programmed with AltiVec on the G4 processor in a real-time system context.

3.1 Beamforming Kernels

The beamforming algorithm described in Section 2.2 has two stages of

computation. The �rst stage is the vertical beamformer, which computes three

di�erent vertical beams using the raw data collected by the sensors. Using the

computation results from the vertical beamformer, the second stage contains

three horizontal beamformers to compute the horizontal beams.

I implement vertical and horizontal beamformer using AltiVec exten-

sions. I compiled and tested the kernels using the GCC compiler 2.95 with

AltiVec enabling patches [7] in SMP Linux operating system version 2.2. An

AltiVec enabling patch provided by Motorola is applied to the GNU C Com-

piler (GCC) to enable compilation of AltiVec instructions. This simpli�es de-

velopment by allowing both the signal processing kernels and the supporting

framework software to be written in the same language and environment.

Like the VIS extension to the UltraSPARC processor, AltiVec is a

SIMD extension in PowerPC. However, the programming approaches are very

13
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di�erent due to di�erent hardware design. One of the major di�erences is the

width of the data that each processor uses in its extension instructions. For

the most eÆcient usage, the input and output data used with AltiVec should

be 128-bit aligned [6, 7].

Previous implementation

The beamforming algorithm described in Chapter 2 was previously

implemented on Sun UltraSPARC II servers. Sun UltraSPARC II processor's

VIS signal processing extension is a set of SIMD integer instructions. The data

structure of the input data for the vertical beamformer is in 16-bit integer for-

mat and the coeÆcient data is in 
oating-point data type. Thus, by scaling

the coeÆcient data to be 16-bit integers, the vertical beamformer can use the

integer native signal processing extensions. In the implementation, the vertical

beamformer uses two 8-bit by 16-bit multiplications and two 32-bit additions

for the theoretical peak performance of one 16-bit multiply and accumulate

per two clock cycles (one instruction per cycle). VIS could not be used for

the horizontal beamformer because higher precision is necessary for its inter-

polation step. The horizontal beamformer, therefore, uses the 
oating-point

instructions of the UltraSPARC processor. Memory latency hiding techniques

such as loop unrolling and software data prefetching are used to achieve near

peak performance for the implementation [8].

By using architecture speci�c compiler optimization, partially hand-

coded implementation, and data prefetching, the performance of the beam-

former on UltraSPARC II processor gave a performance of 313.3 million integer

operations per second (MIOPS) and 444.3 million 
oating-point operations per
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second (MFLOPS) per processor [2].

3.2 Implementation using AltiVec

In the previous implementation, the input memory was allocated con-

tiguously with each set of stave samples addressed consecutively according to

the time at which they were sampled. Since the two-point interpolation in the

horizontal beamformer uses the samples collected from a stave at two consecu-

tive times, the original queue structure would require the sample points to be

referenced with two di�erent addresses with an o�set that is equal to the size of

a stave. By transposing the queue, the samples for each stave become contigu-

ous according to their sampling times. Such an arrangement would allow each

vector load instruction to load up to four samples required for the calculation

at once. I refer to the transposing of the queue as cornerturning.

Even though transposing queue data to implement cornerturning is

eÆciently handled by the vector load, it introduces a few problems. First, the

index calculation becomes more complex because cornerturning requires the

queue size to be added or subtracted when the kernel accesses the adjacent set

of stave samples. Second, due to the necessary arrangement of the queue in

memory, it is more diÆcult to implement dynamically growing queues. The

e�ect of the �rst problem is inevitable without signi�cant change in the input

data structures. However, the second problem can be avoided by allocating the

queues to be large enough to prevent arti�cial deadlock [12]. The queue sizes

can be experimentally determined.
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Figure 3.1: Vertical kernel algorithm using AltiVec

3.2.1 Vertical Beamforming Kernel

As shown in Figure 3.1, the vertical beamformer needs to compute

three dot products on each set of ten 16-bit integer samples with three sets of

coeÆcients. To avoid arithmetic over
ow or under
ow, the results are stored as

32-bit integers. To accommodate the horizontal beamforming kernel, the results

are �rst converted to 32-bit 
oating-point numbers and then cornerturned into

the queue.

The input and output structure of the vertical beamforming kernel

remains the same because of the way in which the hardware collects and stores

the data into the queue. The vertical beamformer uses AltiVec instructions to

load four 16-byte word aligned data from the queue at a time. The words are

then transposed to perform dot products with three di�erent sets of coeÆcients.
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Figure 3.2: Horizontal Kernel algorithm using AltiVec [12]

The resulting vectors are stored in strides to accomplish cornerturning of the

entire contents of the queue. The cornerturned data in the queue is fed into the

horizontal kernels to reduce data permutations required for the input vectors.

The vertical beamforming algorithm performs dot products that re-

quire large amounts of sequential data in a short time. Therefore, every time

that the process attempts to access data that is not in the data cache, it is

stalled until the block of the data is loaded into the cache. I use the AltiVec

data prefetching instructions to reduce data cache misses [12].

3.2.2 Horizontal Beamforming Kernel

The horizontal beamformer loads the cornerturned samples using the

vector load operation. The number of load instructions is reduced due to the

AltiVec vector operations. Then the data is permuted to meet the alignment
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constraints for the instructions before the computation.

As described in Section 2.2, the horizontal beamforming algorithm

performs two-point interpolation with consecutive samples from each stave.

Because the input to the horizontal kernel has been cornerturned, consecutive

samples in memory are consecutive samples of the same stave in time. As shown

in Figure 3.2, data blocks labeled 1 through 9 represent sequential samples

collected from a given stave.

To reduce the number of load and permute instructions, two sets of

the same coeÆcients are stored, each of which is aligned di�erently by one


oating-point word. The vector multiply-and-accumulate (MAC) instruction

computes the result using two pairs of coeÆcients, which yields the two-point

multiplication. Up to four 
oating-point MACs are computed with each AltiVec

instruction. These results are then summed and permuted to yield two-point

interpolated beams.

By unrolling the instruction loops, more data-independent instruc-

tions can be executed at the same time. Thus, the vector unit pipeline can

be �lled without having to wait for the expensive 
oating-point calculation to

complete. The results are once again placed in a cornerturned output queue of

the horizontal beamformer [12].

3.3 Kernel Benchmark

Figure 3.3 shows the performance measurements in operations per

cycle for the new beamforming kernels written in AltiVec versus previous im-

plementation in VIS for UltraSPARC. The results are organized according to



19

Figure 3.3: Vertical and Horizontal Kernel Benchmark [12]

the development platform such as the operating system and compiler, as well

as the usage of the native signal processing extensions, prefetch instructions,

and input data size.

As performance results indicate, the compiler plays a large role in the

performance. Unlike SunCC, GCC is a generic, non-commercial C compiler

that does not consider many potential architectural advantages of each pro-

cessor. Even with optimization and architectural tuning 
ags enabled, GCC

compiled code performed as much as 50% slower than the SunCC compiled

code on the same machine.

3.3.1 Performance Analysis

For the horizontal kernel, performance is measured from several ver-

sions of loop-unrolled kernels. Due to di�erent optimizations used in compilers

and the processor architecture, the compiled kernels gave di�erent numbers

of loop unrolling iterations for the generated code. Figure 3.3(b) shows the
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performance of the best versions. which is approximately 1.2 to 1.4 times the

performance of the Sun implementation.

In Sun implementation, use of VIS in the vertical kernel increased

its performance by a factor of two. Since AltiVec uses registers that are twice

as wide as VIS, use of AltiVec should increase the vertical kernel performance

by two. However, using the AltiVec extensions in the code only doubled the

performance of the kernel. This discouraging result led us to focus on the

overhead from vector permutation.

Altering the algorithm to reduce the vector instructions in the code

did not signi�cantly increase the performance. This indicated that the bottle-

neck in the vertical beamforming implementation was not in the instruction

count. Thus, I turned my attention to cache performance of the machine.

3.3.2 Cache Performance

Level-1 (L1) cache in PowerPC G4 consists of 32 KB instruction and

32 KB data cache. Each cache is eight-way set associative and each block

contains 32 bytes. Since there are eight blocks in each set, 32 KB of cache is

divided into 128 sets [19].

In vertical beamformer, all input data is loaded and used only once.

Therefore, the performance would not be e�ected even when the cache line of

previously loaded data is replaced with the newly requested data. However,

when the vertical beamformer invokes store, the alignment of the result queue

can cause the cache line to be written back to the main memory before it can

be replaced. Since L1 cache has 128 sets with 8 32-byte blocks, cache write-
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back can occur with every vector store when the o�set of the subsequent vector

stores are 8192 bytes and its multiples.

The size of the result queue for the vertical beamformer is determined

by the number of samples. Due to cornerturning of the result queues, sequence

of stores for the stave samples are spaced by the length of the samples. There-

fore, the vertical kernel producing 65536 samples invokes most amount of cache

write-back because the o�set for each store is 262144 bytes which is a multi-

ple of 8192 bytes. Figure 3.3 shows that allocating the queue lengths to be a

66560 samples instead of 65536 samples made the vertical beamforming kernel

to perform about 20% better. As expected, a similar performance increase

occurs when the input data queues sizes were not a multiple of 8192 bytes in

horizontal kernel.

Since vertical beamformer requires constant stream of new input data,

the performance is also largely determined by whether the input data is prefetched

in to the cache from the memory. Through several iterations of performance

tests, I found that an eÆcient use of the prefetch instruction in the vertical

kernel increased its performance by 20%. However, the data prefetching did

not a�ect the performance signi�cantly in the horizontal beamformer. This is

likely due to the kernel implementation that emphasizes coeÆcient and sample

data reuse, which reduces the total number of cache misses [12].

3.4 Conclusion

This chapter aÆrms the importance of front and back-end compiler

optimization, cache alignment and utilization, and NSP extensions of two dif-



22

ferent processors. Although PowerPC G4 technology is relative immature, the

AltiVec implementation performed 1.56 to 1.83 times faster than Sun's VIS for

the same clock speed and cache size.

The beamforming algorithm requires 480 MFLOPS for the vertical

beamformer and total of 3600 MFLOPS total for the three horizontal beam-

formers. Therefore, it is not possible to implement the entire system on single

processor. The previous implementation by Allen and Evans [2] required ap-

proximately ten 450 MHz UltraSPARC II processors working in parallel in

multiprocessing environment. In this chapter, I benchmark individual kernels

written in AltiVec to be used in a multiple processor implementation. My

goal is to implement a 4-GFLOP 3-D sonar beamformer in real-time using four

550-MHz PowerPC G4 processors.



4. Scaling in Symmetric Multi-Processing Platforms

Real-time 3-D sonar beamformer applications need to compute on

the order of billions multiply-and-accumulate (MAC) operations per second.

Scalability of the kernels is a key in achieving this performance on multipro-

cessor platforms available today. The beamforming algorithm implementation

described in Chapter 2 is naturally matched to multiprocessor systems due to

the data and functional parallelism present.

4.1 Multiprocessor

Many di�erent types of multiprocessor environments are currently

used and researched for di�erent applications. These types of hardware drasti-

cally di�er in performance and usage due to di�erent sizes and con�guration in

processors, memory, and interprocessor communication bandwidth and latency.

4.1.1 System Design

With advances in the commodity workstation market, several types of

cluster computers with high-speed interconnections have emerged from research

and development. These multiprocessor workstations and servers are built

with a relatively high number of processors ranging up to several thousands.

Typically, each processor would have with its own memory, operating system,

and interconnection device. Therefore, these systems usually occupy a large

physical space. Examples of cluster computing include networks of workstations

23
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and two-level multiprocessor of Myricom [13]. Memory coherency policy of such

potentially large distributed systems may be maintained independently in the

groups of processors via the Message Passing Interface (MPI) [16] or other

generic types of communication protocols.

One of the most popular types of multiprocessor platforms is referred

to as Symmetric Multi-Processing (SMP). This platform consists of a relatively

low number of processors ranging from two to sixteen processors. The plat-

form usually attempts to give scalable performance while hiding the e�ects of

multiple processors by maintaining one large coherent memory. Since these

multiprocessors reside on single board or a box, it takes relatively less physical

space than a cluster of computers. SGI Power Challenge [14], UltraSPARC En-

terprise 4000 with 16 UltraSPARC II processors, and Synergy SBC-VSS4 board

with four PowerPC G4 processors [15] are all categorized as SMP systems.

There are systems that combine both types of platforms to produce

more powerful multiprocessing solutions, e.g. clusters of SMP workstations.

Such systems include CLUMPS of the University of California at Berkeley and

the Sun Enterprise 10000. Convergence of di�erent multiprocessing platform

brings about generic standardization of the performance measurement. Mea-

suring the performance trade-o�s between clusters of computers and SMPs is

rather a recent research topic which is becoming increasingly active [16].

4.1.2 Scalability

The primary problem to address in scalability is the interconnection.

Memory bandwidth and the type of processor interconnection largely determine
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Figure 4.1: Three di�erent multiprocessor models: (a) is a special case of (b).

the scalability of a system. The preferred multiprocessing environment from a

performance point of view would be to have interconnections with the lowest

memory latency while maintaining highest bandwidth between the processors

and the memory. Other than for research purposes, such systems would be less

feasible due to their high price. The key to producing the most practical high

performance computer is in �nding a good balance between cost and bandwidth

to achieve the lowest cost to performance ratio.

As shown in Figure 4.1(a), system design model with crossbar pro-

cessor to memory interconnection has a scalable memory with low latency;

however, the implementation and maintenance costs are high because of uses

of expensive technologies such as crossbar along with high-speed communica-

tion. The \Dance-hall" system design model attempts to achieve bandwidth

that is still scalable, but the cost of interconnection technology is reduced by

using a less expensive network con�guration, such as the simple loop in Figure

4.1(b). Such modi�cation, however, uniformly increases the memory latency,

which impacts the overall performance of the scaled system. Another model
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shown in Figure 4.1(c) uses distributed memory or non-uniform-memory-access

(NUMA) con�guration. NUMA constructs shared address space out of simple

message transactions across a general purpose network, e.g. clusters of com-

puters [15].

The above con�gurations and the combinations of the models make

up the current systems with di�erent trade-o�s to facilitate balanced cost and

performance. Therefore, the applications performance varies from one system

to another based upon their resource requirements.

4.1.3 Implementation Platform

The sonar beamforming system is low-volume, computationally de-

manding application that must �t into a small physical space. In consideration

of physical space and eÆcient implementation of the beamforming kernels us-

ing NSP extensions, I choose UltraSPARC Enterprise 4000 and Synergy Quad

PowerPC G4 SMP systems, with each running a Unix operating system, for

the target platforms.

The Enterprise 4000 server uses a combination of expensive crossbar

technology and the \dance-hall" interconnection model. The Synergy server

connects all four processors using the \dance-hall" model. As concluded in

Chapter 3, kernels written in AltiVec extension of G4 outperform the Ultra-

SPARC by factor of 1.5 to 1.8. However, in following sections, I observe a

di�erent behavior for the scaled version of the vertical beamformer on two

di�erent SMP systems. This illustrates the importance of interconnection in

scalability. Thus, I address the impact of the di�erent NSP utilization and
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interconnection in performance of the entire system.

4.2 Symmetric Multiprocessor Implementation

4.2.1 Ultra SPARC II Server

Figure 4.2 shows the block diagram of Sun server I used for the beam-

forming system. The system is composed of six dual 336-MHz UltraSPARC II

processors CPU/Memory (CM) board with VIS. On each of the six CM boards,

there are two CPUs with 4 MB of level-2 cache and 512 MB of memory. The

size of the memory scales linearly as the number of CM boards increase [17].

Each CM board is connected by using the expensive crossbar inter-

connection model. As described in Section 4.1, this model is quite eÆcient due

to fast interconnection to the local bank of memory. The processors, memory,

and I/O interface are all connected through crossbar technology. The inter-

connection is controlled by a STP2202BGA dual system controller (DSC). The

DSC supports a 288-bit wide memory bus running at 84 MHz [18]. The total

memory bandwidth of 3.034 GB/s from each memory bank is connected to

crossbar and shared by two UltraSPARC-II processors and the I/O interface.

The connection between both processors and the crossbar is 128-bit wide run-

ning at 84 MHz. Therefore, theoretical maximum memory bandwidth of 1.344

GB/s is shared in the \dance-hall" model interconnection between each pair of

processors.

The \dance-hall" interconnection model is used for the data accesses

through the 2.83 GB/s Gigaplane bus for inter-board communication. Due to

crossbar interconnection from memory to the I/O interface, memory accesses
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from the I/O do not use the bandwidth allocated for the processor. Also, since

two CPUs share the on-board memory, if the data needed by either processor is

located in the local memory, it allows the processors to load the data from the

local memory directly without the use of Gigaplane. Hence, the Sun Enterprise

4000 SMP server integrates the combination of the crossbar and \dance-hall"

interconnection models to maintain high memory bandwidth while keeping the

latency and cost low.

The initial implementation of the real-time sonar beamforming sys-

tem on a commodity server runs on the Sun SMP server. The system was

developed under the Solaris 2.7 Unix operating system using the Sun C com-

piler customized for the UltraSPARC processor to use the architectural features

eÆciently. Allen and Evans [2] give detailed benchmark �gures and analysis of

the implementation which shows results indicating a possible real-time imple-

mentation of the system on 12 336-MHz UltraSPARC-II processors.

4.2.2 Synergy Quad PowerPC G4

The design of the Synergy Quad G4 board is much like the CM board

of the Sun Enterprise server. Each of the four MPC7400 (PowerPC G4) pro-

cessors has 2 MB of level-2 (L2) cache for faster load/store without having

to access the slower on-board memory. 512 MB of on-board synchronous dy-

namic random-access-memory (SDRAM) is shared by the four processors via

PowerPC 60X Bus controlled by a memory controller. Although the PowerPC

G4 processor supports a newer MPX Bus, the Synergy board does not utilize it

because Motorola does not yet have a memory controller chip which supports

the MPX Bus with four processors. Therefore, the board is designed with an
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older memory controller (MPC106) which supports the 60X Bus and up to four

PowerPC processors [19, 20, 21].

MPC106 on the Synergy board implements 64-bit wide bus running at

66 MHz. With this memory controller con�guration, the theoretical maximum

memory bandwidth is 528 MB/s. This memory bandwidth is about one-sixth

of the bandwidth available on a single Sun CM board. In addition, the Synergy

board shares this memory bandwidth among four processors, whereas each pro-

cessor on Sun CM board has up to 672 MB/s of memory bandwidth. Assuming

that each G4 processor is saturating the memory bandwidth, the theoretical

maximum memory bandwidth for each processor is 132 MB/s, which is about

�ve times lower than that of the Sun CM board [21].

For the beamforming application, a major advantage of the Synergy

board over the Sun server is the PowerPC G4 (MPC7400) processor. As shown

in the performance benchmarks in Chapter 3, the beamformer kernels us-

ing AltiVec outperforms the kernels written in VIS by a factor of 1.5 to 1.8

times. However, the \dance-hall" interconnection model with four processors

and legacy shared-memory interconnection are much less eÆcient compared to

the crossbar model on the Sun Enterprise CM board.

4.3 Multi-threaded Beamforming System

Many computationally intensive signal processing algorithms such as

real-time sonar beamforming have high degrees of parallelism. Dividing the

computation algorithm into multiple independent tasks is possible because the

number of divisible tasks containing data-dependent samples are usually much
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Implementation Time (s) MFLOPS Speedup Percent Utilization

kernel 7.252 443.6 (1.000) (100.00%)

2 threads 3.691 871.6 1.965 98.24%

4 threads 1.895 1697.5 3.827 95.67%

6 threads 1.277 2518.6 5.678 94.63%

8 threads 0.973 3306.7 7.454 93.18%

Table 4.1: Horizontal Beamforming Benchmark using 336-MHz UltraSPARC-II

Enterprise 40001 [2]

Implementation Time (s) MFLOPS Speedup Percent Utilization

kernel 4.037 311.7 (1.000) (100.00%)

2 threads 2.082 604.3 1.939 96.94%

4 threads 1.128 1115.9 3.580 89.50%

6 threads 0.802 1543.9 4.953 82.55%

8 threads 0.661 1905.0 6.112 76.40%

Table 4.2: Vertical Beamforming Benchmark using 336-MHz UltraSPARC-II

Enterprise 4000 [2]

larger than the number of processors. The beamforming system uses the op-

timized kernels described in Chapter 3 and divides the workload into several

threads in order to run them in parallel on di�erent processors. To facilitate

parallel execution, lightweight POSIX threads are used for the vertical and

horizontal kernels. The threads are encapsulated in the nodes, which are then

interconnected via FIFO queues according to the scalable computational pro-

cess network model described in Section 2.3.

4.3.1 Previous Implementation

A previous implementation of the 3-D sonar beamforming system cur-

rently runs on UltraSPARC-II Enterprise 4000 SMP server from Sun. The

system is built on CPN model in which each node containing the beamform-
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ing kernels optimized with the VIS extension and interconnected with FIFO

queues as shown in Figure 2.5. Benchmark results are produced from multiple

336-MHz UltraSPARC-II processors running in the \real-time" class under the

Solaris 2.7 operating system [2].

Performance analysis The measured performance in Tables 4.1 and 4.2

shows near linear scalability in the horizontal kernel while the vertical kernel

executes less eÆciently as the number of the threads increases. Although the

three horizontal kernels combined require more than seven times the MFLOPS

than the single vertical kernel, the vertical kernel requires larger memory band-

width. This is because the algorithm for the vertical beamformer uses streams

of new samples only once to calculate three sets of new data while horizontal

beamformer reuses the same set of data a number of times equal to the number

of beams (61 beams). Therefore, vertical beamformer has to continually access

the main memory while horizontal beamformer can reuse the data in the L2

cache after the �rst access to main memory.

When examining the execution of the kernel in terms of system ar-

chitecture, a single vertical beamforming thread can execute on single CM

board without having to access the Gigaplane, but multiple threads running

on more than two processors need to access the Gigaplane to communicate.

Since inter-board memory access is slower due to the interconnection model,

it is not surprising to see a more drastic slowdown with the vertical than the

horizontal beamforming kernel due to memory latency.
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Implementation Time (s) MFLOPS Speedup Percent Utilization

kernel 3.899 825.1 (1.000) (100.00%)

2 threads 2.548 1262.4 1.530 76.50%

4 threads 1.303 2469.7 2.993 74.83%

6 threads 1.679 1915.5 2.322 58.04%

7 threads 1.596 2015.1 2.442 61.06%

Table 4.3: Horizontal Beamforming Benchmark using 333-MHz Synergy Quad

G4 VSS4 board

Implementation Time (s) MFLOPS Speedup Percent Utilization

kernel 3.912 321.7 (1.000) (100.00%)

2 threads 4.303 292.4 0.909 45.45%

4 threads 4.472 281.4 0.875 21.87%

6 threads 4.341 289.9 0.901 22.53%

8 threads 4.446 283.0 0.880 21.99%

Table 4.4: Vertical Beamforming Benchmark using 333-MHz Synergy Quad G4

VSS4 board

4.3.2 Implementation using AltiVec

My implementation using AltiVec extension runs on Synergy Quad

PowerPC G4 board with four 333-MHz G4 processors running LinuxPPC op-

erating system. As with the previously implemented system on the Sun, the

software is built on CPN programming model with nodes and FIFO queues.

Benchmark for the scalable beamforming kernels is compiled using GCC com-

piler with data prefetch and unaligned sample blocks for the best performance

as reported from the single thread kernel in Chapter 3.

Performance analysis As shown on Table 4.3, the horizontal beamformer

scales linearly at about 75% per processor from two to four threads. When

number of threads exceeds the number of available processors, the performance
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decreases to about 60% per processor. When there are 1-4 threads, each pro-

cessor can dedicate all of its computation power to a single thread. When

there are more threads than the number of processors, more than one thread

has to run on one or more of the processors. Such distribution of tasks causes

process context switches to occur in processors with more than one thread. A

context switch between two threads can be very expensive, especially when the

scheduler decides to move the thread from one processor to another. When the

thread is moved from one processor to another, all of the data modi�ed in the

L2 cache of the previous processor has to be written back to the main memory

and when the data is attempts to load the data, cache misses occur.

Table 4.5 shows unexpectedly disappointing benchmark numbers for

the scalable vertical beamformer on the PowerPC. Figure 3.3 shows the per-

formance of the vertical kernel running on LinuxPPC machine with single G4

processor. The peak benchmark number under single processor machine shows

the kernel running at about 1.4 operations per second. Using this benchmark

value, I estimate that the single threaded kernel on the Synergy board would

run at about 450 MFLOPS per thread. However, the peak MFLOPS that the

Synergy board sustains less than 320 MFLOPS total.

Moreover, the new benchmark indicates performance decrease of 10%

when multiple threads are executed. This observation suggests that the per-

formance bottleneck is related to the common resources of all four processors

on the Synergy board. The obvious shared resources are the 60X Bus and the

memory. Using a simple micro-benchmark of a sequential byte copy function

reveals that the total memory bandwidth available for all of the processors on
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Implementation Time (s) MFLOPS Speedup Percent Utilization

kernel 1.123 1120.4 (1.000) (100.00%)

2 threads 0.941 1336.6 1.193 59.65%

4 threads 0.645 1949.5 1.740 43.50%

6 threads 0.643 1956.7 1.745 43.66%

17 threads 0.448 2807.1 2.505 62.64%

Table 4.5: Test benchmark for the vertical kernel on the PowerPC board when

reusing the cached data

Synergy board is 110.345 MB/s for read and 156.098 MB/s for write, while Sun

independently sustained 159.901 MB/s for read and 189.395 MB/s for write for

each processor.

According to the implementation algorithm, the vertical beamformer

requires 0.333 bytes of data reads and 0.200 bytes of data writes for each op-

eration. For example, to produce a performance of 1000 MFLOPS, the kernel

needs 333 MB/s memory read and 200 MB/s memory write bandwidth. Using

the 110.345 MB/s memory read bandwidth, I calculate the possible perfor-

mance of the vertical beamformer to be about 331 MFLOPS, which is about

what Synergy board yielded. To verify the memory bandwidth bottleneck, a

new test benchmark in Table 4.5 is generated from the modi�ed kernel which

strictly uses the level-2 cache instead of the main memory. Although perfor-

mance of multiple threads does not scale linearly, the vertical kernel scales to

factor of 2.5 over four processors as the number of threads is increased.

4.4 Performance and Memory

For many years, commodity processor speeds have been faster than

commodity memory access rates. With recent introduction of processors with
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memory bandwidth hungry SIMD vector instruction sets, the di�erence in

speed has become larger than ever. In real-time data streaming applications,

memory bandwidth usually becomes the bottleneck of the system performance.

4.4.1 Memory Con�guration

In vector processing systems, memory bandwidth can considerably

increase with the interleaving memory access [22]. The concurrent memory

access from multiple processors can cause memory bank con
ict disabling the

memory to utilize the full bandwidth. In some applications, these con
icts

make the memory bandwidth become the bottleneck of the software perfor-

mance. To minimize the memory contention between processors, few design

techniques are implemented in current SMP systems.

One method is to have large level 2 (L2) caches that are locally in

connected to each processor. Thus, when the processor accesses the memory,

the local copy of the data can be stored in the L2 cache. As long as the data

is not accessed by the other processors, it can be used multiple times without

having to access the main memory. Another solution to memory contention

problem is to simply increase the clock speed or the number of memory access

ports to service multiple processors. In many shared memory SMP systems, a

combination of these design techniques are implemented [23].

With careful analysis of the memory access pro�le, one can also de-

crease the undesirable e�ects of memory contention by organizing each run-time

process to use data that are spatially close and yet independent from the data

used by other processes. Such methods may become necessary for processes
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that require high memory bandwidth. However, the analysis is often tedious

and di�ers from one architecture to another. For some kernels, analysis simply

cannot yield improvements because of the predetermined computation algo-

rithm or data structure. In such instances, the architecture of the hardware

system solely determines the performance [24].

4.4.2 Performance Bottleneck

In vertical kernel benchmark on Sun UltraSPARC, I observe that

the UltraSPARC-II chip performs at about 311.7 MFLOPS without saturating

its memory bandwidth. Therefore, as the number of threads increases, the

performance scales. From my benchmarking, I believe that the PowerPC G4

processor with AltiVec can potentially outperform UltraSPARC-II processor by

a factor of four for the same clock rate. However, the interconnection between

the processors and memory on the Synergy board does not provide enough

memory bandwidth to keep up with the requests from the bandwidth hungry

beamforming kernels. For such applications, the performance will naturally

increase proportionally to the number of required memory requests from the

processors.

4.5 Conclusion

In this chapter, I describe three di�erent types of multiprocessing plat-

forms | symmetric multiprocessor (SMP), clusters of computers, and combi-

nations of both. For 2 to 16 processors, SMP is popular. Clusters of computers

are usually implemented for larger systems. In these systems, performance is
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determined by processor computation power and the interconnection between

the processors and memory.

This chapter also examines the impact of processor and interconnec-

tion performance of two SMP servers running real-time sonar beamforming

kernels. The interconnection architecture and the performance benchmarks

are used to compare Sun UltraSPARC-II Enterprise server with Solaris 2.7

SMP operating system and Synergy Quad PowerPC G4 server with LinuxPPC

2.2 SMP operating system.

Analysis of the benchmarks and machine speci�cations shows that the

PowerPC G4 processor is capable of outperforming Sun UltraSPARC-II proces-

sor by a factor of four in sonar beamforming kernels. However, as the number

of threads grow, the performance of the Synergy board does not scale up due to

insuÆcient memory bandwidth, whereas the Sun server implementation scales

with little overhead. These results reaÆrm the importance of interconnection

technology in the design of multiprocessor systems.



5. Conclusion

5.1 Beamforming Kernel

I initially program horizontal and vertical beamforming kernels for a

3-D sonar beamforming system on the PowerPC G4 processor using version

2.95 of the GNU C compiler. Then I develop a version of each beamformer

with and without the PowerPC AltiVec extensions. The vertical beamforming

kernel requires rearrangement and cornerturning of the data for eÆcient use of

the 128-bit long word SIMD units. For the horizontal beamforming kernel, a

new data structure has to be integrated to reduce the number of permutations

needed to align the data for more eÆcient use of the SIMD instructions.

I evaluate the performance of my beamforming kernels on the Pow-

erPC G4 and previously developed beamforming kernels on the UltraSPARC-II:

� with and without hand-coded AltiVec extensions,

� with and without data prefetching, and

� with and without alignment of data blocks on cache boundaries.

Compiler optimization and SIMD word alignment improve performance on both

processors. Better back-end compilation methods optimized for the processor

can make the same code execute two to three times faster. The longer the SIMD

word, the more diÆcult it is to align data with a SIMD register. Because a

40
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SIMD word on the PowerPC is twice that of the UltraSPARC SIMD word, the

AltiVec implementation of the horizontal beamformer requires use of permute

instructions to align the data.

For cache usage, aligning blocks of data along cache boundaries im-

proved performance on the UltraSPARC but degraded performance on the

PowerPC. The architectural di�erence in the caches can cause the PowerPC

G4 cache to be used ineÆciently when the code for the UltraSPARC is ported

directly onto the G4. This was �rst observed in the vertical kernel implemen-

tation under PowerPC, as there was a 15 to 20% performance loss whenever

an array size was a multiple of 8192 bytes.

PowerPC with AltiVec extensions outperformed UltraSPARC with

VIS despite the fact that the compiler optimization used for the PowerPC is

relatively immature. In the vertical beamformer, the overall speedup was ap-

proximately 1.56 times that of UltraSPARC whereas the horizontal beamformer

was about 1.83 times.

The benchmark measurements of the kernel indicates the possibility of

running the 4-GFLOP beamforming system on six 450-MHz PowerPC G4 pro-

cessors replacing the current system which requires ten 450-MHz UltraSPARC

II processors. However, my ultimate goal is to implement the beamforming al-

gorithm on one quad-PowerPC G4 SMP system. By optimizing the code with

precise examination of the low-level instruction trace, as it has been done for

the UltraSPARC implementation, I predict a successful implementation in the

near future.
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5.2 Scalable System

In implementing scalable beamformer on multiprocessing systems, I

de�ne di�erent types of multiprocessing. I de�ne basic three types of multi-

processing environments. The most popular platform is symmetric multipro-

cessing. An SMP platform usually has a large shared memory which serves

relatively small number of processors. Another type of platform is clusters

of computers. Each computer, consisting of one processor with its own in-

dependent memory and I/O, is connected with fast network interface with

high-bandwidth and low-latency. The computers communicate necessary in-

formation using protocols for passing messages, e.g. Message Passing Interface

(MPI). The third type of multiprocessing is all of the combinations of previ-

ous two groups of environments. Most SMP computers on the market have

interfaces that easily allow constructions of clusters of SMPs.

Designing powerful multiprocessing platforms not only depends on

high performance processors but also on the interconnection model(s). Impor-

tant trade-o� factors in selecting an interconnection are cost and bandwidth.

One can construct fast interconnection between shared memory and the pro-

cessor by using crossbar technology. However, as the number of processors

increases, the cost of the technology can grow exponentially. With fast in-

terconnection, scalability of the multiprocessor performance becomes eÆcient.

Less expensive option of interconnection is based on the \dance-hall" model.

Interconnection using this model scale the size of the memory proportional

to the number of memory, but the interconnection latency uniformly increase.

Therefore, the memory access from each processor becomes computationally
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expensive. Most shared memory systems today use either model or a combi-

nation of both models in the interconnection. Then there is a multiprocessing

environment based on distributed or NUMA memory model. Most clusters of

computer systems are based on this model, where each independent computers

pass messages through a high-speed network for communication.

I look at the system architecture of the two SMP servers on which

the beamforming system is implemented. The �rst beamforming system by

Allen and Evans [2] is on a Sun UltraSPARC-II Enterprise server with the

Solaris operating system version 2.7. I modify the kernels to use AltiVec to run

on Synergy Quad PowerPC G4 server with LinuxPPC SMP operating system

version 2.2. The Sun server implementation has 16 UltraSPARC-II processors

with clock rate of 336 MHz arranged in combinations of the crossbar and the

\dance-hall" based interconnection to give high bandwidth at a lower cost. The

Synergy PowerPC server uses the simple \dance-hall" based interconnection.

Given more powerful and bandwidth hungry processors, the slower and smaller

interconnection is not well-suited for many signal processing applications with

performance that needs to scale with the memory bandwidth.

Benchmark analysis predicts the linear scaling of the beamformer on

Sun server, but it reveals the mismatch of the processor and the available inter-

connection bandwidth on Synergy server for the sonar beamforming applica-

tion. The result from memory benchmarks shows that the memory bandwidth

is the performance bottleneck on the Synergy server. Furthermore, modi�ed

beamforming kernel suggests possible performance of the AltiVec extension to

be four times as powerful as the VIS extension if each processors had sixteen



44

times the currently available memory bandwidth on the board.

On the Quad Synergy board, I discover that the performance of highly

scalable applications like the sonar beamformer is not only dependent on the

computation power of the processor but on the performance of the intercon-

nection. I suggest couple of di�erent ways to eÆciently use the available band-

width. In designing multiprocessor with bandwidth hungry SIMD processors,

faster interconnection with high bandwidth would be bene�cial for the success-

ful implementation of various signal processing algorithms.

5.3 Possible Future Implementation

The original sonar beamforming algorithm is used for all the im-

plementations referred in the report. The vertical beamformer requires 480

MFLOPS of computation while its results are passed through FIFOs to three

horizontal beamformers, which require 1200 MFLOPS each. Using the bench-

marks for the scalable kernels, I can extrapolate that the sonar beamforming

system, given the enough memory bandwidth, can possibly be implemented on

six G4 processors running at 450 MHz.

Motorola released a new PowerPC G4 processor on January 9, 2001,

which can have clock rates as high as 733 MHz. If I can make an assumption

that the new processor performance increase proportional to the G4 processors

used in my implementations, then the entire beamforming algorithm maybe

possible to implement using only three processors.
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