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Video data has increased dramatically in recent years due to the preva-

lence of handheld cameras. Such videos, however, are usually shakier compared

to videos shot by tripod-mounted cameras or cameras with mechanical stabi-

lizers. In addition, most handheld cameras use CMOS sensors. In a CMOS

sensor camera, different rows in a frame are read/reset sequentially from top

to bottom. When there is fast relative motion between the scene and the

video camera, a frame can be distorted because each row was captured under

a different 3D-to-2D projection. This kind of distortion is known as rolling

shutter effect. Digital video stabilization and rolling shutter rectification seek

to remove the unwanted frame-to-frame jitter and rolling shutter effect, in or-

der to generate visually stable and pleasant videos. In general, we need to (1)

estimate the camera motion, (2) regenerate camera motion, and (3) synthesize

new frames. This dissertation aims at improving the first two steps of video

stabilization and rolling shutter rectification.

vii



It has been shown that the inertial sensors in handheld devices can

provide more accurate and robust motion estimation compared to vision-based

methods. This dissertation proposes an online camera-gyroscope calibration

method for sensor fusion while a user is capturing video. The proposed method

uses an implicit extended Kalman filter and is based on multiple-view geometry

in a rolling shutter camera model. It is able to estimate the needed calibration

parameters online with all kinds of camera motion.

Given the camera motion estimated from inertial sensors after the pro-

posed calibration method, this dissertation first proposes an offline motion

smoothing algorithm based on a 3D rotational camera motion model. The

offline motion smoothing is formulated as a geodesic-convex regression prob-

lem on the manifold of rotation matrix sequences. The formulated problem is

solved by an efficient two-metric projection algorithm on the manifold. The

geodesic-distance-based smoothness metric better exploits the manifold struc-

ture of sequences of rotation matrices. Then this dissertation proposes two

online motion smoothing algorithms that are also based on a 3D rotational

camera motion model. The first algorithm extends IIR filtering from Euclidean

space to the nonlinear manifold of 3D rotation matrices. The second algorithm

uses unscented Kalman filtering on a constant angular velocity model. Both

offline and online motion smoothing algorithms are constrained to guarantee

that no black borders intrude into the stabilized frames.
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Chapter 1

Introduction

Handheld video cameras, especially in cell phones, have become increas-

ingly popular today because of their portability and price. With handheld

cameras, consumers are able to shoot and share videos at anytime and any-

where conveniently. However, the quality of videos shot by handheld cameras

is severely affected by unintentional camera motion, such as the up-and-down

motion caused by walking or simply jitter caused by hand shake. In addition,

rolling shutter effect often exists when there is fast camera motion, whether it

is intentional or not.

Rolling shutter effect [23, 26] is a common kind of distortion on CMOS

image sensors. CMOS image sensors dominated the cellphone camera sensor

market over CCD sensors due to lower power consumption and faster data

throughput. In a CMOS sensor camera, usually different rows in a frame

are read/reset sequentially from top to bottom, as shown in Fig. 1.2. When

there is fast relative motion between the scene and the video camera, a frame

can be distorted because each row was captured under a different 3D-to-2D

projection. The rolling shutter effect usually includes skew, smear and wobble

distortion [4]. Fig. 1.3 shows an example of the skew distortion caused by a

1



Unwanted Jitter

Camera Motion CMOS Sensor

Rolling Shutter Effect

Figure 1.1: Unwanted jitter and rolling shutter effect caused by camera motion
and CMOS sensor.

rolling shutter camera, and the rectified frame.

Please note that not all CMOS image sensors utilize a rolling shutter.

Moreover, a rolling shutter is not only used by CMOS image sensors. In fact,

rolling shutter has a long history and has been used to record almost every

film over the last century. Besides, rolling shutter effect can sometimes also

be found in augmented reality rendering. In this dissertation, however, I only

focus on the rolling shutter effect brought by CMOS image sensors in handheld

cameras.

This dissertation aims at rectifying the rolling shutter effect and remov-

ing the unwanted jitter in videos (also known as “video stabilization”). Both

rolling shutter effect rectification and video stabilization consist of three major

steps [62]: (1) camera motion estimation, (2) camera motion regeneration and

(3) frame synthesis (as shown in Fig. 1.4).

In the first step, only one camera pose is needed for each frame if the
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Figure 1.2: Rows are captured sequentially in rolling shutter cameras. Each
block represents the exposure time of a certain row.

Figure 1.3: An example of a frame with rolling shutter effects (left) and the
rectified frame (right). The skew distortion is caused by fast panning motion
of the camera.

video is captured by a global shutter camera. However, for rolling shutter

cameras, we have to estimate camera motion for each row.

In the second step, rolling shutter effect rectification just needs to fix

a unique camera motion for all of the rows in each frame, while video stabi-

lization needs to smooth the sequence of camera motions of all of the frames.

Actually one can understand rolling shutter rectification as an intra-frame

video stabilization.
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Figure 1.4: Three major steps for video stabilization (same for video rectifica-
tion).

In the last step the new frames are synthesized based on the difference

between the original and the regenerated camera motion.

1.1 Motion Estimation and Sensor Calibration

1.1.1 Camera Motion Model and Motion Estimation

Traditional camera motion estimation assumes a global camera pose for

each frame, and is thus not suitable for videos with rolling shutter effect. To

estimate the camera motion, we first need to choose a proper camera motion

model. Many (if not most) existing camera motion methods use 2D models,

including translational model, similarity model, affine model, etc. These 2D

models are simple but fundamentally limited to represent the real 3D camera

motion. Compared to 2D motion models, 3D motion models can accurately

reflect the real camera perspective projection, and thus make more sense and

are able to avoid image distortion in the frame synthesis step [56].

A full 3D motion model consists of both 3D rotation and 3D translation

of the camera. Compared to rotation, estimating 3D camera translation is

4



a very difficult problem. In addition, the frame synthesis step considering

3D camera translation needs the depth value for every pixel, which is very

difficult to obtain unless light field camera is used [80]. Therefore, many

existing approaches ignore the 3D translation of camera and only consider

the 3D rotation. This simplification in the 3D model is reasonable since both

rolling shutter effect and the unwanted jitter in videos are primarily caused by

camera rotation [23, 46].

Many camera motion estimation methods rely only on the visual infor-

mation (either intensity values of all the pixels in the frame or locations of the

the tracked feature points that appeared in the video frames). This kind of

methods are computationally intensive and prone to errors in the visual infor-

mation. Especially for a rolling shutter camera, vision-based methods cannot

reliably obtain an accurate camera motion estimate at a row-based resolution.

For this reason, inertial sensors such as gyroscopes and accelerometers,

which can be found in many modern smartphones and tablets, have been used

to help estimate camera motion because of their increasing accuracy, high

sampling rate and robustness to lighting conditions. In some video stabiliza-

tion algorithms, camera motion is estimated directly using the inertial sensors

without the help of video sequences [31, 46]. The estimation time is thus

greatly shortened, which makes real-time rectification possible.

5



1.1.2 Calibration and Synchronization of Camera and Gyroscope

In the field of robotics and navigation, fusion of visual and inertial

information has long been used to provide more accurate and reliable camera

motion tracking [67, 84]. The fusion of camera and inertial sensors, however,

requires precise calibration: the coordinate system of inertial sensors does not

coincide with that of camera, and the timestamps of inertial sensor readings

and video frames are not well synchronized. Apart from the relative pose

and timestamp delay, camera and inertial sensors themselves also have to be

calibrated so that essential parameters such as focal length and sensor biases

are known. The rolling shutter camera model adds even more parameters to

the calibration problem.

Many existing approaches in visual-inertial sensor fusion assume that

calibration and synchronization have been done offline beforehand. Moreover,

camera self-calibration (estimation of camera intrinsic parameters) is usually

executed separately from relative pose and delay calibration between cam-

era and inertial sensors. Some calibration methods can be only performed

in laboratory environments with special devices (e.g. spin table and checker-

board), which further prevents everyday users from using cellphone cameras

conveniently with the help of inertial sensors. It would be better if cellphone

cameras and inertial sensors could be calibrated and synchronized online while

users capture videos, without any prior knowledge about the devices or any

special calibration hardware.

Sometimes we do not have to calibrate both gyroscope and accelerom-

6



eter. For instance, if we only care about 3D rotation instead of both rotation

and translation, then gyroscope is the only inertial sensor we need to calibrate

and synchronize with the cellphone camera.

1.2 Motion Re-generation

The camera motion re-generation step comes after camera motion esti-

mation. As aforementioned, to rectify the rolling shutter effect we only need

to fix a unique camera pose for all the rows in the same frame. The more

difficult part is to smooth the camera motion sequence in order to stabilize

the video sequence.

Due to the camera motion change from motion smoothing, some areas

in the synthesized frame will be undefined. This is known as black border

problem, as shown in Fig. 1.5. In practice we have to crop the resulting video

frames and enlarge them if necessary. Still, in motion smoothing, we have to

constrain the change of camera motion in order to guarantee that no black

borders intrude into the stabilized video frames. How to take such constraint

into consideration optimally is a challenging problem.

Like motion estimation, motion smoothing methods still depend on the

choice of camera motion model. Motion smoothing using 2D models are based

on distances defined in the Euclidean space. Under 3D rotational model, the

camera motion for a video can be considered as a sequence of 3D rotation

matrices. The 3D rotation matrices lie on a non-linear manifold SO(3). Thus

the geodesic distance defined on this manifold is a more natural choice than

7



Figure 1.5: Illustration of the black border problem. Black border intrudes
into the cropping window in the left image, but not in the right image.

the Euclidean distance defined on the Euclidean space that this manifold is

embedded on.

Given the choice of motion model, motion smoothing algorithms fall

into two categories: offline smoothing and online (real-time) smoothing.

1.2.1 Offline Motion Smoothing

Offline smoothing smooths the camera motion sequence after the entire

video is captured. Many (if not most) existing motion smoothing algorithms

are offline smoothing on 2D motion models. Gaussian window filtering was

used to smooth the entire camera motion path in [19, 62] under 2D trans-

lational and affine model respectively. Another kind of algorithms smooths

the camera motion via minimizing a certain objective function that repre-

sents the smoothness of the camera motion trajectory. An advantage of such

objective-minimizing methods is that the black-border constraints can be nat-

urally added to the problem and solved by constrained optimization methods.
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In [82], the authors defined the objective function as the L2 norm of the sec-

ond order difference of camera motion under 2D Euclidean model. The black

border constraint was approximately modeled by an interval constraint on the

motion parameters. Similar modeling was also used in [73], but the variables

were assumed to be integer-valued and the problem was solved via dynamic

programming. In [29] the objective function was a mixture of the first, second

and third order difference of camera motion measured by the L1 norm. The

motion model was 2D similarity motion and the black-border constraint was

modeled precisely as linear inequalities. As a result, the constrained motion

smoothing could be solved efficiently by linear programming.

Given the geodesic distance defined on SO(3), 3D rotation smoothing

has been implemented locally by low-pass filtering [31, 56]. However, so far

we have not found any previous work that smooth the 3D camera rotation

sequence globally based on the geodesic distance. Global motion smoothing

has been shown superior to local smoothing in 2D camera motion models [29]

and therefore is tempting to try it for the 3D rotational motion model.

1.2.2 Online (Real-Time) Motion Smoothing

While most existing approaches address motion smoothing as an offline

processing after the entire video sequence has been recorded, online (real-time)

video stabilization is necessary for real-time applications such as video con-

ferencing and broadcasting. Besides, for consumers who just want to record

videos, real-time stabilization can greatly improve the user experience with the
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stabilized videos displayed in real-time on the viewfinders. Real-time video

stabilization is also able to reduce the memory requirements with frames sta-

bilized before compression. In real-time video stabilization, camera motion is

required to be smoothed in a causal way. This is more difficult than offline

motion smoothing because we are missing information of how camera motion

changes afterward.

Existing work for real-time motion smoothing was restricted to 2D mo-

tion models. In [17] IIR filtering was proposed for online motion smoothing

based on 2D translational motion model. Kalman filtering was first used for

online smoothing in [18]. The intentional motion parameters (under 2D trans-

lational motion model) were modeled by a constant velocity linear system so

Kalman filtering could be used to optimally estimate them. The same Kalman-

filtering motion smoothing framework was extended to 2D affine motion model

in [55], leading a better performance. The same algorithm was widely used in

the later video stabilization works, such as [92].

The black-border constraints were rarely considered in online motion

smoothing. In [86] the authors proposed to use constrained Kalman filtering

for 2D translational motion model. Because of the simplicity of the motion

model, interval constraints could be used and the constrained estimate could

be obtained in one step.

10



1.3 Frame Synthesis

Frame synthesis is the last step of rolling shutter effect rectification

and video stabilization. In this step we need to generate the new frames

based on the difference between the original camera motion and the computed

camera motion in step (2). For 2D or 3D pure rotational motion model, frame

synthesis can be efficiently implemented by 2D image transformations (3D

rotation change corresponds to 2D homographic transformation).

A problem is that the generated locations of the original pixels may not

have integer values and are thus not exactly on the vertices of the pixel grid in

the new frame. In practice inverse warping with a certain interpolation method

(usually bilinear interpolation) is used to solve this problem. However, the

homographic transformation to rectify the rolling shutter effect is not invertible

as that for video stabilization. Therefore, forward warping has to be used if

we need to precisely correct the rolling shutter effects. Forward warping is

usually slower than inverse warping, but GPUs can efficiently handle it in real

time using texture mapping technology [33].

1.4 Dissertation Summary

In this dissertation, I focus on the first two steps of video stabilization

and rolling shutter rectification. For motion estimation, I develop an online al-

gorithm for camera and gyroscope calibration without any prior knowledge of

the devices. The camera motion can be reliably obtained from gyroscope after

the calibration and synchronization is done. For motion smoothing, I first pro-
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pose an offline motion smoothing algorithm based on a 3D rotational camera

motion model. The offline motion smoothing is formulated as a geodesic-

convex regression problem on the manifold of rotation matrix sequences. The

formulated problem is solved by an efficient two-metric projection algorithm

on the manifold. The geodesic-distance-based smoothness metric better ex-

ploits the manifold structure of sequences of rotation matrices. Then I propose

two online motion smoothing algorithms that are also based on a 3D rotational

camera motion model. The first algorithm extends IIR filtering from Euclidean

space to the nonlinear manifold of 3D rotation matrices. The second algorithm

uses unscented Kalman filtering on a constant angular velocity model. Both

offline and online motion smoothing algorithms are constrained to guarantee

that no black borders intrude into the stabilized frames.

1.4.1 Thesis Statement

In this dissertation, I defend the following thesis statement:

For handheld cameras with CMOS sensors, videos can be satisfactorily

rectified and then stabilized either online or offline, with the camera motion

estimated directly from gyroscopes after effective sensor calibration.

1.4.2 Summary of Contributions

The main contributions of this dissertation can be summarized as fol-

lows.

1. Online Camera-Gyroscope Auto-Calibration for Cellphones: In
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this contribution, I develop an online method that estimates all of the

necessary camera and gyroscope parameters while a user is capturing

video. This algorithm is based on an implicit extended Kalman filter

(EKF). Each video frame provides a view of the 3D scene and triggers the

update of the EKF through multiple-view geometry. By extending the

recent proposed multiple-view coplanarity constraint of camera rotation

[49] to rolling shutter cameras, I propose a novel implicit measurement

that involves only camera rotation but works for any camera translation,

including zero translation (pure rotation). The implicit measurements

can be effectively used in the EKF to update the estimate of state vectors.

This algorithm is able to estimate the needed calibration and synchro-

nization parameters online with all kinds of camera motion, and can be

embedded in video stabilization for fast camera motion estimation using

gyroscopes. Both Monte Carlo simulation and cellphone experiments

show that this online calibration and synchronization method converges

fast to the ground truth values.

2. Constrained 3D Rotation Smoothing via Global Manifold Re-

gression: In this contribution, I present a novel offline motion smooth-

ing algorithm for video stabilization. I use a pure 3D rotation motion

model with known camera projection parameters. I directly smooth the

sequence of camera rotation matrices for the video frames by exploit-

ing the Riemannian geometry on a manifold. I consider the entire set

of sequences of rotation matrices as a Riemannian manifold. This al-
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lows me to formulate the offline motion smoothing problem globally as

a regression problem on the manifold based on geodesic distance. I in-

troduce a geodesic-convex constraint on the manifold to approximate

black-border constraint so that the entire motion smoothing problem

is kept geodesic-convex on the manifold. To solve the formulated con-

strained smoothing problem on the manifold, I compute the gradient

and Hessian of the objective function using Riemannian geometry, and

then extend the two-metric projection algorithm in Euclidean space to

non-linear manifolds.

The geodesic-distance-based smoothness metric better exploits the man-

ifold structure of sequences of rotation matrices. The geodesic-convex

constraints effectively guarantee that no black borders intrude into the

stabilized frames. The proposed manifold optimization algorithm can

find the global optimal solution in only a few iterations. Experimental

results show that my motion smoothing method outperforms state-of-

the-art methods by generating more stable videos with less distortion.

3. Real-time 3D Rotation Smoothing: In this contribution, I propose

two real-time motion smoothing algorithms for video stabilization using

a pure 3D rotation motion model with known camera projection param-

eters. Both proposed algorithms aim at smoothing 3D rotation matrix

sequences in a causal way. The first algorithm smooths the 3D rotation

sequences in a way similar to 1st-order IIR filtering. The second algo-

rithm uses sequential probabilistic estimation under a constant angular
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velocity model. These two algorithms are generalized from classical 2D

motion smoothing algorithms. I exploit the manifold structure of the

rotation matrices so that the proposed algorithms directly smooth the

3D rotation sequences on the manifold. In addition, I introduce a sim-

ple projection step in order to guarantee that no black borders intrude

into the stabilized video frames. Experimental results show that the

proposed algorithms are able to effectively stabilize video sequences and

outperform their 2D counterparts with less jitter and distortion.

1.5 Organization

This dissertation is organized as follows:

Chapter 2 presents an online camera self-calibration and camera-gyroscope

calibration algorithm for handheld cameras with rolling shutter. The calibra-

tion algorithm is able to estimate all the necessary parameters so that after

calibration the 3D camera rotation for every video frame can be obtained di-

rectly from gyroscope readings. The subsequent chapters assume that camera

motion has been estimated using gyroscope.

Chapter 3 proposes to formulate the offline motion smoothing problem

as a constrained manifold regression on the manifold of rotation matrix se-

quences. An extension of two-metric scaled projection method is proposed to

solve such problem efficiently.

Chapter 4 proposes the IIR-like and UKF-based algorithms for online
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3D rotation smoothing. Ad-hoc estimate projection is used to guarantee no

black borders intrude the stabilized frames.

Chapter 5 concludes the dissertation by summarizing the contributions

and provides suggestions for future work.

1.6 List of Acronyms

CCD Charge-Coupled Device

CMOS Complementary Metal-Oxide-Semiconductor

CV Constant Velocity

EKF Extended Kalman Filter

FPS Frame per Second

GPB Generalized Pseudo-Bayesian

GPU Graphics Processing Units

IIR Infinite Impulse Response

KF Kalman Filter

KLT Kanade-Lucas-Tomasi

MAP Maximum a Posteriori

MVI Motion Vector Integration
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PDF Probability Density Function

PSD Positive Semi-Definite

QP Quadratic Programming

RMS Root Mean Square

SLAM Simultaneous Localization and Mapping

SO(3) 3-dimensional Orthogonal Group

SOG Sum of Gaussian

UKF Unscented Kalman Filter

UT Unscented Transform
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Chapter 2

Online Camera-Gyroscope Auto-Calibration

for Cellphones

2.1 Introduction

Cellphone cameras have been increasingly popular for video capture

due to their portability and processing power of cellphones. An increasing

number of users are getting accustomed to recording their memorable events

using cellphone cameras. Beyond the video recording itself, video acquisition

also provides opportunities for applications such as augmented reality and

visual odometry. No matter what application mobile video capture is used

for, camera motion estimation is an essential step to improve the video quality

and better analyze the video content.

Handheld mobile devices such as cellphones usually suffer from ego-

motion that is changing very fast, which makes it difficult to track the camera

accurately using only the captured videos. For this reason, inertial sensors

on cellphones such as gyroscopes and accelerometers have been used to help

estimate camera motion because of their increasing accuracy, high sampling

rate and robustness to lighting conditions. It has been shown that through

the fusion of visual and inertial information, camera motion can be estimated

18



more accurately and reliably [67, 84]. The fusion of camera and inertial sensors,

however, requires precise calibration: the coordinate system of inertial sensors

does not coincide with that of camera, and the timestamps of inertial sensor

readings and video frames are not well synchronized. Apart from the relative

pose and timestamp delay, camera and inertial sensors themselves also have

to be calibrated so that essential parameters such as focal length and sensor

biases are known.

Many existing approaches in visual-inertial sensor fusion assume that

calibration and synchronization have been done offline beforehand. Moreover,

camera self-calibration (estimation of camera intrinsic parameters) are usually

executed separately from relative pose and delay calibration between camera

and inertial sensors [11, 83]. Some calibration methods can be only performed

in laboratory environments with special devices (e.g. spin table and checker-

board) [58, 93], which further prevents everyday users from using cellphone

cameras conveniently with the help of inertial sensors. In this chapter, I focus

on online calibration and synchronization of cellphone cameras and inertial

sensors while users capture videos, without any prior knowledge about the

devices or any special calibration hardware.

Unlike traditional cameras, most cellphone cameras do not capture the

rows in a single frame simultaneously, but sequentially from top to bottom.

When there is fast relative motion between the scene and the camera, a frame

can be distorted because each row was captured under different 3D-to-2D

projections. This is known as rolling shutter effect [4, 23, 26] and has to be
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considered in calibration and fusion of visual and inertial sensors.

Although some applications such as visual odometry require estima-

tion of both camera rotation and translation, estimating rotation using only

the gyroscope has been used successfully in video stabilization [46] and fea-

ture tracking [36]. When the displacement of pixels between consecutive video

frames is primarily caused by camera rotation, a gyroscope-only approach suc-

cessfully stabilized video and removed rolling shutter effects [31, 46]. Similarly,

gyroscope measurements were used to pre-warp the frames so that the search

space of the Kanade-Lucas-Tomasi (KLT) [60, 76] feature tracker can be nar-

rowed down to its convergence region [36]. In these proposed methods there

is no need to use the accelerometer. Therefore, only the camera and the gyro-

scope need to be calibrated. In this chapter I focus on such camera-gyroscope

calibration. Although we only care about camera rotation, the proposed ap-

proach does not assume that there is no camera translation.

The proposed online calibration and synchronization is based on an

extended Kalman filter (EKF). Each video frame provides a view of the 3D

scene and triggers the update of the EKF through multiple view geometry. Al-

though we care about camera rotation only, I do not assume any degeneration

in the motion of the camera. By extending the recent proposed multiple-view

coplanarity constraint of camera rotation [49] to rolling shutter cameras, I

propose a novel implicit measurement that involves only camera rotation but

works for any camera translation, including zero translation (pure rotation).

The implicit measurements can be effectively used in the EKF to update the
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estimate of state vectors.

This chapter is organized as follows. Section 2.2 reviews previous al-

gorithms on camera self-calibration, camera-inertial calibration, and camera-

gyroscope calibration. Section 2.3 introduces the rolling shutter camera model

and summarizes the parameters that we need to estimate in this chapter. Sec-

tion 2.4 presents the coplanarity constraint on camera rotation in the rolling

shutter camera model. This constraint is then used in implicit measurements

by the proposed EKF-based online calibration and synchronization approach

in Section 2.5. Section 2.6 shows and analyzes the results of Monte Carlo

simulation and cellphone experiments using the proposed approach. Section

2.7 concludes the chapter.

2.2 Related work

Camera self-calibration has been extensively studied [32] for both global

shutter camera [93] and rolling shutter camera [71], but previous work on online

self-calibration is somewhat rare. In [10] full-parameter online camera self-

calibration is first proposed in the framework of sequential Bayesian structure

from motion using a sum of Gaussian (SOG) filter. Their work assumes a

global shutter camera model and the motion of the camera has to contain

large enough translation to make the structure from motion problem well-

conditioned.

The inertial sensors (gyroscope and accelerometer) are widely used in

camera motion estimation and simultaneous localization and mapping (SLAM)
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together with visual measurements [11, 43, 83]. Especially for hand-held de-

vices such as cellphone cameras, inertial-aided approaches appear more ro-

bust in camera tracking and SLAM when compared to purely vision-based

approaches [12, 69]. For more details about SLAM can be found in [3, 15].

Relative pose between inertial sensors and camera has been successfully

estimated offline with special hardware [58] or simply with a known calibra-

tion pattern [63]. Online camera-inertial calibration has also been implemented

recently in the framework of SLAM or navigation [47] together with the es-

timation of inertial sensor biases. However, to the best of my knowledge all

of the previous work assumes that the camera itself has been calibrated; i.e.,

the camera projection parameters are known. Moreover, rolling shutter effect

was not taken into account in the fusion of inertial and visual sensors until

very recently [38, 53, 59]. The timestamp delay between camera and inertial

sensors was always assumed as known except for the recent work in [52] which

estimates the timestamp delay online.

The SLAM framework for online calibration of camera and inertial

sensors involves estimation of camera translation and 3D scene structure. In

addition, camera translation estimation and accelerometer calibration require

large enough camera translation to initialize absolute scale and speed estimate

[48, 61]. Therefore, such methods are too complicated if we only care about

camera rotation and just want to use gyroscope to estimate and track camera

motion.

To calibrate the camera and gyroscope system, the method in [46] pro-
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posed to quickly shake the camera while pointing at a far-away object (e.g.,

a building). Feature points between consecutive frames are matched and all

parameters are estimated simultaneously by minimizing the homographic re-

projection errors under a pure rotation model. The calibration in [36] is also

based on homography transformation of matched feature points assuming pure

rotation, except that different parameters are estimated separately first and

then refined through non-linear optimization. However, as shown in [36], when

the camera translation is not negligible relative to the distance of the feature

points to the camera, such pure rotation model becomes less accurate and the

calibration results will deviate from the ground truth. The proposed calibra-

tion method differs with [36, 46] not only in that it is online estimation, but

also in that it does not assume zero translation at all. Therefore, the proposed

calibration can be performed implicitly anytime and anywhere while the cam-

era is recording video. This is especially convenient for amateur photographers

who want to take stabilized videos with smartphone cameras.

2.3 Rolling shutter camera model and gyroscope

Points in the camera reference space are projected according to the

pinhole camera model. Assuming the 3D point coordinates in the camera

reference space are [Xc, Yc, Zc]
T, their projection onto the image plane can be

represented as
[

ux

uy

]

=

[

cx + f Xc

Zc

cy + f Yc

Zc

]

, (2.1)
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where f is the focal length and cx, cy are the principal point coordinates. Here

I assume that the camera projection skew is zero and the pixel aspect ratio is

1 as in [10], which is a reasonable assumption for today’s cellphone cameras.

Similarly, given the pixel coordinate [ux, uy]
T, we can invert (2.1) to obtain

the 3D coordinates of the corresponding feature point in the camera reference

space up to an unknown scale as





Xc

Yc

Zc



 = λ





ux − cx
uy − cy

f



 . (2.2)

Based on (2.2), I further model the radial lens distortion of camera

using two distortion coefficients as




Xc

Yc

Zc



 = λ





(1 + κ1r
2 + κ2r

4)(ux − cx)
(1 + κ1r

2 + κ2r
4)(uy − cy)

f



 , (2.3)

where

r =

√

(

ux − cx
f

)2

+

(

uy − cy
f

)2

. (2.4)

In rolling shutter cameras, rows in each frame are exposed sequentially

from top to bottom [26, 54], as shown in Fig. 2.1. In Fig. 2.1 each block

represents the exposure of a certain row. The exposure duration of each row

(represented by the length of each block) depends on the lighting conditions. In

this chapter we ignore possible image blur and assume instantaneous exposure.

Thus, the exposure moment of each row can be approximated as the left end of

each block in Fig. 2.1. For an image pixel u = [ux, uy]
T in frame i, the exposure

time can be represented as t(u, i) = ti + tr
uy

h
, where ti is the timestamp for
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Figure 2.1: Rows are captured sequentially in rolling shutter cameras. Each
block represents the exposure time of a certain row.

frame i and h is the total number of rows in each frame. Here tr is the readout

time for each frame, which is usually about 60% − 90% of the time interval

between frames.

There exists a constant delay td between the recorded timestamps of

gyroscope and videos. Thus using the timestamps of gyroscopes as reference,

the exposure time of pixel u in frame i should be modified as

t(u, i) = ti + td + tr
uy

h
. (2.5)

To use the gyroscope readings we also need to know qc, the relative

orientation of the camera in the gyroscope frame of reference (represented in

unit quaternion). Finally, the bias of the gyroscope bg needs to be considered.

Therefore, in the online calibration we need to estimate the parameters f , cx,

cy, κ1, κ2, tr, td, bg and qc.
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Figure 2.2: The epipolar constraint on a pair of features in two viewpoints.

2.4 Coplanarity constraint for camera rotation

The proposed calibration and synchronization rely on the constraints

applied to camera rotations.

2.4.1 Coplanarity constraint in global shutter cameras

First let us consider a global shutter camera in which all of the pixels

in the same frame are captured at the same time. Assume the normalized 3D

coordinate vectors of a certain feature in two viewpoints (frames) are fi and f ′i

(note that by (2.3) we cannot recover the absolute scale but only the direction

of the 3D feature vector). The well-known epipolar constraint [32] is

(fi ×Rf ′i) · t = 0, (2.6)

where R and t are the relative rotation and translation between the two view-

points. The epipolar constraint means that the vectors fi, Rf ′i and t are

coplanar, as shown in Fig. 2.2. Now assume that three or more features are

observed in these two viewpoints. By the epipolar constraint all vectors fi×Rf ′i
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are perpendicular to the relative translation vector t, and thus are coplanar (t

is the normal vector of such plane). Such coplanarity can be expressed by the

determinant of the 3× 3 matrix composed by any three fi×Rf ′i vectors being

zero

det[(f1 ×Rf ′1)|(f2 ×Rf ′2)|(f3 ×Rf ′3)] = 0. (2.7)

This coplanarity was introduced in [49] and does not depend on the camera

translation at all. Another desirable property of (2.7) is that it is still valid in

the extreme case of zero translation since all vectors fi×Rf ′i will become zero.

2.4.2 Coplanarity constraint in rolling shutter cameras

In rolling shutter cameras, however, the viewpoint is not unique for the

features captured in the same frame. Here I propose a generalized coplanarity

constraint for rolling shutter cameras.

First note that both the traditional epipolar constraint (2.6) and the

coplanarity constraint (2.7) are expressed in terms of one of the two view-

points. In fact, this frame of reference can be chosen arbitrarily. Once the

reference is fixed, we can represent the camera orientation corresponding to

any feature (determined by its exposure moment for rolling shutter cameras) in

this reference. For the matched features between any two consecutive frames

in rolling shutter cameras, I propose the following constraint

det[(R1f1 ×R′
1f

′
1)|(R2f2 ×R′

2f
′
2)|(R3f3 ×R′

3f
′
3)] = 0. (2.8)

Note that in (2.8) R′
1 means the camera orientation corresponding to feature

1 in the second frame, and not the transpose of R1. Constraint (2.8) does not
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exactly hold in general cases but only under the assumption that the relative

camera translations between the exposure moments for all pair of matched fea-

tures are in the same direction. The readout time of two consecutive frames

is at most 66ms (for 30 fps videos) and in such short period of time the cam-

era translation can be well approximated by a constant direction. Note that

such approximation is more general than the approximation used in [53] which

assumes the linear velocity (both direction and magnitude) of the camera is

constant. The constraint is illustrated by Fig. 2.3. In Fig. 2.3, the first three

(from left to right) frames of axes correspond to the three features detected

in the current frame. The last three frames of axes correspond to the three

matched features in the next frame. The different orientations of the frames

of axes show the changes in camera rotation while the features are exposed.

The camera translation is approximated as the dashed ray. The three pairs of

matched features are represented by green, blue, and orange arrows, respec-

tively. By the proposed coplanarity constraint in rolling shutter cameras, the

cross products of all pairs of matched features are perpendicular to the camera

translation vector.

To make the constraint (2.8) more accurate I further apply such con-

straint only to groups of features that are not very far from each other in their

y-axis coordinates. Based on (2.5) the exposure moments of features are close

to each other if their y-axis coordinates are close. Assuming features f1, f
′
1, f2,

f ′2, f3, f
′
3 are selected in this way. Then the exposure moment difference among

features in the same frame is much smaller compared to the exposure moment
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Figure 2.3: Coplanarity constraint in rolling shutter cameras. The cross prod-
ucts of all pairs of matched features are perpendicular to the camera translation
vector.

difference between features in adjacent frames (≈ 33ms). In this way, the cam-

era translation vectors for the three pairs of features naturally have almost the

same direction. Constraint (2.8) is less dependent on the constant-direction

assumption in camera translation between two consecutive frames.

I use the coplanarity constraint (2.8) as implicit measurement to es-

timate all the parameters in an EKF. The way to represent the camera ori-

entation corresponding to each feature using the parameters and gyroscope

readings is shown in the next section.

2.5 EKF-based online calibration and synchronization

The online calibration and synchronization is based on an extended

Kalman filter. The proposed EKF evolves when every video frame is captured,

as in [38]. The state vector is defined as

x = [f cx cy κ1 κ2 tr td b
T
g qT

c ]
T. (2.9)
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Figure 2.4: Timing relationship between the gyroscope readings and the video
frames.

The gyroscope in cellphones usually has a higher sampling rate than the video

frame rate. Moreover, timestamps of gyroscope readings and the video frames

are not aligned. I show how to compute the relative rotation corresponding to

each detected feature using gyroscope readings as following

2.5.1 Computation of relative rotation

Fig. 2.4 illustrates the timing relationship between the gyroscope read-

ings and the video frames. Assume a pair of matched features fi and f ′i are

detected as at moments denoted by green diamonds and the reference time

is fixed as the timestamp of the next frame (shown as the purple diamond).

The relative camera orientation between the reference time and the exposure

moment of a certain feature can then be expressed by the angular velocities

Ri =
M
∏

n=1

Θ(ωn∆tin), (2.10)

where M is the total number of angular velocities involved in computing the

relative orientation (M=7 for the example shown in Fig. 2.4) and ∆tin is the

time duration that the angular velocity ωn is used in the integration (assuming
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constant angular velocity between readings). Note that not all of the M angular

velocities have non-zero ∆tin values. For example, assume the timestamp of

each angular velocity ωn is τn. Then for the feature in the next frame (right

green diamond) in Fig. 2.4, only ∆ti4, ∆ti5 and ∆ti6 are non-zero and they can

be computed as










∆ti4 = τ5 − (Tnext + td)

∆ti5 = τ6 − τ5

∆ti6 = (Tnext + td + tr
uyi

h
)− τ6

, (2.11)

where Tnext is the framestamp of the next frame ((Tnext + td) corresponds to

the moment for the purple diamond) and uyi is the y-axis coordinate of the

feature ((Tnext+ td+ tr
uyi

h
) corresponds to the moment for the green diamond).

Each sub-relative rotation matrix can be computed by exponentiating

the skew symmetric matrix formed by the product of angular velocity and its

duration:

Θ(ωn∆tin) = exp(skew(ωn)∆tin), (2.12)

where

skew(ωn) =





0 −ωzn ωyn

ωzn 0 −ωxn

−ωyn ωxn
0



 . (2.13)

∆tin is determined by the exposure moments of fi and f ′i computed using

(2.5), and thus depends on the estimation variables tr and td. The true angular

velocities are represented as

ωn = ω̂n + bg + ngn , (2.14)

where ω̂n is the gyroscope reading, bg is the gyroscope bias (to be estimated),

and ngn ∼ N(0; σg) is the Gaussian distributed gyroscope measurement noise.
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In this way, the relative camera orientation corresponding to any fea-

ture detected in the current and next frame can be expressed by the angular

velocities.

2.5.2 State dynamics

All the parameters appeared in Section 2.3 except bg are constant so

they are just copied in state dynamics



























































f(k + 1) = f(k)

cx(k + 1) = cx(k)

cy(k + 1) = cy(k)

κ1(k + 1) = κ1(k)

κ2(k + 1) = κ2(k)

tr(k + 1) = tr(k)

td(k + 1) = td(k)

qc(k + 1) = qc(k).

(2.15)

I model the dynamics of bg by a random-walk process

bg(k + 1) = bg(k) +mg(k), (2.16)

where the random walk step mg(k) is Gaussian distributed with zero mean

and variance σb.

2.5.3 State measurements

After features are matched between the current frame and the next

frame, I picked N groups of features with three features in each group (without

overlap). As mentioned in Section 2.4.2, to make the coplanarity constraint
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more accurate, the selection of groups of features are not completely random.

The three features in the same group should have close y-axis coordinates but

relatively far away x-axis coordinates.

In this way we can obtain N measurements from the coplanarity con-

straint shown in Section 2.4. For instance, the measurement formed by features

1,2 and 3 is

0 = det[(R1f1 ×R′
1f

′
1)|(R2f2 ×R′

2f
′
2)|(R3f3 ×R′

3f
′
3)]. (2.17)

The 3D feature locations fi are computed by inverting the camera projection

(2.3) as

fi = qc(k)⊗
1

ϕi





(1 + κ1r
2 + κ2r

4)(uxi
+ vxi

− cx(k))
(1 + κ1r

2 + κ2r
4)(uyi + vyi − cy(k))
f(k)



 , (2.18)

where qc(k)⊗ (·) means rotating a vector using 3D rotation defined by qc(k),

and ϕi is a normalization factor to make the result have unit norm. Besides

normalization, there are two differences between (2.3) and (2.18): (a) I take

the feature detection error vxi
, vyi ∼ N(0; σf) into account, and (b) the 3D

feature is represented in the gyroscope coordinate system by multiplying the

relative rotation estimate qc(k) at stage k.

The relative rotation matrix Ri is computed according to (2.10). In

this way, the right hand side of (2.17) can be expressed as a function of the

state variables.

All of the N coplanarity constraints generates N implicit measurements
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at a stage k according to (2.17)























0 = z1(k) = h1(x(k), {ω̂n}, {ui}, {ngn}, {vi}),
0 = z2(k) = h2(x(k), {ω̂n}, {ui}, {ngn}, {vi}),

...

0 = zN (k) = hN(x(k), {ω̂n}, {ui}, {ngn}, {vi}),

(2.19)

where {ω̂n} are the gyroscope readings during the exposure time of two con-

secutive frames, {ui} are the 2D coordinates of all of the observed features.

{ngn} and {vi} are the gyroscope measurement noise and feature observation

noise, respectively, as shown in (2.14) and (2.18). Please note in the mea-

surement equations the measurement noise appears implicitly as non-additive

noise.

The state update is performed right after state prediction. Only one

round of state prediction and update is needed once a new frame is read and

all features are tracked.

2.5.4 Extended Kalman filter computation

In EKF state vector estimate is predicted using dynamic equations and

then updated using measurement equations. Prediction and Update rely on the

Jacobian matrices of the dynamic and measurement equations with respect to

the state vector and the system noise. The linear dynamic equations (2.15) and

(2.16) lead to very simple Jacobian matrices (identity matrix). The Jacobian

matrices of the measurement equations can also be computed analytically in

closed-form. I show the derivations in Appendix 1.
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The camera-to-gyroscope orientation is represented by unit quaternion

qc. Traditional extended Kalman filter cannot guarantee unit norm of the

quaternion after estimate update. Therefore we use a minimal 3-element rep-

resentation δθ for the estimate error of qc as in [87]. The true value of qc can

be represented as

qc = δq⊗ q̂c, (2.20)

where q̂c is the estimate and

δq =

[

δθ/2
√

1− ||δθ/2||22

]

. (2.21)

With such error representation we can update the estimate in a multiplicative

way and guarantee the unit norm of the estimate. For more details please see

[87].

In practice EKF update is executed every other frame (or less often

to reduce complexity). The reason is that the measurement equation (2.17)

involve features detected from two consecutive frames. If EKF is updated every

frame then the features in each frame are used twice, which causes correlation

between feature detection errors and the state estimate. One can augment the

state vector to track the feature detection errors. However, such augmentation

will further increase the computational burden, while updating state estimate

every other frame can easily avoid such correlation without augmenting the

state vector.
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2.5.5 State initialization

The state vector needs to be initialized carefully to make the EKF

work properly. I initialize the principal point coordinates cx, cy to be the

center of the frame. The focal length is initialized using the horizontal view

angle provided by the smart phone operating system. If the operation system

of the smartphone does not provide the value of horizontal view angle, SOG

filters can be used with several initial guesses as in [10]. The readout time tr

is initialized as 0.0275 ms which is about 82.5% of the entire interval between

frames. The coordinate system of the gyroscope is defined relative to the

screen of the phone in its default orientation in all Android phones. Thus we

can obtain the initial guess of qc depending on whether front or rear camera

is being used. This initial guess is usually accurate enough, but the proposed

calibration is necessary since the camera is sometimes not perfectly aligned

with the screen of the phone. The initial values of all other parameters (td and

bg) are just set as 0.

To make sure that the true value lies in the 3σ intervals of the initial

Gaussian distributions, I initialize the standard deviation of cx, cy, f, tr as 6.67

pixels, 6.67 pixels, 20 pixels, and 0.00167 s, respectively. td is initialized as a

sum of Gaussian distribution because of the highly non-linearity of the mea-

surements with respect to td. The set of Gaussian distributions are initialized

uniformly in the range of ±30ms. The standard deviation of each element in

bg is initialized as 0.006. The standard deviation of the estimate error of qc

is initialized as 0.5 degrees along each axis. The standard deviation of the
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radial distortion parameters κ1 and κ2 is initialized as 0.1. I set the stan-

dard deviation of gyroscope measurement noise and feature detection error as

0.003 rads/s and 1 pixels, respectively. The standard deviation of gyroscope

measurement noise is determined from computing the reading variance while

the cellphone is put still. Due to the sum-of-Gaussian initialization of td, the

algorithm starts from a SOG filter but it quickly converges to a single EKF

using pruning of distributions with low weights [10].

2.6 Experimental results

In this section I test the proposed algorithm with both Monte Carlo

simulation and cellphone experiments.

2.6.1 Monte Carlo simulation

In the Monte Carlo simulation we randomly locate 1000 3D feature

points distributed in range X ∈ [−30, 30] meters, Y ∈ [−20, 20] meters, Z ∈

[30, 60] meters, respectively. The ground truth value of the parameters are set

as f = 690 pixels, cx = 355 pixels, cy = 220 pixels, κ1 = 0.111, κ2 = −0.303,

tr = 0.02 s, td = 0.02 s, qc = [ 1√
2
,− 1√

2
, 0, 0]T respectively. bg is initialized

as [−0.008, 0.002, 0.017]T rads/s and then simulated by random walk. All

of these values come from the parameters of a real cellphone camera. The

ground truth motion of camera is fixed with a randomly generated sequence

of angular velocities and linear velocities. The angular velocity and linear

velocity sampling rate is set as 100 Hz. With the ground truth motion and

37



camera/gyroscope parameters, I artificially generate a video with 250 frames

at frame rate 30fps. Note that each video frame is not a real image but a

sparse 2D point cloud.

In each trial of Monte Carlo simulation I generate Gaussian random

gyroscope measurement noise and feature detection errors according to the

variances shown in Section 2.5.5. In this way, I can artificially add the noise

and simulate the gyroscope readings and feature detections. Then I run EKF

calibration in each trial, with state estimate initialized randomly within 3σ

range around the ground truth values (note that this initialization method is

different from that in Section 2.5.5, which is used for cellphone experiments).

In state update I use only 150 virtual features (50 measurements) picked from

the feature pool.

I run 50 Monte Carlo trials to compare the proposed online estimation

with the online estimation proposed in my earlier work [40]. The proposed

estimation differs from [40] primarily in lens distortion modeling, Jacobian

matrices computation ([40] computed them numerically) and selection of fea-

tures ([40] selected the features completely randomly without considering the

y-axis coordinate distance). I also compare the online calibration with a batch

optimization using all of the frames. The batch optimization is solved via

Levenberg-Marquardt algorithm [64].

Table 2.1 shows the root mean square (RMS) error of the parameter

estimation before calibration and after calibration (with 250 frames). The

estimation error of the gyroscope bias bg is not shown since it is time-varying.
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Table 2.1: RMS error of 50 Monte Carlo simulation trials.

RMS error
state variable before cali-

bration
batch opti-
mization

online esti-
mation

[40]

f (pixels) 17.3 0.910 2.28 3.70
cx (pixels) 8.26 0.645 2.55 3.45
cy (pixels) 6.55 0.576 0.96 2.40
tr (ms) 1.8 0.031 0.078 0.15
td (ms) 17.1 0.027 0.041 0.089
qc (degrees) 0.60 0.076 0.196 0.285
κ1 0.099 0.0014 0.0042 N/A
κ2 0.076 0.0026 0.0060 N/A

The estimation error of qc is converted to a single angle (computed as the L2

norm of the minimal 3-element error representation). We can find that batch

optimization performs the best. The proposed EKF-based calibration method

is also able to successfully converge to the ground truth value. With the

modifications proposed in this dissertation, we can achieve a better calibration

compared with [40]. Please note that although batch optimization gives the

closest estimate, the EKF-based online calibration can be implemented in real

time and enable immediate use of gyroscope in vision applications. More

importantly, online calibration is able to deal with time-varying parameters,

such as varying f due to zoom and varying td due to clock drift.

In Fig. 2.5 I show the estimation error along EKF-based calibration

in one trial, with blue lines representing the estimation error and red lines

representing the 99.7% (3σ) uncertainty bounds. For the relative orientation
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qc we only show the estimation error after converting to a single angle as in

table 2.1. From Fig. 2.5 we can observe that the proposed method is able to

accurately estimate the parameters.

2.6.2 Cellphone experiments

In the cellphone experiments, I use a Google Nexus S Android smart-

phone that is equipped with a three-axis gyroscope. We capture the videos

and the gyroscope readings from the cellphone and run the proposed online

calibration and synchronization in MATLAB. The feature points are tracked

using KLT tracker. I divide the frame into 4 equally sized bins and perform

outlier rejection locally within each bin by computing a homography transfor-

mation using RANSAC [21], as in [28]. I estimate the ground truth of camera

projection parameters (with lens distortion) using the offline camera calibra-

tion method in [93]. The ground truth of timestamp delay td is obtained by

offline calibration in [36]. The ground truth of rolling shutter readout time tr

is obtained by batch optimization under pure rotational camera motion as in

[46]. The estimated values are not guaranteed to be equal to the ground truth

values so I only use them as a reference to roughly examine the accuracy of

the proposed algorithm. I test the performance of the proposed method on

various video sequences and show the results on two typical sequences: one

shot while running forward and the other shot while panning the camera in

front of a building. Fig. 2.6 shows two frames extracted from the two test
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Table 2.2: Absolute estimation error for the running sequence.

Absolute estimation error
state variable before calibration after online calibra-

tion

f (pixels) 26.5 4.16
cx (pixels) 5.2 2.32
cy (pixels) 13.57 1.50
tr (ms) 3.72 0.21
td (ms) 13.2 0.14
κ1 0.111 0.012
κ2 0.303 0.045

sequences 1.

The running sequence (with 250 frames) is used to test the performance

of the algorithm under arbitrary camera motion, including very high frequency

shake and non-zero translation. The absolute estimation errors before and

after online calibration and synchronization are shown in Table 2.2. We can

observe that the proposed method is able to estimate the parameters that are

close to offline separate calibration.

In the second test video sequence (with 241 frames) I simply pan the

camera in front of a building. This video is used to test the algorithm under

(almost) zero camera translation (pure rotation). The estimation errors are

shown in Table. 2.3. The proposed algorithm works equally well compared to

the running sequence.

1The videos can be found at http://users.ece.utexas.edu/~bevans/papers/2015/autocalibration/.
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Table 2.3: Absolute estimation error for the panning sequence.

Absolute estimation error
state variable before calibration after online calibra-

tion

f (pixels) 26.5 3.57
cx (pixels) 5.2 1.04
cy (pixels) 13.57 2.29
tr (ms) 3.72 0.056
td (ms) 21.7 0.33
κ1 0.111 0.014
κ2 0.303 0.055

To better display the difference before and after synchronization of the

timestamps between video frames and gyroscope readings, I show the rates of

2D translation of pixels compared to the gyroscope data as in [46]. If we ignore

the rolling shutter effect and the camera rotation around z-axis, the average

rate of pixel translation can be approximated as
{

u̇x(t) ≈ f · ωy(t+ td)

u̇y(t)− ≈ f · ωx(t + td),
(2.22)

where ωx(t) and ωy(t) are angular velocities around x-axis and y-axis. These

two angular velocity sequences can be obtained discretely from the gyroscope

readings (after adding the gyroscope bias and transformed by qc). The pixel

translation rate on the left hand side of (2.22) is approximated by finite dif-

ferences between consecutive frames. In Fig. 2.7 and Fig. 2.8 I show the pixel

translation rates and the angular velocities (right hand side of (2.22)) for the

running sequence. I only plot a 3-second duration sequence in order to make
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the difference look more obvious. We can observe that after calibration and

synchronization, the curve from video data and gyro data align much better,

which indicates the effectiveness of the proposed algorithm.

In Fig. 2.9 and Fig. 2.10 I show the same comparison for the pan-

ning sequence. Again, the pixel translations computed from the video and

gyroscope readings align very well after the proposed online calibration and

synchronization.

2.6.3 Rolling shutter artifact rectification after calibration

I apply the proposed online calibration and synchronization algorithm

in rectifying the rolling shutter artifact in video sequences. After calibration

and synchronization the camera rotation can be directly obtained from gyro-

scope readings. The rolling shutter artifact is rectified by warping each row

in the frame so that all of the rows are captured at the same moment (we fix

this moment as the starting time of each frame). Fig. 2.11 and Fig. 2.12 show

that the gyroscope readings can effectively correct the rolling shutter artifact

after sensor calibration.

2.6.4 Run time

The current running speed of the proposed algorithm implemented in

MATLAB (where feature detection and tracking are implemented using mex

functions of an OpenCV implementation [91]) is 20.95 fps on a laptop with

2.3GHz Intel i5 processor. In the simulation, I had run the algorithm on every
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other pair of adjacent frames. However, we can run the calibration less often

than using every other pair of adjacent frames, which allows a scaling back of

the calculations to meet real-time constraints.

2.7 Conclusions

In this chapter I propose an online calibration and synchronization al-

gorithm for cellphones that is able to estimate not only the camera projection

parameters, but also the gyroscope bias, the relative orientation between the

camera and gyroscope, and the delay between the timestamps of the two sen-

sors. The proposed algorithm is based on the generalization of the coplanarity

constraint of the cross products of matched features in a rolling shutter cam-

era model. The proposed algorithm can also be naturally extended to a global

shutter camera model by forcing the readout time for each frame tr to be

zero. Monte Carlo simulation and experiments run on real data collected from

cellphones show that the proposed algorithm can successfully estimate all of

the needed parameters with different kinds of motion of the cellphones. This

online calibration and synchronization of rolling shutter camera and gyroscope

make it more convenient for high quality video recording, gyro-aided feature

tracking, and visual-inertial navigation.
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Figure 2.5: Estimation error over time in one Monte Carlo simulation trial.
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Running sequence Panning sequence

Figure 2.6: Examples of frames extracted from the test sequences.
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Figure 2.7: Horizontal pixel translation rate u̇x(t) (red) and f ·ωy(t+td) (blue)
for the running sequence.
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Figure 2.8: Vertical pixel translation rate u̇y(t) (red) and −f ·ωx(t+ td) (blue)
for the running sequence.
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Figure 2.9: Horizontal pixel translation rate u̇x(t) (red) and f ·ωy(t+td) (blue)
for the panning sequence.
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Figure 2.10: Vertical pixel translation rate u̇y(t) (red) and −f ·ωx(t+td) (blue)
for the panning sequence.

Figure 2.11: Rolling shutter artifact rectification for the running sequence us-
ing the gyroscope readings after sensor calibration and synchronization. Top:
five consecutive frames with rolling shutter artifact. Bottom: the rectified
frames.
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Figure 2.12: Rolling shutter artifact rectification for the panning sequence us-
ing the gyroscope readings after sensor calibration and synchronization. Top:
five consecutive frames with rolling shutter artifact. Bottom: the rectified
frames.
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Chapter 3

Constrained 3D Rotation Smoothing via

Global Manifold Regression

3.1 Introduction

In chapter I focus on the second step of video stabilization: motion

smoothing. Specifically, I solve the problem of offline motion smoothing.

The proposed motion smoothing algorithm is based on a 3D rotational

camera motion model for a calibrated camera with a known intrinsic matrix.

Compared to 2D affine or projective motion models, 3D motion models can

more accurately reflect the real camera perspective projection, and thus give

more realistic motion smoothing and avoid image distortion in frame synthe-

sis. I only smooth 3D rotation of the camera instead of both rotation and

translation because (1) the unwanted jitter in videos are primarily caused by

camera rotation, and (2) frame synthesis with 3D camera translation would

need the depth value at every pixel, which is very difficult to obtain accurately.

To estimate the 3D camera rotation I use a gyroscope after sensor calibration

using the algorithm in Chapter 2. Current gyroscopes in smart phones have

very high precision and can return more reliable 3D camera rotation estimates

compared to the estimates obtained from visual features in the video sequence,
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especially when there are many moving objects in the scene or it is difficult to

track feature points due to motion blur or illumination changes.

Under a 3D rotational model, camera motion for a video can be con-

sidered as a sequence of 3D rotation matrices. I formulate motion smoothing

as a regression problem with a regularization term indicating the smoothness

of the sequence of rotation matrices. Unlike traditional approaches, I exploit

the manifold structure of the sequence of rotation matrices. The formulated

problem is based on geodesic distance on the Riemannian manifold.

Due to the change of camera poses introduced by video stabilization,

the stabilized frames can be only synthesized for portions of the scene that

are visible in the original frames. Therefore, we have to crop the resulting

video with a large enough cropping size to keep most of the content of the

original video sequence while at the same time guaranteeing that no black

borders intrude into the stabilized video frames. In this chapter, I introduce a

geodesic-convex constraint on the manifold to approximate such requirement

so that the entire motion smoothing problem is kept geodesic-convex on the

manifold.

Previous methods have only exploited the properties on the manifold

of the individual 3D rotation matrix SO(3) (Special Orthogonal Group), so

they can only smooth the camera motion locally through low-pass filtering.

Considering the entire set of sequences of rotation matrices as a Riemannian

manifold allows me to model the motion smoothing problem globally with

proper constraints and solve it optimally.
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To solve the formulated constrained smoothing problem on the mani-

fold, I compute the gradient and Hessian of the objective function using Rie-

mannian geometry, and then extend the two-metric projection algorithm in

Euclidean space to non-linear manifolds. The proposed manifold optimization

algorithm has much better convergence property than normal non-linear op-

timization algorithms in Euclidean space. Experimental results show that my

motion smoothing method outperforms state-of-the-art methods by generating

more stable videos with less distortion.

This chapter is organized as follows: Section 3.2 reviews previous video

stabilization algorithms and related optimization background. Section 3.3 for-

mulates motion smoothing as a regression problem on the sequence of rotation

matrices using geodesic distance. Section 3.4 adds hard geodesic-convex con-

straints to the optimization problem to guarantee that no black border will be

present in the stabilized videos. Section 3.5 presents the computation of gra-

dient and Hessian of the objective function using Riemannian geometry and

then generalizes two-metric projection algorithm in Euclidean space to non-

linear manifolds. Section 3.6 shows the convergence of the proposed algorithms

and compares the proposed motion smoothing method against state-of-the-art

algorithms. Section 3.7 concludes the chapter. I have publicly released the

Matlab code for video stabilization using the proposed motion smoothing al-

gorithm [37].
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3.2 Related Work

Camera motion has been commonly modeled using 2D affine or projec-

tive approaches [29, 34, 62]. Using full 3D models including both rotation and

translation for calibrated cameras was first proposed in [8] and further dis-

cussed in [56]. In both papers complicated approximations are used in frame

synthesis to handle the problem of missing depth values. In [46, 65] pure 3D

rotational models with known intrinsic camera parameters were shown to gen-

erate high-quality results while only needing homography-based warping in

frame synthesis.

Gyroscopes and other inertial measurement sensors have been widely

used in robotic localization problems together with visual measurements [43,

83]. However, they were not used in video stabilization to replace the feature-

based motion estimation until they became accurate enough and widely avail-

able in cell phones recently [31, 46]. Compared with camera motion estimation

using only visual measurements [12, 74], estimation with inertial measurements

is faster and more robust, especially for the cell phone cameras that use CMOS

image sensors (with rolling shutters). Using the camera motion estimated with

the help of the inertial measurements [31, 38, 46], rolling shutter effect can be

effectively rectified so that each frame looks as captured under a single camera

pose. For the rest of the chapter, I assume that any possible rolling shutter

effects are rectified before video stabilization is applied. My proposed video

stabilization methods would therefore work for cameras with or without rolling

shutters.
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Motion smoothing methods using 2D models are based on Euclidean

distance. 2D camera motion can be smoothed using local methods such as

Gaussian-kernel low-pass filtering [62], global methods such as L1-based reg-

ularization [29], and real-time methods such as Kalman filtering [55]. 3D ro-

tation smoothing has been implemented locally by low-pass filtering based on

either Euclidean distance [46] or geodesic distance on the manifold SO(3)

[31, 56]. Motion smoothing has also been performed directly on the fea-

ture trajectories without explicitly estimating the parametric camera motion

[51, 57, 90]. These methods are actually also based on 2D motion models.

The manifold structure of 3D rotation has been extensively studied

in computer graphics. It has been shown that a linear interpolation on the

geodesic between two different poses gives a very smooth and natural anima-

tion of rigid body [77]. Such interpolation is equivalent to constructing a curve

that minimizes the sum of geodesic distances between every pair of adjacent

knots. This fact motivates my formulation of camera motion smoothing on

the manifold and the use of geodesic distance as the smoothness metric.

Although SO(3) has additional applications in computer vision [22, 27],

the sequence of 3D rotation matrices was hardly investigated as a whole. In

[7] discrete regression is first applied on the sequence of rotation matrices with

conjugate gradient descent algorithm proposed to solve the formulated prob-

lem. In this chapter I also directly exploit the manifold structure of sequences

of rotation matrices so that we can formulate 3D rotation smoothing as a

regression problem. Compared to [7], I further compute the Hessian of the
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objective function using Riemannian geometry so that the problem can be

solved more efficiently using Newton’s method on the manifold.

Previous video stabilization methods usually stabilize the video first

without considering the cropping size of the result and crop the stabilized video

as a post-processing step [31, 56]. Such methods cannot optimally smooth a

video sequence with a pre-fixed cropping size and usually have to sacrifice the

smoothness. Rendering the unseen part of the frame using mosaicking and

inpainting algorithms with the help of neighboring frames allows the original

size of the video to be kept [62]. However, the rendered parts usually have

much lower image quality, especially for the videos with a lot of moving ob-

jects. The cropping size is first considered as a hard constraint in motion

smoothing step in [29]. In this chapter I approximate this constraint with a

geodesic-convex set on the manifold. Constrained optimization on Euclidean

space has been extensively studied [6], but not on non-linear manifolds. If the

constraint set has some simple structure, such as a Cartesian product of Eu-

clidean balls, an efficient two-metric projection algorithm can be used to solve

the optimization problem [13, 24]. The proposed constraint set in this chapter

is a Cartesian product of geodesic balls on manifold. I extend the two-metric

projection algorithm in Euclidean space to general manifolds so the proposed

manifold optimization problem can be solved efficiently and optimally. Table

3.1 summarizes motion smoothing methods in prior work and in this chapter

for video stabilization.
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Table 3.1: Comparison of prior work and this chapter on offline motion smooth-
ing for video stabilization.

Paper Motion model Smoothing
method

Constrained by
cropping size

Global
smoothing

[62] 2D Low-pass fil-
tering

no (full-frame
with inpainting)

no

[46] 3D (Euclidean) Low-pass fil-
tering

no no

[56] [31] 3D (manifold) Low-pass fil-
tering

no no

[29] 2D Regression yes yes
[51] 2D (trajectories) Regression no no
[57] 2D (trajectories) Subspace

low-pass
filtering

no no

Proposed 3D (manifold) Regression yes yes

3.3 Smoothness of 3D Rotation Sequence

All of the 3 × 3 rotation matrices constitute the Special Orthogonal

Group SO(3), in which any element R satisfies the constraints RRT = I

and det(R) = 1. SO(3) can be also considered as an embedded Riemannian

submanifold of Euclidean space R
9 (represented as 3 × 3 real matrices). A

natural extension of Euclidean distance in Euclidean space to the Riemannian

manifold SO(3) is the geodesic distance

dg(Ri,Rj) = ||logm(RT
i Rj)||F , (3.1)

where logm(·) is the matrix logarithm operator and || · ||F is the Frobenius

norm of a matrix. In fact, logm(RT
i Rj) is a skew-symmetric matrix repre-
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senting a tangent vector in the tangent space TRi
SO(3) that indicates the

non-normalized direction from Ri to Rj on SO(3). Usually we also write

logm(R′
iRj) as logRi

Rj and call it the logarithmic mapping. Inversely, given

any tangent vector ξ ∈ TRi
SO(3), we can define expRi

ξ = Riexpm(ξ), where

expm(·) is the matrix exponential operator. Here, expRi
ξ is called the expo-

nential mapping and is used to move Ri along the direction defined by ξ on

SO(3). The logarithmic mapping and exponential mapping together define a

curve

t ∈ [0, 1] 7→ γ(t) = expRi

(

t · logRi
Rj

)

, (3.2)

which is known as the minimizing geodesic from Ri to Rj on SO(3). The min-

imizing geodesic is a generalization of the notion of “straight line” in Euclidean

space to Riemannian manifolds, representing the shortest path between two

points in the manifolds given a Riemannian metric. The length of the mini-

mizing geodesic is defined in (4.1).

For each video sequence, we can obtain a sequence of 3D rotation ma-

trices corresponding to all of the frames from the gyroscope readings or the

estimation using matched feature points. Next I consider the sequence of 3D

rotation matrices as a whole and exploit the properties of the Riemannian

manifold constituted by these sequences.

Assume x = [R1,R2, . . . ,RN ]
T represents the sequence of 3D camera

rotation for any video sequence with N frames. Clearly all of the possible

rotation matrix sequences with N elements constitute a manifold MR with
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dimension 3N . In fact, we have

MR = SO(3)× SO(3)× . . .× SO(3), (3.3)

a Cartesian product of N SO(3) manifolds. Furthermore, for any x ∈ MR,

the tangent space TxMR at x can be represented as

[η1, η2, . . . , ηN ]
T, (3.4)

where {ηi} are real skew-symmetric matrices. In other words, the tangent vec-

tors and corresponding exponential (and logarithmic) mapping are still sepa-

rable as the elements in the manifold of rotation matrix sequences. This makes

the proposed gradient-related optimization algorithms in the next section easy

to implement.

The goal of video stabilization is to remove the visible jitter and make

the camera motion trajectory change smoothly. Given the manifold structure

of SO(3), it is natural to define the smoothness of a rotation matrix sequence

as the sum of geodesic distances between adjacent rotation matrices. At the

same time, we need to guarantee that the smoothed camera motion trajectory

does not deviate from the original trajectory too much. As a result, I formulate

the video stabilization problem as

min
{Ri}

N
∑

i=1

1

2
d2g(R̃i,Ri) + α

N−1
∑

i=1

1

2
d2g(Ri,Ri+1), (3.5)

where {Ri} is the sequence of stabilized rotation matrices, {R̃i} is the original

sequence of rotation matrices, α is the weighting parameter controlling the
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smoothness of the stabilized trajectory. (3.5) is an extension of discrete curve

fitting problem in Euclidean space with penalty on the first order difference.

Note that although the objective function is derived based on the geodesic dis-

tance between elements in SO(3), it is defined on the rotation matrix sequence

manifold MR.

3.4 Constrained video Stabilization

The proposed objective function in (3.5) is effective in smoothing the

sequence of 3D rotation matrices. However, in the last step of video stabiliza-

tion, the synthesized frames may contain black borders since not every pixel

in the synthesized frame is visible in the original frame due to the change of

camera orientation. Therefore, we have to crop the synthesized frames into a

smaller size so that there are no black borders in the stabilized video. In other

words, given a preferred stabilized size of the video, the video stabilization sys-

tem must guarantee that every pixel in the cropped stabilized frames is visible

in the original frames. This is a hard constraint that has to be considered in

the camera motion smoothing algorithm.

Assume the intrinsic projection matrix of the camera is given as K.

Under pure rotational camera model, for any pixel [uij, vij]
T in the stabilized

frame i, its corresponding 2D pixel location in the original frame [ũij, ṽij ]
T can

be computed as
[

ũij

ṽij

]

= g



KR̃iRi
TK−1





uij

vij
1







 , (3.6)
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where the function

g









x
y
z







 =

[

x/z
y/z

]

(3.7)

is used to convert the homogeneous coordinates into inhomogeneous coordi-

nates. Assume that the frame size in the original video is w × h, and the

coordinates of the top left corner and bottom right corner of the cropped rect-

angle in the stabilized video are [c1, d1], [c2, d2], the hard constraint for video

stabilization can be represented as
{

0 ≤ ũij ≤ w

0 ≤ ṽij ≤ h
, ∀

[

uij

vij

]

s.t.

{

c1 ≤ uij ≤ c2

d1 ≤ vij ≤ d2
(3.8)

The constraint (4.5) is very complex with respect to the rotation matri-

ces that we want to compute and no algorithms as far as I know are guaranteed

to handle it efficiently (note that for 2D affine or similarity motion models,

this constraint is just linear with respect to the variables). To overcome this

difficulty I replace the constraint in (4.5) with a simpler constraint defined on

the manifold

|| logR̃i
Ri||F ≤ r0, ∀i, (3.9)

where r0 is a fixed threshold depending on the relative size of the cropped

rectangle in the stabilized frames. The constraint (3.9) just means that the

geodesic distance between the original and stabilized camera orientations should

be less than r0. r0 is defined as the largest value to guarantee that for all of

the camera orientations satisfying the constraint (3.9), the constraint (4.5) is

also satisfied. We know that any 3D rotation matrix can be represented by a
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rotation axis and a rotation angle, so constraint (3.9) can be also interpreted

as the rotation angle of (R̃i)
TRnew

i being no larger than r0. Constraint (3.9) is

homogeneous on every possible rotation axis and is clearly stricter than con-

straint (4.5). Fig. 3.1 shows that the constraint (3.9) is a good approximation

of the original constraint.
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Figure 3.1: Approximation of inhomogeneous constraint (4.5) using homoge-
neous constraint (3.9). The maximum allowable geodesic distances for different
rotation axes are shown as blue points. The homogeneous geodesic distance
constraint is shown as the sphere. The bottom three figures show the same as
the top figure from three perpendicular views.

In this example, the original frame size is 720 × 480 and the cropped
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rectangle is at the center of the frame with size 540×360. For each possible ro-

tation axis (denoted by the tangent vector logR̃i
Ri after normalization), I find

the maximum geodesic distance that guarantees constraint (4.5) is satisfied. In

Fig. 3.1 the homogeneous constraint is shown as the sphere and the maximum

allowable geodesic distance for each rotation axis (I uniformly sample 1000

rotation axes) is shown as a blue point. I also show three perpendicular views

to better illustrate the difference between the two constraints. From Fig. 3.1

we can observe that for most rotation axes the maximum allowable geodesic

distance is close to the homogeneous bound.

The constraint (3.9) has two significant properties. First, it has a sim-

ple form – each rotation matrix in the sequence is constrained in a geodesic

ball. As a result, the constraint set is a Cartesian product of geodesic balls.

This property guarantees that gradient projection algorithms can be executed

efficiently, as shown in the next section. Second, the constraint set is geodesic

convex – given any two points in the set, there is a minimizing geodesic con-

tained within the set that joins those two points (The geodesic convexity of

the constraint can be easily proved by the triangular inequality of Riemannian

metrics). Geodesic convexity is a natural generalization of convexity in Eu-

clidean space to Riemannian manifolds. In the next section I will prove that

the objective function (3.5) is also geodesic convex and thus global optimality

can be guaranteed by the proposed optimization algorithms.
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3.5 Motion Smoothing via Manifold Optimization

For brevity, I use x ∈ MR to represent the rotation matrix sequence

{Ri} and write the objective function to minimize (3.5) as f(x). In addition,

I define Ri = Aix, where Ai is a 3×3N matrix that is used to extract Ri from

x. Similarly we can map Ri back to its corresponding location in x as AT
i Ri.

The constrained motion smoothing can be finally formulated as

min
x

f(x), s.t. x ∈ Ω, (3.10)

where Ω = Ω1 × Ω2 × · · · × ΩN is a Cartesian product of geodesic balls. Each

geodesic ball is defined as in (3.9):

Ωi = {Ri ∈ SO(3) : || logR̃i
Ri||F ≤ r0}. (3.11)

3.5.1 Unconstrained Optimization

In this subsection I first ignore the constraint and only minimize the ob-

jective function in the entire manifoldMR. I consider the constrained manifold

optimization in the next subsection.

As I mentioned, I will directly solve the optimization problem using

manifold optimization methods. In other words, the optimization algorithms

are based on the geometric structure of the manifold, not its embedding Eu-

clidean space. In fact, the problem in (3.10) without the constraint is equiva-

lent to an unconstrained quadratic programming problem in Euclidean space.

In Euclidean space, such problems have closed-form solution; however, on non-

linear manifolds we have to use iterative algorithms.
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Similar with Euclidean space, gradient-related iterative algorithms are

widely used in optimization on manifolds [1]. The gradient-related algorithms

for unconstrained optimization problem on the manifold MR can be summa-

rized as follows: For any element x in the manifold of rotation matrix sequence

MR, given any tangent vector ξx ∈ TxMR, we can move x along the direction

defined by ξx using the exponential mapping expxξx. Note that given the

separability property of the tangent vectors the exponential mapping can also

be implemented separately for different rotation matrices in the sequence. If

ξx is a descent direction related to the gradient of the objective function at

x, then we have the gradient-related algorithm on the manifold MR. In fact,

similar convergence results of gradient-related algorithms has been extended

from Euclidean space to any manifold [1]. The gradient-related algorithms

can be classified according to the choice of the descent directions. Popular

gradient-related algorithms include steepest gradient descent, conjugate gra-

dient descent, Newton’s method, etc.

In this chapter I investigate steepest gradient descent and Newton’s

method, which needs the computation of gradient and Hessian of the objective

function.

3.5.2 Gradient Computation

In manifold, the gradient of a function is defined as follows:

Definition 1. For any real-valued function f : M → R defined on manifold
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M, the gradient gradf(x) is a vector field that satisfies

〈gradf(x), ξx〉x = Df(x)[ξx], ∀ξx ∈ TxM, (3.12)

where 〈·, ·〉x on the left-hand side of (3.12) is any inner product in the

tangent space TxM that induces a Riemannian metric, Df(x)[·] on the right-

hand side of (3.12) is the differential map of f at x.

To compute the gradient we first rewrite the objective function as

f(x) =

N
∑

i=1

gi(x) + α

N−1
∑

i=1

hi(x), (3.13)

where gi(x) =
1
2
d2g(R̃i,Ri) and hi(x) =

1
2
d2g(Ri,Ri+1). Note that Ri = Aix in

our notation.

If we consider 1
2
d2g(R̃i,Ri) as a function of Ri, it has been proved [45]

that

grad
1

2
d2g(R̃i,Ri) = −logRi

R̃i. (3.14)

Given the separability feature of x, we can further obtain

gradgi(x) = −AT
i logAix

R̃i (3.15)

I propose the following lemma to compute the gradient of hi(x):

Lemma 1. The gradient of the function hi(x) defined in (3.13) on manifold

MR can be represented as

gradhi(x) = −AT
i logAix

Ai+1x− AT
i+1 logAi+1x

Aix (3.16)
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Proof. ∀ξx ∈ TxMR, define a geodesic curve γ(t) = expx(tξx), then from the

definition of differential map we have

Dhi(x)[ξx] =
dhi(γ(t))

dt

∣

∣

∣

∣

t=0

. (3.17)

Now consider a family of geodesics

c(s, t) = expAi+1γ(t)(s logAi+1γ(t) Aiγ(t)). (3.18)

Denote
{

c′(s, t) = dc(s,t)
ds

ċ(s, t) = dc(s,t)
dt

.
(3.19)

According to the definition of exponential mapping we have c′(s, t) = logAi+1γ(t)
Aiγ(t)

and is independent of s. Then we have

dhi(γ(t))

dt
=

d

dt
〈logAi+1γ(t) Aiγ(t), logAi+1γ(t) Aiγ(t)〉

=
d

dt
〈c′(s, t), c′(s, t)〉

= 〈 d
ds

ċ(s, t), c′(s, t)〉

=

∫ 1

0

〈 d
ds

ċ(s, t), c′(s, t)〉ds

=

∫ 1

0

d

ds
〈ċ(s, t), c′(s, t)〉ds

= 〈ċ(1, t), c′(1, t)〉 − 〈ċ(0, t), c′(0, t)〉

= 〈Aiγ
′(t), logAi+1γ(t)

Aiγ(t)〉 −

〈Ai+1γ
′(t), logAi+1γ(t) Aiγ(t)〉. (3.20)

Note that the tangent vectors in ofMR also has its Cartesian product structure,

so I denote ξi = Aiξx and ξi+1 = Ai+1ξx. From the definition of exponential
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mapping we have γ′(t) = ξx. Therefore, we have

dhi(γ(t))

dt

∣

∣

∣

∣

t=0

= 〈ξi − ξi+1, logAi+1γ(0)
Aiγ(0)〉

= 〈ξi − ξi+1, logAi+1x
Aix〉

= 〈ξx,−AT
i logAix

Ai+1x−

AT
i+1 logAi+1x

Aix〉. (3.21)

According to the definition of gradient I have now proved Lemma 1.

Now I have derived the gradient of gi(x) and hi(x). Using linearity of

the gradient, we can obtain

gradf(x) = −AT
1 (logA1x

R̃1 + logA1x
A2x)−

N−1
∑

i=2

AT
i (logAix

R̃i + logAix
Ai+1x+ logAix

Ai−1x)−

AT
N(logANx R̃N + logANxAN−1x).

(3.22)

Equation (3.22) clearly shows the decomposition of gradf(x) into N skew

symmetric matrices corresponding to the N rotation matrices in x. Given the

direction, we can use exponential mapping to update x in each iteration for

steepest gradient descent algorithm.

3.5.3 Hessian Computation

In Euclidean space the convergence rate of steepest gradient descent

is strongly affected by the eigenvalues of the Hessian matrix of the objec-

tive function Hessf(x). This property also holds for non-linear manifolds [1].
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In fact we can check that the Hessian matrix of the given objective func-

tion is ill-conditioned (the largest eigenvalue is much larger than the smallest

eigenvalue). Therefore, the steepest gradient descent method converges only

sublinearly.

Newton’s method has been proved to converge locally quadratically to

the optimal solution for both Euclidean space and non-linear manifolds. Espe-

cially for general Riemannian manifolds, the framework of Newton’s method

was first proposed in [16, 81] with a proof of quadratic convergence.

Newton’s method needs calculating the Hessian Hessf(x). In manifolds

the Hessian is defined as following:

Definition 2. For any real-valued function f : M → R defined on a Rie-

mannian manifold M with Levi-Civita Connection ▽, the Hessian Hessf(x) is

mapping from TxM to TxM satisfying

Hessf(x)[ξx] = ▽ξxgradf(x). (3.23)

Note that the Levi-Civita Connection ▽ξxgradf(x) is a kind of affine

connection that measures in the change in gradf(x) when x changes infinites-

imally in the direction of ξx [25]. The Hessian is also usually defined as an

symmetric operator on two tangent vectors as

Hessf(x)(ξx, ηx) = 〈Hessf(x)[ξx], ηx〉 = 〈Hessf(x)[ηx], ξx〉 (3.24)

To calculate the Hessian on manifolds is a very difficult task. I start

to derive the Hessian of the proposed objective function from the following

lemma in [20].
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Lemma 2. Consider the geodesic distance function φQ(P) = 1
2
d2g(P,Q),

where P,Q ∈ SO(3). Let r = dg(P,Q) be the geodesic distance. Let

γ(t) : [0, r] → SO(3) denote the unit speed geodesic connecting Q to P.

∀ξP, ηP ∈ TPSO(3), we have the Hessian operator

HessφQ(P)(ξP, ηP) = 〈ξ‖P, η
‖
P〉+

r

tan(r/2)
〈ξ⊥P, η⊥P〉, (3.25)

where ‖ and ⊥ signs denote parallel and perpendicular orthogonal components

of the tangent vector with respect to γ̇(r). Here γ̇(r) ∈ TPSO(3) is the parallel

translation of γ̇(0) = logQP along the geodesic from Q to P.

Given Lemma 2 and any orthonormal basis {En}n=1,2,3 of TPSO(3) we

can compute the matrix representation of the Hessian operator by computing

its result on every pair of basis tangent vectors. Lemma 2 gives us a way to

compute the Hessian matrix when the objective function is the geodesic dis-

tance defined on SO(3). In my proposed problem I need to find the Hessian

for gi(x) and hi(x), which are defined on the manifold MR of rotation matrix

sequences. Note that due to the separability feature (Cartesian product struc-

ture) of the tangent vectors of MR, we can always find an orthonormal basis

{En
i }n=1,2,3;i=1,...,N of TxMR, where only AiE

n
i is non-zero and it is equal to

the basis vector En defined for TAixSO(3). In other words, the orthonormal

basis of TxMR can be represented by N subgroups and each subgroup corre-

sponds to one particular rotation matrix in the entire sequence. I propose the

following proposition:
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Proposition 1. Given the decomposed objective functions defined in (3.13)

and an orthonormal basis of TxMR in form of {En
i }, we have

{

Hessgi(x)(E
n
i , E

m
i ) = HessφR̃i

(Aix)(E
n, Em)

Hessgi(x)(E
n
j , E

m
k ) = 0, if j 6= i or k 6= i

(3.26)































Hesshi(x)(E
n
i , E

m
i ) = HessφAi+1x(Aix)(E

n, Em)

Hesshi(x)(E
n
i+1, E

m
i+1) = HessφAix(Ai+1x)(E

n, Em)

Hesshi(x)(E
n
i , E

m
i+1) = −HessφAi+1x(Aix)(E

n, Em)

Hesshi(x)(E
n
i+1, E

m
i ) = −HessφAix(Ai+1x)(E

n, Em)

Hesshi(x)(E
n
j , E

m
k ) = 0, if j 6= i, i+ 1 or k 6= i, i+ 1

(3.27)

The computations on the right-hand sides of (3.26) and (3.27) have been de-

fined in Lemma 2.

Proposition 1 can be easily proved using the Cartesian product struc-

ture of MR and the definitions of gradient and Hessian. Using Proposition 1

and linearity of the Hessian we can obtain a 3N × 3N matrix representation

H of Hessf(x) for a given orthonormal basis {En
i }. To compute the direction

in Newton’s method, we first compute −gradf(x) and then represent it as a

vector v under the orthonormal basis {En
i }. Then we just need to solve the

linear system H · u = v and the direction is represented by the vector u under

the same basis.

Given any gradient-related update direction I use the Armijo rule [70]

to select the step size.

71



3.5.4 Constrained Optimization

In Euclidean space, if the optimization problem is constrained, the

update with the descent direction may be outside the constraint set. When

the constraint set is convex and the update direction is the gradient, an option

is to project the update onto the constraint set in each iteration. This is known

as gradient projection algorithm [6] and it only works fast when the constraint

set has simple form so the projection step is easy to implement, such as box

constraints. The limitation of this algorithm is that the update direction can

only be the gradient of the objective function. If the update direction is a

scaled version of the gradient, such as in Newton’s method, the projection

step on the convex set should also be based on the same scaling of the original

metric. This will make the projection step very hard to implement even if the

constraint set has a very simple form.

In [5, 24] the authors proposed a new version of scaled gradient projec-

tion method called “two-metric projection method”, which can use the scaled

gradient as update direction while keep the projection step based on the orig-

inal metric. The most important step in two-metric projection method is to

decompose the gradient in a pair of dual cones determined by the constraint

set and only scale one component. When the gradient is scaled by the Hessian

(similar to Newton’s method), it has been proved that the two-metric projec-

tion method can converge to a stationary point globally and has superlinear

convergence rate locally around the stationary point. A clearer summary of

the general form of two-metric projection method and its modification can be
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found in [13, 14]. In this chapter I will first apply the two-metric projection

algorithm on Euclidean space with the constraint set being a Cartesian prod-

uct of Euclidean balls. Then I will extend the algorithm into optimization in

manifold with the constraint set being a Cartesian product of geodesic balls.

To my knowledge this is the first time that the two-metric projection method

is extended to solve a constrained manifold optimization problem.

3.5.5 Two-metric method in Euclidean space

First I review the algorithm prototype proposed in [24] for generalized

constrained optimization problem on a convex set in Euclidean space:

min
x∈Ω

f(x), (3.28)

where f is any smooth real function on Euclidean space and Ω is any nonempty

closed convex set in Euclidean space. The Two-metric Algorithm in Euclidean

space (Algorithm 1) is described below.

P∗(·) in the algorithm means the projection of a point onto a set. To

accelerate convergence the linear map ST can be chosen based on the inverse

of the Hessian of the objective function. Next I show how this algorithm work

when the convex constraint set Ω is a Cartesian ball of Euclidean balls:

Ω = Ω1 × Ω2 × . . .× ΩN ,Ωi = {xi : ||xi − ci|| ≤ r0}, (3.29)

where {ci} are the centers of each Euclidean ball and r0 is the constant radius

of these balls. I also assume that each Euclidean ball is with dimension K.
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Algorithm 1 Two-metric Algorithm in Euclidean Space

1: INPUT: x0, k = 0
2: repeat
3: Compute gradf(xk)
4: vN = sNPN(−gradf(xk))
5: vT = PTSTPN∗(−gradf(xk))
6: v = vN + vT

7: Update xk+1 = PΩ(x
k + αkv)

(αk is the step size chosen by the Armijo Rule)
8: k = k + 1
9: where:
10: N = {y : ∀z ∈ Ω, 〈y, z− xk〉 ≤ 0}

(The normal cone at xk)
11: N∗ = {y∗ : ∀y ∈ N, 〈y∗,y〉 ≤ 0}

(The dual cone of N)
12: T = {vN}⊥ ∩N∗

13: [T] = the closed linear hull of T
14: ST = a bounded linear map from [T] into [T]
15: sN = a scalar
16: until Convergence
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According to the Cartesian product structure of Ω, we can also decom-

pose the sets N,N∗,T in Algorithm 1 into such kind of Cartesian product form.

For any x ∈ Ω, define the active index set I(x) = {i : ||xi − ci|| = r0}, then

clearly we have each component of the normal cone N at x as

Ni =

{

{0}, i /∈ I(x)

{vi : vi = λ(xi − ci), λ ≥ 0}, i ∈ I(x)
(3.30)

Then we can get each component of the dual cone N∗ as

N∗
i =

{

R
K , i /∈ I(x)

{vi : 〈vi,xi − ci〉 ≤ 0}, i ∈ I(x)
(3.31)

If we define a second active index set as

Î(x) = {i : i ∈ I(x), and〈(gradf(x))i,xi − ci〉 < 0}, (3.32)

then we can get each component of the projection of the gradient on to the

normal cone N as

(vN)i =

{

0, i /∈ Î(x)

−sN 〈(gradf(x))i,xi−ci〉
||xi−ci||2 (xi − ci), i ∈ Î(x)

(3.33)

Finally each component of the set T and its linear hull [T] can be represented

as

Ti =











R
K , i /∈ I(x)

{vi : 〈vi,xi − ci〉 ≤ 0}, i ∈ I(x), i /∈ Î(x)

{vi : vi ⊥ (xi − ci)}, i ∈ Î(x)

(3.34)

[T]i =

{

R
K , i /∈ Î(x)

{vi : vi ⊥ (xi − ci)}, i ∈ Î(x)
(3.35)

Now I construct the linear map ST. Assume the Hessian matrix of the objective

function at x is H . Without loss of generality, by relabeling the coordinates
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of x if necessary, I assume that there exists an index q such that Î(x) =

{q+ 1, q+ 2, . . . , N}. We diagonalize the Hessian matrix with respect to Î(x)

as

Ĥ =

[

H̃ 0
0 I

]

, (3.36)

where H̃ is the same as the part of H corresponding to i /∈ Î(x), I is the

identity matrix corresponding to Î(x) (the last (N − q) components). We

define the matrix representation of the map ST as Ĥ−1. It is easy to verify

that ST maps any point in T into T itself. Thus we can get each component

of vT as

(vT)i =























−(Ĥ−1gradf(x))i, i /∈ I(x)

−PTi(Ĥ
−1gradf(x))i, i ∈ I(x), i /∈ Î(x)

−(gradf(x))i + 〈(gradf(x))i,xi−ci〉
||xi−ci||2 (xi − ci),

i ∈ Î(x)

(3.37)

If we choose sN = 1 then finally we can get

vi =











−(Ĥ−1gradf(x))i, i /∈ I(x)

−PTi(Ĥ
−1gradf(x))i, i ∈ I(x), i /∈ Î(x)

−(gradf(x))i, i ∈ Î(x)

(3.38)

We can find that only for the indices not in the active set Î(x) the gradient is

scaled by the inverse of the Hessian to get the update direction. In extreme

case that the active set is always empty (the boundary of the constraint set is

never reached), this algorithms turns into regular Newton’s method. Note that

due to the Cartesian product structure all the computation except the inverse

of the Hessian matrix can be performed independently for each component.
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3.5.6 Scaled Gradient Projection on Manifold

Now I generalize the two-metric projection algorithm to manifolds. The

convex constraint set Ω now becomes the Cartesian of geodesic balls defined in

(3.9). The centers of these balls are the original camera rotation matrices {R̃i}.

Based on the discussion in the previous subsection I propose the Manifold Two-

metric Algorithm for Constrained Motion Smoothing (Algorithm 2) below to

solve the problem in (3.10).

3.5.7 Geodesic-convexity of Motion Smoothing

In this subsection I will show that the proposed problem in (3.10) is

geodesic convex on the manifold MR. Geodesic-convexity is a natural general-

ization of convexity in Euclidean space to manifolds. Similar with Euclidean

space, for geodesic-convex optimization problems, local minimum is also global

minimum [88]. I mentioned in Section 3.4 that the constraint set is geodesic

convex according to triangular inequality of Riemannian metrics. Here I will

focus on the proof of the geodesic convexity of the objective function in (3.13).

From the property that a linear combination of geodesic convex functions is

still geodesic convex, it is sufficient to prove the functions gi(x) and hi(x)

are geodesic convex. It has been shown that the geodesic distance function

φQ(P) = 1
2
d2g(P,Q) is geodesic convex with respect to P inside a geodesic ball

centered at Q with radius less than π/2
√
∆, where ∆ is the upper bound of

the sectional curvature of the manifold that P and Q lie in [45]. For manifold

SO(3) the sectional curvature is 1/4 everywhere. So the radius of the geodesic
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Algorithm 2 Manifold Two-metric Algorithm for Constrained Motion
Smoothing

1: INPUT: A fixed orthonormal basis {En
i }n=1,2,3;i=1,...,N of TxMR, x

0, k = 0

2: repeat
3: Compute gradf(xk) and its representation vector u in the fixed basis
4: Compute the representation matrix H of Hessf(xk) in the fixed basis
5: Find active set I(xk) = {i : || logR̃i

Aix
k|| = r0}

6: Find active set
Î(xk) = {i : i ∈ I(x), 〈(gradf(xk))i, logR̃i

Aix
k〉 < 0}

7: Diagonalize H to Ĥ with respect to Î(xk) as in (3.36)
8: Compute the vector representation v of the update direction as
9:

vi =











−(Ĥ−1u)i, i /∈ I(x)

−PTi(Ĥ
−1u)i, i ∈ I(x), i /∈ Î(x)

−ui, i ∈ Î(x)

(3.39)

Compute the update direction d ∈ TxkMR based on its vector represen-
tation v

10: Update xk+1 = PΩ(expxk αkd)
(αk is the step size chosen by the Armijo Rule)

11: k = k + 1
12: where:
13: Ti = {ξi ∈ TAixkSO(3) : 〈ξi, logR̃i

Aix
k〉 ≤ 0}, i ∈ I(x), i /∈ Î(x)

14: until Convergence
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ball centered at Q should be less than π/2. Consider P as a rotation matrix

for a certain frame and the Q as the rotation matrix of its adjacent frame, P

is well guaranteed to be inside the geodesic ball centered at Q with radius π/2

since the change of rotation between two consecutive frames is very small. If

Q is the original rotation matrix for a certain frame and P is the new rotation

matrix in the stabilized video for the same frame, then P is still guaranteed to

be inside the geodesic ball centered at Q with radius π/2 given the proposed

constraint (3.11).

It has been shown that a function is geodesic convex if and only if the

matrix representation of its Hessian is positive semi-definite (PSD) [88]. I

have mentioned that the function φR̃i
(Aix) is geodesic convex with respect to

Aix. So the matrix representation of its Hessian matrix Hg is PSD. According

to Proposition 1 the matrix representation of the Hessian of gi(x) can be

represented as














0
. . .

Hg

. . .

0















(3.40)

(Hg locates at the coordinates corresponding to frame i) and is clearly also

PSD.

Since I have also mentioned that the function φAix(Ai+1x) is geodesic

convex with respect to Ai+1x, its Hessian matrix representation Hh is PSD.

From Lemma 2 the Hessian matrix representation of the function φAi+1x(Aix)

is also Hh. Thus according to Proposition 1 the Hessian matrix representation
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of hi(x) is


















0
. . .

Hh −Hh

−Hh Hh

. . .

0



















. (3.41)

It is not hard to show that this matrix is also PSD.

Therefore, I have show that the function gi(x) and hi(x) in (3.13) are

geodesic convex, which means the objective function f(x) is geodesic convex.

Given the property that the proposed two-metric scaled gradient projection

algorithm can always converge to a stationary point, the global optimality of

the proposed algorithm is guaranteed.

3.5.8 Choice of Regularization Parameter

As I mentioned, the original objective function (3.5) consists of two

different terms: data-fitting term and the regularization term. The parameter

α controls the relative weights of the two different terms. The data-fitting term

was originally introduced into the unconstrained video stabilization problem to

guarantee that the smoothed camera motion trajectory does not deviate from

the original trajectory too much. However, we can find that such requirement

is redundant if the hard constraint (3.9) is added. Therefore, the optimal choice

of α should be infinity in order to reach the greatest degree of smoothness in

the stabilized trajectory. This is equivalent to dropping the data-fitting term
∑N

i=1 gi(x).
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However, such setting is impractical since the proposed algorithm relies

on inverting the matrix representation of Hessf(x). According to the discus-

sion in Section 3.5.7, the Hessian matrix representation of
∑N−1

i=1 hi(x) can be

written as

H =



















Hh −Hh

−Hh 2Hh −Hh

−Hh 2Hh

. . .

2Hh −Hh

−Hh Hh



















. (3.42)

Recall that H is a 3N × 3N matrix given an orthonormal basis of TxMR.

From the fact that each 3 × 3 matrix block Hh is PSD, we can decompose it

as Hh = Θh
TΘh. As a result, we can decompose H as H = ΘTΘ, where Θ is

a 3(N − 1)× 3N matrix and

Θ =











Θh −Θh

Θh −Θh

. . .

Θh −Θh











. (3.43)

Clearly the matrix H does not have full rank and thus is not invertible. There-

fore, in practice I leave the data-fitting term in the objective function and set

α to a very large number to avoid the numerical problem of matrix inversion.

3.6 Experimental Results

I first compare the convergence rate of different algorithms in solv-

ing the formulated smoothing problem on the sequences of rotation matrices.

Fig. 3.2 is an example showing the convergence rate of steepest gradient de-

scent method and Newton’s method in solving the unconstrained formulated
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Figure 3.2: Convergence of two gradient-related algorithms for unconstrained
motion smoothing: Newton’s method and steepest gradient descent. For these
algorithms, I compute the gradient and Hessian of the objective function using
Riemannian geometry.

problem. In the experiment we try to smooth a sequence of 478 3D rotation

matrices (478 frames) with α = 1000, which were taken at a frame rate of

30 Hz. Figure 3.2 shows the values of the objective function in 10 iterations.

Newton’s method successfully converges in just 2 iterations. Each iteration of

the Newton’s method takes 2.93s on a 2.3GHz Intel i5 processor machine with

MATLAB implementation (without parallel processing). From Fig. 3.2 we

can observe that the scaling of gradient using Hessian matrix can significantly

accelerate the convergence, which motivates us to do the same thing in solving

the constrained problem.

In Fig. 3.3 I compare the convergence rate of gradient projection

method and the proposed scaled gradient projection method in solving the

constrained motion smoothing problem. The test video sequence is the same
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Figure 3.3: Convergence of two algorithms for constrained motion smooth-
ing: manifold gradient projection and the manifold two-metric scaled gradient
projection (proposed).

as in Fig. 3.2. The original frame size is 720×480 and the guaranteed cropped

size is 540×360. The radius r0 is found as 0.11. We can observe that proposed

two-metric scaled gradient projection method successfully converges in only 4

iterations. Note that the difference in the final convergence values of the ob-

jective function between Fig. 3.2 and Fig. 3.3 is caused by the constraint in

(3.9). Each iteration of the proposed method takes 3.58s on the same machine

as in Section 3.5.3, while the gradient projection method takes 18.66s per iter-

ation. The reason gradient projection method takes such longer time in each

iteration is that it needs multiple tries to find the proper (descent) step size

using the Armijo step size selection method. For the proposed method usually

1 is the proper step size (no more tries are needed) because the gradient has

been scaled by the Hessian of the objective function.

Fig. 3.4 shows another example comparing the convergence rate of gra-
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Figure 3.4: Convergence of two algorithms for constrained motion smoothing:
gradient projection and the manifold two-metric scaled gradient projection
(proposed).

dient projection method and the proposed scaled gradient projection method.

In this example there are 761 frames in the test video sequence. The proposed

two-metric scaled gradient projection method successfully converges in only 5

iterations. In Fig. 3.5 I additionally run the proposed two-metric projection

method on a video with 163 frames and show the running time of each iter-

ation for all of the three test videos with respect to their numbers of frames.

We can observe that the running time of each iteration increases linearly with

the increase in the number of frames, thanks to the sparse structure of the

Hessian matrix as shown in Proposition 1.

A comparison between the original camera rotation and the smoothed

camera rotation is shown in Fig. 3.6. In this figure, the camera rotation

corresponding to each frame in the video sequence is shown in form of Tait-

Bryan angles (a similar representation as Euler angles). Note that, however,
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Figure 3.5: Running time of each iteration for the proposed manifold two-
metric projection algorithm.

our motion smoothing is performed naturally on the manifold MR instead of

the Euclidean space of rotation angle representation.

Then I use the proposed constrained motion smoothing method in video

stabilization. In the experiments I try to stabilize the video sequences captured

by Google Nexus S smart phone. While recording videos, I also captured the

readings (with timestamps) from the 3-axis gyroscope inside the phone. The

camera has been calibrated so the camera intrinsic matrix K is known. I also

assume that the gyroscope and the videos have been synchronized so that we

can obtain the camera pose (3D rotation) simply from the gyroscope readings.

In practice, the calibration and synchronization can be executed using the

method provided in Chapter 2.

I use the proposed constrained motion smoothing method in video sta-

bilization and compare my method with the YouTube video editor. The video
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Figure 3.6: Comparison of the original and the smoothed camera rotation using
the proposed two-metric scaled gradient projection method for constrained
smoothing on the manifold of rotation matrices.

stabilization in YouTube video editor is based on the approach proposed in

[29], which estimates the 2D similarity camera motion (with homography re-

finement) from frame to frame and uses L1 regularization to smooth the es-

timated camera path. This method is one of the state-of-the-art video sta-

bilization algorithms and may be the only one that explicitly considers the

constraints for black borders in motion smoothing. I compared the algorithms

on videos with original size 720 × 480. The cropping size used in YouTube

video editor is 540 × 360 so I use the same size in our method. In all of the
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experiments I fix the smoothness parameter in our approach as α = 1000 and

find very little difference in the results with higher value of α.

First, I test the video stabilization algorithms on a video shot by a

walking forward person. I use feature trajectories as shown in Fig. 3.7 as

a visualization of the changing frames. I detect Harris corner points in a

certain frame (no. 270 in Fig. 3.7) and track them for ten frames. The

feature trajectories are plotted as black curves on top of the starting frame

(the frames themselves are plotted using alpha channel 0.5 (more transparent)

to make the curves clearer). For a stabilized video the trajectories should be

very short since the camera is always facing forward in spite of jitter caused by

camera shake. The 2D L1 regularization method [29] can smooth and shorten

the trajectories compared to the original video, but the feature points are still

moving up and down. Our algorithm can keep the feature points very steady

and the trajectories become almost invisible (just black dots) in the results.

Note that I detect and track the feature points independently in the three

videos so the location and number of the feature points can be different.

Next I take a test on a video shot while panning the camera. Video

stabilization should only remove the unwanted jitter while keeping the panning

motion of the camera. In Fig. 3.8 I do the same test as in Fig. 3.7, except

that the feature points are tracked in twenty consecutive frames instead of

ten. Both methods successfully smooth the trajectories of the feature points.

However, the trajectories in the stabilization result of [29] is not as straight

as those in the result of the proposed method. This comparison, together
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(a) Original video (b) YouTube video editor [29] (c) Proposed method

Figure 3.7: Stabilization comparison for a video shot by a walking forward
person. Features are tracked from frame 270 to frame 280. The feature tra-
jectories are plotted as black curves on frame 270.

with the comparison in Fig. 3.7, show that the proposed method can not only

better remove high frequency unwanted jitter but also better smooth the long

term motion of the camera.

The stabilization results are best viewed in video form. Please see

the online video examples at [37]. The results of YouTube video editor have

been compressed so please ignore these compression artifacts in comparison.

Besides compression, please note that there is some non-rigid wobble in the

results of YouTube video editor. This is not caused by compression but the

inaccuracy of the 2D motion model used in [29]. The 3D rotational model in

my video stabilization accurately reflect the real camera motion so there is no

such non-rigid distortion. In the two video examples features are easy to track

since there is very little motion blur in the frames. However, when the videos

are shot in low light condition the visual-based motion estimation used in [29]

will fail sometimes while 3D rotational video stabilization using gyroscopes is
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(a) Original video (b) YouTube video editor [29] (c) Proposed method

Figure 3.8: Stabilization comparison for a video shot while panning the cam-
era. Features are tracked from frame 650 to frame 670. The feature tracks are
plotted as black curves on frame 650.

not affected.

As I mentioned in Section 3.2, other 3D rotational video stabilization

algorithms [31, 46] are based on local low-pass filtering of the rotation sequence

and thus are not able to guarantee that there will be no black borders. Many

frames in the stabilized video still have black borders even though adaptive

filtering with different window size could be applied to decrease their area.

In [31], the authors proposed to use extrapolation to fill the black borders.

Extrapolation can be implemented very fast but the image quality is severely

sacrificed, as shown in Fig. 3.9.

3.7 Conclusions

In this chapter I propose a novel video stabilization method using a 3D

rotational camera motion model. I exploit the manifold structure of not only

the 3D rotation matrices, but also the sequences of 3D rotation matrices. This
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Figure 3.9: Extrapolation is used to fill the undefined areas (black borders)
on the left and top of the frame [31].

allows us to globally formulate motion smoothing as a regression problem based

on geodesic distance. Furthermore, I force the solution to lie on a Cartesian

product of geodesic balls so that every pixel in the stabilized frame is visible

in the original frame. I directly solve the formulated problem on manifold by

generalizing the existing two-metric projection algorithm in Euclidean space.

The 3D camera rotation for each frame is obtained reliably using gyroscopes

that are equipped in most smart phones and tablets, no matter whether there is

motion blur or abrupt illumination change in the videos. I have demonstrated

in experiments that our algorithm is very fast and can generate better video

stabilization results than state-of-the-art methods.
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Chapter 4

Real-time 3D Rotation Smoothing

4.1 Introduction

This chapter focuses on real-time (online) motion smoothing.

Given the estimated camera motion for each frame, motion smoothing

aims at designing a new smooth camera motion path. Most existing works ad-

dress motion smoothing as an offline processing after the entire video sequence

has been recorded. However, real-time video stabilization is necessary for ap-

plications such as video conferencing and broadcasting. Besides, for consumers

who want to record videos, real-time stabilization can greatly improve the user

experience with the stabilized videos displayed in real-time on the viewfinders.

Real-time video stabilization is also able to reduce the memory requirements

with frames stabilized before compression. In real-time video stabilization,

camera motion is required to be smoothed in a causal way. This is more diffi-

cult than offline motion smoothing because we are missing information of how

camera motion changes afterward.

In this chapter, I focus on real-time motion smoothing based on a 3D

rotational camera motion model for a calibrated camera with a known intrinsic

matrix. Compared to 2D (translational, Euclidean, or affine) motion models,
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3D motion models can reflect the real camera projection more accurately,

and thus give more realistic motion smoothing and avoid image distortion

in frame synthesis. I ignore 3D translation of the camera because (1) the

unwanted jitter in videos are primarily caused by camera rotation, and (2)

frame synthesis with 3D camera translation would need the depth value at

every pixel, which is very difficult to obtain accurately. To estimate the 3D

camera rotation we use a gyroscope that is available in many smart phones and

tablets. Current gyroscopes in smart phones have very high precision and can

return more reliable 3D camera rotation estimates compared to the estimates

obtained from visual features in the video sequence, especially when there are

many moving objects in the scene or it is difficult to track feature points due

to motion blur or illumination changes.

Under a 3D rotational model, camera motion for a video can be con-

sidered as a sequence of 3D rotation matrices. I propose two algorithms for

real-time 3D rotation smoothing, generalized from two classical 2D motion

smoothing algorithms. The first algorithm smooths the 3D rotation sequence

similar to 1st-order IIR filtering. The second algorithm works as sequential

estimation with a constant angular velocity model. I exploit the manifold

structure of the rotation matrices so that the proposed algorithms directly

smooth the 3D rotation sequences on the manifold.

Due to the camera motion change from motion smoothing, some areas

in the synthesized frame will be undefined. This is known as black border

problem. In practice we have to crop the resulting video frames and enlarge
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them if necessary. Still, in motion smoothing, we have to constrain the change

of camera motion in order to guarantee that no black borders intrude into the

stabilized video frames. This is achieved by adding a projection step at each

frame.

This chapter is organized as follows: Section 4.2 reviews previous mo-

tion smoothing algorithms. Section 4.3 briefly introduces the manifold of 3D

rotation matrices. Section 4.4 shows how black-border constraint can be mod-

eled on the manifold and how the projection step works. The two proposed

real-time rotation smoothing algorithms are presented in Section 4.5 and Sec-

tion 4.6, respectively. Section 4.7 shows how the proposed rotation smoothing

algorithms can effectively stabilize the video sequences. Section 4.8 concludes

the chapter.

4.2 Related Work

Many (if not most) existing motion smoothing algorithms are offline

smoothing. Gaussian window filtering was used to smooth the entire camera

motion path in [19, 62] under 2D translational and affine model respectively.

Another kind of algorithms smooth the camera motion via minimizing a cer-

tain objective function that represents the smoothness of the camera motion

trajectory. An advantage of such objective-minimizing methods is that the

black-border constraints can be naturally added to the problem and solved by

constrained optimization. In [82], the authors defined the objective function

as the L2 norm of the second order difference of camera motion under 2D
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Euclidean model. The black border constraint was approximately modeled

by an interval constraint on the motion parameters. Similar modeling was

also used in [73], but the variables were assumed to be integer-valued and the

problem was solved via dynamic programming. In [29] the objective function

was a mixture of the first, second and third order difference of camera mo-

tion measured by L1 norm. The motion model was 2D similarity motion and

the black-border constraint was modeled precisely as linear inequalities. As a

result, the constrained motion smoothing could be solved efficiently by linear

programming. Black-border constrained was also taken into consideration for

window-filtering-based methods. In [72] the authors proposed a dual pass mo-

tion smoothing method which could find an optimal cropping size as large as

possible.

In [17] IIR filtering was proposed for online motion smoothing based

on 2D translational motion model. Kalman filtering was first used for online

smoothing in [18]. The intentional motion parameters (under 2D translational

motion model) were modeled by a constant velocity linear system so Kalman

filtering could be used to optimally estimate them. The same Kalman-filtering

motion smoothing framework was extended to 2D affine motion model in [55],

leading a better performance. The same algorithm was widely used in the

later video stabilization works, such as [92].

The black-border constraints were rarely considered in online motion

smoothing. In [86] the authors proposed to use constrained Kalman filtering

for 2D translational motion model. Because of the simplicity of the motion
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model, interval constraints could be used and the constrained estimate could

be obtained in one step. The constrained Kalman filtering is solved by estimate

projection as proposed in [79]. For a more comprehensive survey of constrained

Kalman filtering algorithms please see [78].

All of the above methods use 2D camera motion models. Using full

3D models including both rotation and translation for calibrated cameras was

first proposed in [8] and further discussed in [56]. In both papers complicated

approximations are used in frame synthesis to handle the problem of missing

depth values. In [46, 65] pure 3D rotational models with known intrinsic

camera parameters were shown to generate high-quality results while only

needing homography-based warping in frame synthesis.

So far to my knowledge, all of the existing 3D rotation smoothing al-

gorithms are offline processing. Local low-pass filtering based on geodesic

distance on manifold was used in [31, 56]. In [39], offline rotation smoothing

was formulated globally as a regression problem on the manifold.

4.3 3D Rotation and Geodesic Distance

All of the 3 × 3 rotation matrices constitute the Special Orthogonal

Group SO(3), in which any element R satisfies the constraint RRT = I.

SO(3) can be also considered as an embedded Riemannian submanifold of

Euclidean space R
9 (represented as 3 × 3 real matrices). A natural extension

of Euclidean distance in Euclidean space to the Riemannian manifold SO(3)
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is the geodesic distance

dg(Ri,Rj) = ||logm(RT
i Rj)||F , (4.1)

where logm(·) is the matrix logarithm operator and || · ||F is the Frobenius

norm of a matrix. In fact, logm(RT
i Rj) is a skew-symmetric matrix repre-

senting a tangent vector in the tangent space TRi
SO(3) that indicates the

non-normalized direction from Ri to Rj on SO(3). Usually we also write

logm(R′
iRj) as logRi

Rj and call it the logarithmic mapping. Inversely, given

any tangent vector ξ ∈ TRi
SO(3), we can define expRi

ξ = Riexpm(ξ), where

expm(·) is the matrix exponential operator. Here, expRi
ξ is called the expo-

nential mapping and is used to move Ri along the direction defined by ξ on

SO(3). The logarithmic mapping and exponential mapping together define a

curve

t ∈ [0, 1] 7→ γ(t) = expRi

(

t · logRi
Rj

)

, (4.2)

which is known as the minimizing geodesic from Ri to Rj on SO(3). The min-

imizing geodesic is a generalization of the notion of “straight line” in Euclidean

space to Riemannian manifolds, representing the shortest path between two

points in the manifolds given a Riemannian metric. The length of the mini-

mizing geodesic is defined in (4.1).

4.4 Black-Border Constraint and Estimate Projection

In the last step of video stabilization, the synthesized frames may con-

tain black borders since not every pixel in the synthesized frame is visible in
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the original frame due to the change of camera orientation. Therefore, we have

to crop the synthesized frames into a smaller size so that there are no black

borders in the stabilized video. In other words, given a preferred stabilized

size of the video, the video stabilization system must guarantee that every

pixel in the cropped stabilized frames is visible in the original frames. This is

a hard constraint that has to be considered in the camera motion smoothing

algorithm.

Assume the intrinsic projection matrix of the camera is given as K.

Under pure 3D camera rotation, for any pixel [ukj, vkj]
T in the stabilized frame

k, its corresponding 2D pixel location in the original frame [ũkj, ṽkj]
T can be

computed as
[

ũkj

ṽkj

]

= g



KRkR̂
−1
k K−1





ukj

vkj
1







 , (4.3)

where the function

g([x, y, z]T) = [x/z, y/z]T (4.4)

is used to convert the homogeneous coordinates into inhomogeneous coordi-

nates. Assume that the frame size in the original video is w × h, and the

coordinates of the top left corner and bottom right corner of the cropped rect-

angle in the stabilized video are [c1, d1], [c2, d2], the hard constraint for video

stabilization can be represented as
{

0 ≤ ũkj ≤ w

0 ≤ ṽkj ≤ h
, ∀

[

ukj

vkj

]

s.t.

{

c1 ≤ ukj ≤ c2

d1 ≤ vkj ≤ d2
(4.5)

No matter what real-time rotation smoothing method is used, the estimated

smoothed rotation for each frame may violate the constraint (4.5). Therefore,
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the original rotation estimate has to be projected onto the constraint set. The

constraint (4.5) is very complex with respect to the rotation matrices that we

want to compute and no algorithms as far as I know are guaranteed to handle

it efficiently. I propose an simple approximate projection method:

R̂ = P(R̂∗) = Rexpm(β∗logm(R−1R̂∗)), (4.6)

where β∗ ∈ [0, 1] is the maximum possible value so that the projection result

satisfies constraint (4.5). R is the original rotation matrix and R̂∗ is the

initial estimate of the smoothed rotation matrix. In other words, we only

search along the direction defined by the tangent vector logm(R−1R̂∗). The

proposed projection returns the exact solution if the constraint set is a geodesic

ball around R, which is a good approximation of the constraint set (4.5). In

practice, β∗ can be efficiently found by bisection search. During the search,

whether the constraint is satisfied can be evaluated only using the four corner

points of the cropped rectangle, because (4.3) is a homography transformation.

The projected projection (4.6) can thus be implemented very fast. In the

following sections I will use it to keep the online smoothing results satisfying

the black-border constraint.

4.5 Rotation Smoothing via IIR Filtering

Assuming the 2D motion parameter for each frame k in the original

video is θk, 1st-order IIR smoothing calculates the smoothed motion parameter

θ̂k by

θ̂k = αθ̂k−1 + (1− α)θk, (4.7)
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where α ∈ [0, 1] is the smoothing coefficient. θk is a vector in multi-dimensional

Euclidean space. For instance, if 2D affine motion model is used, the dimension

of θk is six. If we use 3D rotational camera motion model, however, (4.7) is

not appropriate because it is defined based on distance measure in Euclidean

space instead of SO(3) manifold. In fact, the weighted sum on the right hand

side of (4.7) does not necessarily return a valid 3D rotation matrix.

The 1st-order IIR filtering in (4.7), however, can be interpreted in an-

other way

θ̂k = argmin
θ

α||θ − θ̂k−1||2 + (1− α)||θ − θk||2. (4.8)

In other words, θ̂k is a linear interpolation between θ̂k−1 and θk based on

Euclidean distance. Given the geodesic distance defined on SO(3), we can

naturally extend (4.8) as

R̂k = argmin
R

αdg(R, R̂k−1)
2 + (1− α)dg(R,Rk)

2. (4.9)

This just means a linear interpolation between R̂k−1 and Rk on SO(3) based

on the geodesic distance. It has been show that such interpolation is equivalent

to spherical linear interpolation (slerp) on unit quaternion representation of 3D

rotation matrices [77], which can be computed very fast. The interpolation

result for every frame is projected by (4.6) before being used for the next

frame. Algorithm 3 shows the proposed IIR-like 3D rotation smoothing. I use

unit quaternions to represent the 3D rotations instead of matrices, but the

representations can be easily converted from one to the other.
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Algorithm 3 IIR-like 3D Rotation Smoothing

1: Input: q1, · · · ,qK (original rotations)
2: Output: q̂1, · · · , q̂K (smoothed rotations)
3: q̂1 = q1

4: for k = 2 to K do
5: q̂k = slerp(qk, q̂k−1, α)
6: q̂k ← P(q̂k)
7: end for

4.6 Rotation Smoothing via Unscented Kalman Filter-

ing

A constant-velocity model defines the motion parameters and their ve-

locities as state variables. The velocities are assumed to be constant in prop-

agation except for a small random acceleration (usually modeled as Gaus-

sian noise). The measurements are the original motion parameters and the

smoothed parameters are just the estimated states. For 2D motions, a linear

system is sufficient to model the dynamics and measurements so state esti-

mate can be obtained precisely using Kalman filtering (assuming independent

Gaussian process and measurement noise). Here I use the same idea to design

a constant-velocity model for 3D rotation. Similarly, the state variable for

each stage (frame) consists of the 3D rotation and the angular velocity. I still

use unit quaternion representation of 3D rotations. The dynamic model is
[

qk

ωk

]

=

[

qk−1 ⊗ q(ωk−1)
ωk−1 +wk

]

, (4.10)

where wk ∼ N(0,Q) is the process noise corresponding to angular accelera-

tion. ⊗ is the quaternion multiplication and the function q(ωk−1) is used to

convert ωk−1 to a unit-quaternion-represented rotation. If the 3D rotation is
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represented by matrices then qk−1⊗q(ωk−1) is equivalent to Rk−1expm(ωk−1).

The measurement model is then

q̃k = qk ⊗ q(vk), (4.11)

where vk ∼ N(0,R) is the measurement noise and q̃k is the original camera

rotation for frame k. The system defined by (4.10) and (4.11) is actually de-

fined based on geodesic distance on SO(3) and can be considered as a ”linear”

system on the manifold though linearity is not defined on manifolds. However,

so far there is no efficient iterative algorithm to solve the estimation problem

for such system exactly. In practice, we can solve the estimation problem on

its embedded Euclidean space. In Euclidean space the system is clearly non-

linear. In this chapter I use unscented Kalman filtering (UKF) to solve the

problem.

UKF uses a deterministic sampling technique known as the unscented

transform [42]. It picks a minimal set of sample points (sigma points) to repre-

sent the posterior probability of the state vector and propagates them through

the non-linear dynamic and measurement functions, from which the mean and

covariance of the estimate are then recovered. The unscented transform (UT)

usually produces more accurate estimates than the analytic local linearization

employed by the extended Kalman filter (EKF) for sequential nonlinear esti-

mation with a small increase in computational complexity. Another choice is

to use a particle filter [2]. A Particle filter is a general Monte Carlo (sampling)

method for sequential estimation problem. It uses a large set of random sample
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points to represent the posterior probability of the state vector. Compared to

EKF and UKF, a particle filter can generate the most accurate estimates for

nonlinear systems. However, the computational complexity of particle filter

is much higher than EKF and UKF. Therefore, I use UKF to strike a good

balance between estimation accuracy and computational complexity.

Algorithm 4 shows the general UKF steps for estimation of the nonlin-

ear system

{

xk = f(xk−1,vk)

yk = h(xk,nk)
, (4.12)

where vk and nk are zero-mean Gaussian noise with covariance Pv and Pn.

In Algorithm 4, the original state vector is augmented with the process

and measurement noise before sigma point generation. L is the dimension

of the augmented state. λ is the composite scaling parameter and γi are

unscented transform (UT) weights. These parameters are determined as



















λ = α2(L+ κ)− L

γ
(m)
0 = λ/(L+ λ)

γ
(c)
0 = λ/(L+ λ) + (1− α2 + β)

γ
(m)
i = γ

(c)
i = 1/[2(L+ λ)], i = 1, . . . , 2L

(4.13)

In (4.13) α determines the spread of the sigma points around the mean and is

usually set to a small positive value (e.g., 1e-3). κ is secondary scaling param-

eter which is usually set to 0, and β is used to incorporate prior knowledge

of the distribution of the state vector (for Gaussian distributions, β = 2 is

optimal). Details of UKF can be found in [42, 89].
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Algorithm 4 Unscented Kalman Filter

1: Initialize with:
2: x̂0 = E[x0]
3: P0 = E[(x0 − x̂0)(x0 − x̂0)

T]
4: x̂a

0 = [x̂T
0 0 0]T

5: Pa
0 =





P0 0 0
0 Pv 0
0 0 Pn





6: for k = 1 to K do
7: Calculate sigma points:
8: Xa

k−1 = [x̂a
0 x̂a

0 ±
√

(L+ λ)Pa
k−1]

9: Time update:
10: Xx

k|k−1 = f(χx
k−1,X

v
k−1)

11: x̂−
k =

∑2L
i=0 γ

(m)
i Xx

i,k|k−1

12: P−
k =

∑2L
i=0 γ

(c)
i (Xx

i,k|k−1 − x̂−
k )(X

x
i,k|k−1 − x̂−

k )
T

13: Yk|k−1 = h(Xx
k|k−1,X

n
k−1)

14: ŷ−
k =

∑2L
i=0 γ

(m)
i Yi,k|k−1

15: Measurement update equations:
16: Pyk,yk

=
∑2L

i=0 γ
(c)
i (Yi,k|k−1 − ŷ−

k )(Yi,k|k−1 − ŷ−
k )

T

17: Pxk,yk
=

∑2L
i=0 γ

(c)
i (Xx

i,k|k−1 − x̂−
k )(Yi,k|k−1 − ŷ−

k )
T

18: K = Pxk,yk
P−1

yk,yk

19: x̂k = x̂−
k +K(ŷk − ŷ−

k )
20: Pk = P−

k −KPyk,yk
KT

21: end for
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4.6.1 Estimate Projection

The quaternion estimate from UKF, however, does not necessarily have

unit norm because the problem is solved in Euclidean space. Therefore, a

normalization step is needed to make sure the mean estimate of 3D rotation

has unit norm. In addition, the projection step 4.6 is still needed to guarantee

that there is no black borders.

The 3D rotation qk is not the only variable in the state vector. The

angular velocity ωk is correlated with qk. For general constrained estimation

problem, the state estimate is usually projected as

xk = argmin
x

(x− x∗
k)

TW(x− x∗
k), s.t. x ∈ Φ, (4.14)

where x∗
k is the unconstrained estimated mean, Φ is the constraint set. Matrix

W is a positive-definite weighting matrix, which is usually chosen as P−1
k , the

inverse of unconstrained covariance estimate. Such projection is able to obtain

the maximum probability estimate of the state subject to the state constraints.

In my case, only projecting the 3D rotation qk using (4.6) and leaving ωk

unchanged is equivalent to perform estimate projection with W = I (identity

matrix). It has been shown that projection with W = P−1
k can generate

more accurate constrained state estimate. However, estimate projection with

W = P−1
k is very difficult for our problem because of the complexity of the

constraint set.

As a result, I propose an approximate estimate projection method. In

the first step I still project the 3D rotation qk using (4.6). Assume 3D rotation

104



before and after projection are q̂∗
k and q̂k, respectively. I then find the angular

velocity estimate by

ω̂k = argmin
ω

[(q̂k − q̂∗
k)

T, (ω − ω̂k)
T]P−1

k

[

q̂k − q̂∗
k

ω − ω̂k

]

, (4.15)

where ω̂
∗
k is the unconstrained angular velocity mean estimation and Pk is

the unconstrained covariance estimate for the entire state vector. The result,

although not optimal, has a much higher probability (measured by the objec-

tive function in (4.14)) compared to leaving angular velocity mean estimation

unchanged. (4.15) is just a unconstrained quadratic programming problem

and can be easily solved in closed form.

I summarize the proposed UKF-based rotation smoothing algorithm in

Algorithm 5.

Algorithm 5 UKF-based 3D Rotation Smoothing

1: Input: q1, · · · ,qK (original rotations)
2: Output: q̂1, · · · , q̂K (smoothed rotations)
3: Parameters: Q, R (process and measurement noise variance)
4: for k = 1 to K do
5: Obtain unconstrained UKF estimate q̂∗

k, ω̂
∗
k, Pk

6: q̂∗
k = q̂∗

k/||q̂∗
k||2 (normalization)

7: q̂k ← P(q̂∗
k)

8: Obtain ω̂k by (4.15)
9: (Mean and covariance estimate to pass to the next stage are q̂k, ω̂k, Pk)
10: end for
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4.7 Experimental Results

Before showing the experimental results, I first discuss on how to choose

the parameters for online motion smoothing. For IIR-like rotation smoothing,

the only parameter to tune is the smoothing weight α in Algorithm 3. Clearly

larger α tends to generate smoother rotation sequences without the black-

border constraint. However, rotation smoothing with larger α tends to deviate

farther from the original camera motion, and thus triggers estimate projection

in Section 4.4 more frequently. The constraints are actually determined by

the original (unsmooth) rotation and therefore differ across different frames.

Frequent estimate projection may add the unwanted camera shake back and

reduce the smoothness of the rotation smoothing output. In the following

experiments, I fix the α = 0.95 if not mentioned, which does not triggers

estimate projection very often.

For the UKF-based rotation smoothing we need to choose the process

and measurement noise covariance Q and R. I smooth the test videos with

the proposed offline smoothing method in Chapter 3 and use the results as

the ground truth of the intentional (smooth) camera motion. The measure-

ment noise covariance R can then be learned from the differences between the

original and the smoothed rotation sequences. In all of our experiments I fix

R as diag(0.002, 0.002, 0.002). The process noise covariance Q reflects the

expected angular acceleration range and works similarly as α in the IIR-like

rotation smoothing. I fix Q as diag(3e-10, 3e-10, 3e-10) to reach a balance

between smoothness and less frequent estimate projection.
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I show the video stabilization results with the proposed algorithms

on two real videos. I refer the readers to the webpage of my related paper

(http://users.ece.utexas.edu/~bevans/papers/2014/stabilization/) to

view the original videos and all our results. Both videos are captured by a

walking person using Google Nexus S smartphone on urban streets. The origi-

nal frame size is 720×480. In our experiments, I use a 540×360 cropping size

for the stabilized video. The camera rotation is obtained by integrating the

gyroscope readings after sensor calibration and synchronization. Fig. 4.1 and

4.2 show a comparison between the original videos and the smoothed videos

using the proposed algorithms. I use feature trajectories as a visualization

of the changing frames. I detect Harris corner points in a certain frame and

track them for 20 frames. The feature trajectories are plotted as black curves

on top of the starting frame (the frames themselves are plotted using alpha

channel 0.5 (more transparent) to make the curves clearer). Both proposed

algorithms are able to effectively smooth the feature trajectories. Note that I

detect and track the feature points independently in the videos so the location

and number of the feature points can be different.

We compare original and smoothed camera rotation using the proposed

IIR-like smoothing algorithm for video no. 2 in Fig. 4.3. In this figure, the

camera rotation corresponding to each frame in the video sequence is shown

in form of Tait-Bryan angles (a similar representation as Euler angles). Note

that, however, the proposed motion smoothing is performed naturally on the

manifold SO(3) instead of the Euclidean space of rotation angle representa-
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(a) Original video (b) IIR-like smoothing (c) UKF-based smoothing

Figure 4.1: Stabilization comparison for video no. 1. Features are tracked from
frame 31 to frame 50. The feature trajectories are plotted as black curves on
frame 31.

tions.

To evaluate the the video stabilization algorithms numerically I com-

pare the mean of L1 norm of the angular velocity and acceleration of the 3D

rotation sequences. L1 norm is chosen because it is more robust to outliers

compared to L2 norm [29]. The numerical comparison is shown in Table. 4.1.

4.7.1 Comparison Against 2D motion Smoothing

I compare the proposed 3D rotational real-time motion smoothing al-

gorithms with existing 2D motion smoothing algorithms. Compared to 2D

models, the 3D rotational model can reflect the real camera motion more ac-

curately and results in smoother results. Fig. 4.4 shows a comparison of

feature trajectories between the proposed IIR-like rotation smoothing and IIR

motion smoothing with 2D affine model (both using α = 0.95). In the stabi-
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(a) Original video (b) IIR-like smoothing (c) UKF-based smoothing

Figure 4.2: Stabilization comparison for video no. 2. Features are tracked from
frame 46 to frame 65. The feature trajectories are plotted as black curves on
frame 46.

lized videos using 2D affine model there are always wavy distortion because of

the inaccuracy of the motion model. This distortion cannot be found in the

stabilized videos using 3D rotation model.

4.7.2 Estimate Projection for UKF

In Section 4.6.1 I propose an approximate estimate projection method

that also changes the estimate of the angular velocity ω̂k. In Table 4.2 I

evaluate compare the proposed estimate projection in UKF-based rotation

smoothing against the simple projection that does not change the estimate

of the angular velocity. We can find that for both test videos the proposed

estimate projection results in smoother rotation sequences.
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Figure 4.3: Comparison of the original and the smoothed camera rotation
using the proposed IIR-like rotation smoothing algorithm for video no. 2.

4.7.3 IIR vs. UKF

The IIR-based and UKF-based methods have long been used to smooth

2D camera motion sequences (for 2D models the constant-velocity-based smooth-

ing is solved via Kalman filtering instead of UKF because the system is linear).

Both algorithms have been shown to effectively smooth camera motion in real

time, whether for 2D motion models or 3D rotation model in this chapter. In

terms of computational speed, the IIR-like smoothing algorithm is much faster.

With MATLAB implementation on a 2.3GHz Intel i5 processor machine, the

IIR-like smoothing algorithm takes only 1.54ms/frame while the UKF-based

smoothing algorithm takes 6.97ms/frame.
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Table 4.1: Numerical comparison between orignal videos and smoothed videos

Video no. 1

mean angular velocity mean angular acceleration
Unsmoothed 0.0328 0.0270
IIR smoothing 0.00730 0.00408
UKF smoothing 0.00957 0.00413

Video no. 2

mean angular velocity mean angular acceleration
Unsmoothed 0.0293 0.0256
IIR smoothing 0.00805 0.00331
UKF smoothing 0.00884 0.00303

If there are abrupt changes in the intentional camera motion, the UKF-

based method tends to perform better with less frequent triggering of estimate

projection. The reason is that in UKF-based smoothing algorithm we only as-

sume that the angular velocity is almost constant, not that the angular velocity

is almost zero. By estimating the angular velocity together with the smoothed

rotation, we can better keep track of the change in intentional camera motion.

This is shown in Table 4.3. In this table I compare the two algorithms for

video no. 2, in which there is a sudden change (panning) of the intentional

camera rotation. To make a fair comparison I tune the parameter α in the

IIR-like smoothing algorithm from 0.95 to 0.9 so that it triggers the same

times of estimate projection as the default UKF-based smoothing algorithm.

From Table 4.3 we can find that under the same times of estimate projection

the UKF-based smoothing algorithm generate smoother rotation sequence.
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(a) 2D affine smoothing (b) 3D rotational smoothing

Figure 4.4: Stabilization comparison for video no. 2 between 2D affine smooth-
ing and 3D rotational smoothing. Features are tracked from frame 246 to frame
265. The feature trajectories are plotted as black curves on frame 246.

4.8 Conclusions

In this chapter I propose two real-time motion smoothing algorithms for

video stabilization using a pure 3D rotation motion model. Both algorithms

directly smooth the 3D rotation sequences on the SO(3) manifold. The first

algorithm is similar to 1st-order IIR filtering and requires only one slerp step for

each frame. The second algorithm assumes a constant angular velocity model

of the smooth rotation sequences and obtain the smooth rotation matrix for

each frame via sequential probabilistic estimation. The estimation problem is

solved efficiently using unscented Kalman filter. I also add a simple projection

step to guarantee that no black borders intrude into the stabilized video frames.

I have demonstrated in experiments that our algorithms are very fast and can

generate better video stabilization results than their 2D counterparts.
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Table 4.2: Numerical comparison between two estimate projection methods

Video no. 1

mean angular velocity mean angular acceleration
simple projec-
tion

0.00102 0.00480

proposed projec-
tion

0.00957 0.00413

Video no. 2

mean angular velocity mean angular acceleration
simple projec-
tion

0.00940 0.00431

proposed projec-
tion

0.00884 0.00303

Table 4.3: Numerical comparison between IIR-like and UKF-based rotation
smoothing algorithms for video no. 2

mean angular velocity mean angular acceleration
IIR smoothing 0.00102 0.00367
UKF smoothing 0.00884 0.00303
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Chapter 5

Conclusion

While more and more videos are shot by handheld cameras, the quality

of these videos are severely affected by unwanted jitter and rolling shutter

effect. In my dissertation I seek to rectify the rolling shutter effect and stabilize

the videos and generate visually pleasant videos. I propose the following thesis

statement:

For handheld cameras with CMOS sensors, videos can be satisfactorily

rectified and then stabilized either online or offline, with the camera motion

estimated directly from gyroscopes after effective sensor calibration.

In the following section, I discuss how my contributions in each chapter

contribute toward defending this thesis statement.

5.1 Summary

Generally video stabilization and rolling shutter rectification require

to (1) estimate the camera motion accurately, (2) compute new camera mo-

tion, and (3) synthesize new video frames. This dissertation focuses on the

first two steps. An efficient online camera-gyroscope calibration algorithm is

proposed to help obtain camera motion estimation directly from gyroscope.
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Compared to vision-based motion estimation methods, gyroscope-aided meth-

ods can provide for more accurate camera motion estimation at higher time-

resolution. For motion smoothing, I propose contributions to both offline and

online motion smoothing methods. Offline motion smoothing is formulated as

a regression problem on the manifold of 3D rotation matrices. Online motion

smoothing is achieved via IIR-like filtering and also sequential probabilistic

estimation with a constant-velocity model. For both offline and online motion

estimation, I incorporate constraints to limit the appearance of black borders

so that all of the pixels in the stabilized video frames are defined. These

three contributions provide a complete solution of robust video stabilization

and rolling shutter rectification for handheld cameras, which outperforms the

state-of-the-art algorithms.

The specific contributions of this dissertation are concluded as below:

In Chapter 2 I propose an online calibration and synchronization algo-

rithm for cellphones that is able to estimate not only the camera projection

parameters, but also the gyroscope bias, the relative orientation between the

camera and gyroscope, and the delay between the timestamps of the two sen-

sors. The proposed algorithm is based on the generalization of the coplanarity

constraint of the cross products of matched features in a rolling shutter cam-

era model. The proposed algorithm can also be naturally extended to a global

shutter camera model by forcing the readout time for each frame tr to be

zero. Monte Carlo simulation and experiments run on real data collected from

cellphones show that the proposed algorithm can successfully estimate all of
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the needed parameters with different kinds of motion of the cellphones. This

online calibration and synchronization of rolling shutter camera and gyroscope

make it more convenient for not only video stabilization, but also gyro-aided

feature tracking, and visual-inertial navigation.

In Chapter 3 I propose a novel offline camera motion algorithm using

a 3D rotational camera motion model. I exploit the manifold structure of not

only the 3D rotation matrices, but also the sequences of 3D rotation matri-

ces. This allows us to globally formulate motion smoothing as a regression

problem based on geodesic distance. Furthermore, I force the solution to lie

on a Cartesian product of geodesic balls so that every pixel in the stabilized

frame is visible in the original frame. I directly solve the formulated problem

on manifold by generalizing the existing two-metric projection algorithm in

Euclidean space. The 3D camera rotation for each frame is obtained reliably

using gyroscopes that are equipped in most smart phones and tablets, no mat-

ter whether there is motion blur or abrupt illumination change in the videos.

I have demonstrated in experiments that our algorithm is very fast and can

generate better video stabilization results than state-of-the-art methods.

In Chapter 4 I propose two real-time motion smoothing algorithms

for video stabilization using a pure 3D rotation motion model with known

camera projection parameters. Both proposed algorithms aim at smoothing

3D rotation matrix sequences in a causal way. The first algorithm smooths the

3D rotation sequences in a way similar to 1st-order IIR filtering. The second

algorithm uses sequential probabilistic estimation under a constant angular
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velocity model. These two algorithms are generalized from classical 2D motion

smoothing algorithms. I exploit the manifold structure of the rotation matrices

so that the proposed algorithms directly smooth the 3D rotation sequences

on the manifold. In addition, I introduce a simple projection step in order

to guarantee that no black borders intrude into the stabilized video frames.

Experimental results show that the proposed algorithms are able to effectively

stabilize video sequences and outperform their 2D counterparts with less jitter

and distortion.

5.2 Future Work

In this section I outline several interesting research directions in video

stabilization and rolling shutter rectification, potentially for other researchers

interested in this area.

1. Rolling shutter rectification for moving objects:

The rolling shutter rectification proposed in this dissertation can be un-

derstood as intra-frame video stabilization, which only works when the

rolling shutter effect is caused by camera motion. However, object mo-

tion can also create rolling shutter effect even if the camera is still. For

instance, a fast passing train may appear skewed while the background

looks normal.

General rolling shutter rectification was first proposed in [30]. Optical

flows are estimated between adjacent frames and the rectified frame is
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synthesized by linear interpolation of the two neighboring frames, where

the interpolation weights are spatially variant (determined by the ex-

posure time of each pixel). [85] uses a similar approach, but with a

higher-order spline for frame interpolation. Such methods are able to

rectify rolling shutter effects caused by either camera motion or object

motion, but suffers from the extreme high computational complexity of

optical flow.

It is well known that block-based motion estimation can be done in

real time. In fact, block-based motion estimation has been successfully

applied to solve a quite related problem : motion-compensated frame

interpolation [9, 35, 44]. Motion-compensated frame interpolation aims

at double the frame rate of the video for modern televisions. Com-

pared to the optical-flow-based rolling shutter rectification, this frame

interpolation uses a spatially-invariant interpolation weights of the two

adjacent frames. I think there will be a natural extension from motion-

compensated frame interpolation to rolling shutter rectification by vary-

ing the interpolation weights. Block-based motion estimation, although

less accurate than optical flow, can dramatically accelerate rolling shut-

ter rectification.

2. Modeling of higher-order difference for 3D rotation sequences:

In my proposed offline motion smoothing algorithm, the objective func-

tion to minimize is the first-order difference of the 3D rotation sequences.
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[29] has shown the advantage of adding higher-order difference into the

objective function. Unlike first-order difference which can be defined on

Riemannian manifolds by geodesic distance, higher-order difference are

hard to generalize from Euclidean space to manifolds. [7] proposes to

approximate the second-order difference on manifold as the Euclidean

distance of first-order differences. Exact modeling of the higher-order

difference on manifold with corresponding manifold optimization algo-

rithms to minimize the objective is worth attempting.

3. Quality evaluation of video stabilization and rolling shutter rec-

tification:

Quality evaluation is very important for video stabilization and rolling

shutter rectification. For rolling shutter rectification, we can compare

the rectified frames with ground truth frames captured by global shutter

cameras. However, obtaining ground truth is difficult since it requires

accurate spatial calibration and temporal synchronization of different

cameras. Synthetic simulation was applied in [75]. The videos were

generated by synthetic rendering of the 3D scene created by 3D modeling

software.

Non-reference quality assessment for rolling shutter rectification is an-

other way without knowing the ground truth. We can directly evaluate

whether the frames are geometrically correct (whether all of the rows

are captured at the same moment). For instance, we can fit a funda-
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mental matrix using matching features between two different frames and

compute the residual error after fitting.

Quality evaluation of video stabilization is even more difficult since it

is related to human perception. People may have different standards in

evaluating whether a video looks stable. Existing methods of video stabi-

lization quality evaluation such as [68] were designed based on 2D trans-

lational camera motion model and may not be appropriate for recent

video stabilization algorithms with 3D camera motion models. More-

over, to my knowledge, no automatic algorithms have been proposed for

evaluating video stabilization quality with human perception taken into

account. Many researchers compared their algorithms with others by

conducting a user study and used the user preference as the evaluation

metric. Usually the number of participants of the user studies was less

than one hundred. Designing an automatic quality evaluation algorithm

based on the results of user studies with more participants is desirable

for not only convenience but also closer fitting to the opinions of the

majority of viewers for a sufficient sample size.

4. Black border constraint and viewing box:

In chapters 3 and 4, I use a viewing box to avoid black borders in the

stabilized frames. In my dissertation, the size of the viewing box is

fixed for all of the test video sequences. Video sequences differ a lot in

amount of unwanted jitter. We can further change the viewing box size
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for different videos. For example, if the original video sequence is already

close to be stable, we can use a larger viewing box. This allows more

content of the video to be kept. The size selection can be done either

with human intervention, or automatically.

Very few studies have been published on automatic viewing box size

selection. In [72] the authors proposed a dual pass motion smoothing

method to try to find a cropping size as large as possible. An optimal

size of the viewing box should consider both stability and the amount

of content being kept. We may still need comprehensive user study

and human visual perception knowledge to determine how to choose the

optimal size. The aforementioned size selection is only possible for offline

motion smoothing. For online motion smoothing, we still have to use a

fixed size due to missing information of how camera motion changes

afterward.

Once the viewing box size is selected, the proposed algorithms in Chap-

ter 3 use it as a hard constraint on motion smoothing. If we can tolerate

a few black borders showing in the viewing box, we may soften the con-

straints. The problem then becomes an unconstrained regression prob-

lem. The computational complexity of solving the problem is greatly

reduced. For unconstrained regression, we have to choose the parameter

α in (3.5) wisely instead of setting it to a very large number. Optimal

selection of α, again, may rely on a comprehensive user study.
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Appendix 1

Derivation of Jacobian Matrices

In this appendix I derive how Jacobian matrices of the measurement

equation can be computed analytically for Chapter 2. As shown in (2.19),

the measurement equation h() can be decomposed into several independent

components {hj()} for each single coplanarity constraint. Therefore, we only

need to show
∂hj

∂x
and

∂hj

∂v
, where v contains both gyroscope measurement noise

and feature detection noise.

Each single measurement equation hj() can be represented in form of

(2.17). Let ai denote Rifi and let bi denote R′
if

′
i . Then we have

hj(x,v) = det[(a1 × b1)|(a2 × b2)|(a3 × b3)]. (1.1)

∂hj

∂x
can be computed as

∑3
i=1

∂hj

∂ai

∂ai

∂x
+

∂hj

∂bi

∂bi

∂x
.

∂hj

∂v
can be computed in the

same way. Without loss of generality, we only show how to compute
∂hj

∂b1
, ∂b1

∂x

and ∂b1

∂v
.

Based on the definition of matrix determinant we have

∂hj

∂b1
= [(a2 × b2)× (a3 × b3)]

Tskew(a1), (1.2)

where skew() is defined as in (2.13).
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To simplify the representation, we define

d1 =





(1 + κ1r
2 + κ2r

4)(u′
x1

+ v′x1
− cx)

(1 + κ1r
2 + κ2r

4)(u′
y1
+ v′y1 − cy)

f



 (1.3)

and e1 =
1

||d1||2d1. Note that here

r =

√

(

u′
x1

+ v′x1
− cx

f

)2

+

(

u′
y1
+ v′y1 − cy

f

)2

. (1.4)

In this way, we have

b1 = R′
1(qc ⊗ e1) (1.5)

according to (2.17) and (2.18). The rotation matrix R′
1 is not affected by the

camera intrinsic parameters. So we have

∂b1

∂cx
= R′

1[qc ⊗ (
∂e1
∂d1

∂b1

∂cx
)], (1.6)

where

∂b1

∂cx
=







−(2κ1 + 4κ2r
2)

(cx−u′

x1
−v′x1

)2

f2 − (1 + κ1r
2 + κ2r

4)

(2κ1 + 4κ2r
2)

(cx−u′

x1
−v′x1

)(u′

y1
−v′y1

−cy)

f2

0






. (1.7)

Similarly we can obtain ∂b1

∂cy
, ∂b1

∂f
, ∂b1

∂κ1
and ∂b1

∂κ2
.

As mentioned in Section 2.5.4, we use a minimal 3-element error rep-

resentation δθ for qc and have

∂b1

∂δθ
= −R′

1skew(qc ⊗ e1). (1.8)

For more details about the minimal 3-element error representation please see

[87].
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Recall that the rotation matrix R′
1 can be computed as in (2.10)

R′
1 =

M
∏

n=1

Θ(ωn∆tn). (1.9)

Different from (2.10), (1.9) only contains angular velocities with non-zero ∆tn.

Similar to (2.11) which shows how to compute ∆tn for the example shown in

Fig. 2.4, we have











∆t1 = τ2 − (T + td)

∆tn = τn+1 − τn, n = 2, · · · ,M − 1

∆tM = (T + td + tr
u′

y1

h
)− τM

(1.10)

where T is the framestamp for the frame in which the feature [u′
x1
, u′

y1
]T ap-

pears. Please note that td and tr only affect the value of ∆t1 and ∆tM .

By defining Γn =
∏n−1

m=1 Θ(ωm∆tm) and γn = [
∏M

m=n+1Θ(ωm∆tm)](qc⊗

e1), we have

b1 = ΓnΘ(ωn∆tn)γn, ∀n = 1, · · · ,M. (1.11)

It is not difficult to show that

∂b1

∂∆tn
= −Γnskew(γn)ωn. (1.12)

Therefore, we can compute ∂b1

∂td
and ∂b1

∂tr
as

{

∂b1

∂td
= −ΓMskew(γM)ωM + Γ1skew(γ1)ω1

∂b1

∂tr
= −u′

y1

h
ΓMskew(γM)ωM .

(1.13)

Given (2.14) we can compute ∂b1

∂bg
as

∂b1

∂bg

=
M
∑

n=1

∂b1

∂ωn

, (1.14)
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where

∂b1

∂ωn

= −∆tnΓnskew(γn). (1.15)

So far we have derived the derivative ∂b1

∂x
analytically as in (1.6), (1.7),

(1.8), (1.13) and (1.14). Next we compute the derivative of b1 with respect to

the measurement noise.

The gyroscope measurement noise {ngn} appears in (1.9) through (2.14).

As a result we have

∂b1

∂ngn

=
∂b1

∂ωn

= −∆tnΓnskew(γn). (1.16)

The feature detection noise {vi} appears in (1.3). Also note that b1 is

only affected by v′x1
and v′y1 . As a result we have







































∂b1

∂v′x1
= R′

1[qc ⊗ ( ∂e1
∂d1







1

0

0






)]

∂b1

∂v′y1
= R′

1[qc ⊗ ( ∂e1
∂d1







0

1

0






)]

. (1.17)

In this way, the derivative ∂b1

∂v
can be computed analytically.
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