
Copyright

by

Gregory Eugene Allen

2011

The Dissertation Committee for Gregory Eugene Allen
certifies that this is the approved version of the following dissertation:

Computational Process Networks:

A Model and Framework for

High-Throughput Signal Processing

Committee:

Brian L. Evans, Supervisor

James C. Browne

Craig M. Chase

Lizy K. John

Charles M. Loeffler

Computational Process Networks:

A Model and Framework for

High-Throughput Signal Processing

by

Gregory Eugene Allen, B.S.E.E.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2011

Dedicated to my wife, Mariana, and my children:

Sabrina, Valerie, Samantha, and Nathan.

Acknowledgments

I would like to acknowledge the Independent Research and Development

program at Applied Research Laboratories: The University of Texas at Austin.

I also acknowledge the staff at ARL for the encouragement and support I have

received throughout this project.

I would like to acknowledge my parents and my extended family for

instilling in me the value of education.

I also would like to acknowledge Brian Evans for his patience, mentor-

ship, and friendship.

v

Computational Process Networks:

A Model and Framework for

High-Throughput Signal Processing

Publication No.

Gregory Eugene Allen, Ph.D.

The University of Texas at Austin, 2011

Supervisor: Brian L. Evans

Many signal and image processing systems for high-throughput, high-

performance applications require concurrent implementations in order to real-

ize desired performance. Developing software for concurrent systems is widely

acknowledged to be difficult, with common industry practice leaving the bur-

den of preventing concurrency problems on the programmer.

The Kahn Process Network model provides the mathematically prov-

able property of determinism of a program result regardless of the execution

order of its processes, including concurrent execution. This model is also natu-

ral for describing streams of data samples in a signal processing system, where

processes transform streams from one data type to another. However, a Kahn

Process Network may require infinite memory to execute.

I present the dynamic distributed deadlock detection and resolution

(D4R) algorithm, which permits execution of Process Networks in bounded

vi

memory if it is possible. It detects local deadlocks in a Process Network,

determines whether the deadlock can be resolved and, if so, identifies the

process that must take action to resolve the deadlock.

I propose the Computational Process Network (CPN) model which is

based on the formalisms of Kahn’s PN model, but with enhancements that are

designed to make it efficiently implementable. These enhancements include

multi-token transactions to reduce execution overhead, multi-channel queues

for multi-dimensional synchronous data, zero-copy semantics, and consumer

and producer firing thresholds for queues. Firing thresholds enable memory-

less computation of sliding window algorithms, which are common in signal

processing systems. I show that the Computational Process Network model

preserves the formal properties of Process Networks, while reducing the opera-

tions required to implement sliding window algorithms on continuous streams

of data.

I also present a high-throughput software framework that implements

the Computational Process Network model using C++, and which maps nat-

urally onto distributed targets. This framework uses POSIX threads, and can

exploit parallelism in both multi-core and distributed systems.

Finally, I present case studies to exercise this framework and demon-

strate its performance and utility. The final case study is a three-dimensional

circular convolution sonar beamformer and replica correlator, which demon-

strates the high throughput and scalability of a real-time signal processing

algorithm using the CPN model and framework.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1

1.1 Computer System Architecture 3

1.2 Concurrent Programming . 6

1.3 Pitfalls of Parallel Programming 9

1.3.1 Shared Memory Model 9

1.3.2 Message Passing Model 12

1.3.3 Formal Models . 13

1.4 Kahn Process Networks . 13

1.4.1 Scheduling of Process Networks 15

1.4.2 Synchronous Dataflow 17

1.4.3 Computation Graphs 18

1.5 Computational Process Networks 20

1.6 Thesis Statement and Expected Contributions 21

1.7 Conclusion . 23

Chapter 2. Kahn Process Networks 27

2.1 Introduction . 28

2.2 Kahn Process Networks . 29

2.2.1 Kahn’s Simple Example 29

2.2.2 Mathematical Representation 34

2.2.2.1 Streams . 34

viii

2.2.2.2 Processes . 35

2.2.2.3 Least Fixed Point 36

2.2.3 Proving Kahn’s Assertions for a Simple Example 37

2.2.4 Termination . 42

2.3 Bounded Scheduling of Process Networks 44

2.3.1 Execution Order . 45

2.3.2 Boundedness . 47

2.3.3 Scheduling for Boundedness 49

2.3.4 Complete Execution with Bounded Scheduling 54

2.3.5 Fair Processes and Scheduler 56

2.4 Computation Graphs . 60

2.5 Conclusion . 61

Chapter 3. Deadlock Detection 63

3.1 Introduction . 64

3.2 Previous Work . 68

3.3 D4R Algorithm . 72

3.3.1 Algorithm Description 73

3.3.2 Algorithm Proof . 76

3.4 D4R Implementation . 79

3.5 D4R Case Studies . 81

3.6 Conclusion . 88

Chapter 4. Computational Process Networks 90

4.1 Introduction . 91

4.2 The Semantics of CPN . 93

4.2.1 Extending Kahn’s Semantics 95

4.2.2 Zero-copy Semantics . 97

4.2.3 The Semantics of CPN 98

4.2.4 Example: FIR Filter Using Overlap-Save FFT 101

4.3 Preservation of Formal KPN Properties 105

4.3.1 Parks’ Transformation for Boundedness 107

4.3.2 Transforming CPN to KPN 108

ix

4.3.3 CPN Dequeue Semantics 110

4.3.4 CPN Enqueue Semantics 112

4.3.5 Multi-Channel Queues 114

4.4 Performance Improvements of CPN Over KPN 116

4.5 Conclusion . 119

Chapter 5. Implementation of CPN Framework 121

5.1 Introduction . 121

5.1.1 Development History and Public Release 122

5.1.2 Describing a CPN System 123

5.2 The CPN Kernel . 125

5.3 CPN Nodes . 127

5.3.1 Creating a New Type of Node 128

5.3.2 Instantiating a Node . 131

5.3.3 Function Nodes . 131

5.4 CPN Queues . 132

5.4.1 Threshold Queues . 133

5.4.2 Threshold Queue Performance 135

5.4.3 Instantiating Queues . 139

5.4.4 Additional Queue Interfaces 140

5.4.5 D4R . 143

5.5 Distribution on Multiple Hosts 144

5.5.1 Remote Context . 144

5.5.2 Remote Queues . 145

5.6 CPN from a Coordination Language 147

5.7 CPN as an Embedded Library 150

5.8 Conclusion . 152

Chapter 6. CPN Case Studies 154

6.1 Introduction . 155

6.2 Sieve of Eratosthenes . 156

6.2.1 Implementation . 158

6.2.2 Results . 160

x

6.3 Randomly Generated Graphs 166

6.4 Sonar Beamformer and Correlator 171

6.4.1 Algorithm Description 175

6.4.2 Implementation . 181

6.4.3 Target #1 Results . 183

6.4.4 Target #2 Results . 185

6.5 Conclusion . 190

Chapter 7. Conclusion 192

7.1 Conclusions . 192

7.2 Future Work . 199

7.2.1 Improved D4R . 200

7.2.2 Distributed Scheduling and Node Migration 200

7.2.3 Remote DMA Queues 201

7.2.4 Node Clustering . 201

7.2.5 Distributed Framework State 201

7.2.6 Fault Tolerance . 202

7.2.7 Additional Targets and Applications 202

Bibliography 203

Vita 217

xi

List of Tables

1.1 Properties of Models of Computation. 20

1.2 Acronyms used in this dissertation 24

2.1 Examples of continuous functions. 36

5.1 Part list for the example in Figure 5.1 124

5.2 Netlist for the example in Figure 5.1 125

7.1 Properties of Models of Computation. 196

xii

List of Figures

1.1 A simple Process Network program. 14

1.2 A Process Network program with data parallelism. 15

2.1 Kahn’s example of a simple Process Network program. 30

2.2 A function, f, that interleaves two input queues into one output. 30

2.3 A function, g, that distributes one input queue into two outputs. 31

2.4 A function, h, that inserts an element at the head of a queue. 32

2.5 A main program implementing Kahn’s example in Figure 2.1. 32

2.6 Recursive definition of a process f. 37

2.7 Recursive definition of process f from Figure 2.2. 39

2.8 A terminating Process Network program. 43

2.9 A simple Process Network program. 48

2.10 A feedback queue makes Fig. 2.9 strictly bounded. 51

2.11 A function, A, that produces n output tokens and terminates. 53

2.12 A function, B, that consumes m input tokens and terminates. 55

3.1 An example of a wait-for graph. 66

3.2 D4R algorithm state data at each node. 73

3.3 State transitions for the D4R algorithm. 74

3.4 A simple artificial deadlock detection and resolution example. 81

3.5 Implementation of node A from Fig. 3.4. 82

3.6 Implementation of node B from Fig. 3.4. 82

3.7 Implementation of node C from Fig. 3.4. 82

3.8 An example with real (as opposed to artificial) deadlock. . . . 85

3.9 An unbounded example that will grow indefinitely. 85

3.10 An example of artificial deadlock from [1]. 86

3.11 A seventeen-node deadlock resolution example from [2]. 86

3.12 An example of artificial deadlock without a cycle. 87

xiii

4.1 A simple Process Network program. 93

4.2 A program that implements the Process Network of Figure 4.1. 94

4.3 Process Network functions that use multi-token transactions. . 96

4.4 Basic input and output semantics for CPN. 98

4.5 Definitions to be used in Figures 4.6 and 4.7. 101

4.6 An FIR filter with overlap-save using extended KPN semantics. 102

4.7 An FIR filter with overlap-save using CPN semantics. 104

4.8 Illustration of Parks’ transformation for boundedness. 107

4.9 Transformation of a CPN node to KPN. 109

4.10 Code transforming CPN read semantics to KPN. 111

4.11 Code transforming CPN write semantics to KPN. 113

4.12 Implementing traditional read and write with CPN semantics. 117

5.1 Kahn’s example of a simple Process Network program. 124

5.2 Implementation of Kahn’s example process h with subclassing. 130

5.3 Instantiation of a node executing Kahn h. 131

5.4 Implementation of Kahn’s example process h with a function. 132

5.5 Creating the appearance of a circular queue with virtual memory.134

5.6 A multi-channel threshold queue. 135

5.7 Performance improvement for zero-copy queues on the Opteron. 137

5.8 Instantiation of the queue named X from Table 5.2. 139

5.9 Low-overhead determinate merge with Count(). 141

5.10 Implementation of Kahn’s simple example with JSON. 148

5.11 A mapping of Figure 5.10 onto two hosts with JSON. 149

5.12 Steps to create and use an external reader. 151

6.1 A prime sieve as a series of concurrent processes. 157

6.2 A recursive node f that creates prime filters. 157

6.3 Prime sieve results on target #1 (large SMP). 161

6.4 An estimate of the work performed at each prime filter. 163

6.5 Prime sieve results on target #2 (cluster). 165

6.6 An example of a randomly generated CPN graph. 169

6.7 An example of multiple beams formed for a sonar system. . . . 173

xiv

6.8 An example of replica correlation of a noisy signal. 174

6.9 A top view of one quarter of the array geometry. 176

6.10 A block diagram of the full beamforming system. 176

6.11 A beampattern computed by the presented beamformer. . . . 180

6.12 CPN beamformer topology on target #1 (large SMP). 183

6.13 Beamformer performance results on target #1 (large SMP). . 184

6.14 Fork and join round robin within a single horizontal beamformer.187

6.15 Beamformer performance results on target #2 (cluster). 188

6.16 The full CPN beamformer and mapping on target #2 (cluster). 189

xv

Chapter 1

Introduction

In high-performance computing, concurrent implementations are nec-

essary in order to meet desired execution performance targets. Two common

forms of concurrency are found in multi-core processors and clusters of com-

puters. Significant parallel hardware is often available in modern multi-core

computers, but effectively programming with threads to take advantage of

this concurrency is notoriously difficult [3][4]. Another common approach for

achieving parallelism is distributed systems, such as a cluster of computers.

These clusters can achieve considerably increased computing performance, but

require copying shared data across a network between the individual compute

nodes. Programming these systems is also difficult, as they suffer many of the

same concurrency problems as multi-core systems.

One of the difficulties of developing for concurrent systems is avoiding

deadlock. Deadlock occurs when multiple processes are waiting for each other,

but never proceed. This is a commonly encountered problem in concurrent

programming models that use mutual exclusion, such as threads. A desir-

able property of a concurrent model of computation is the ability to predict,

prevent, and detect deadlock.

1

Other desirable properties of a concurrent model of computation in-

clude determinism, scalability, and boundedness. Determinism in this context

means that a modeled program will produce the same results every time that

it is executed. One of the difficulties of the thread programming model is that

insufficient locking of resources shared between threads leads to race condi-

tions and can violate determinism. A model that can take full advantage of

increasingly available parallel hardware is said to be scalable. The commonly

used barrier synchronization model, for example, has limits to its scalability

because there is no concurrency at each barrier event. In thread programming,

too much locking of shared resources reduces scalability and exploitable con-

currency. Boundedness is the ability of the model to execute within a finite

amount of memory, and is obviously important for implementation.

Composability is another desirable property of a concurrent model of

computation. Composable components are modular and self-contained, and

their behavior can be analyzed and tested in isolation. Composable compo-

nents can be combined with clustering and hierarchy to create larger, more

complex systems.

A potential solution for effectively developing software for hard-to-

program parallel systems is the application of formal models of concurrent

computation. A formal model is one that can be mathematically proven to

have certain properties. Not every model will have all of the desirable prop-

erties, but some properties are guaranteed to be true. Application of formal

models of computation with the listed desirable properties can allow rapid

2

development of determinate, scalable systems built from composable compo-

nents. This can allow the developer to focus on the task at hand, with less

concern about the complications of concurrent and distributed systems.

This dissertation proposes a new formal model of computation to repre-

sent common signal processing algorithms. It shows how this new model is an

improvement over existing models for this type of algorithm. This dissertation

also provides an implementation of this new model, including case studies. It

also provides a dynamic distributed deadlock detection and resolution algo-

rithm for the new model as well as previously existing models.

Section 1.1 provides a very high-level view of modern computer sys-

tem architectures. Section 1.2 discusses common practices for programming of

concurrent systems. Section 1.3 discusses common problems encountered with

these approaches for programming concurrent systems. Section 1.4 provides

background on formal models for concurrency that can be used to address

these difficulties. Section 1.5 introduces the proposed Computational Process

Networks model. Section 1.6 contains the thesis statement and expected con-

tributions. Section 1.7 provides a list of acronym definitions and concludes

this introductory chapter.

1.1 Computer System Architecture

This section describes modern computer system architectures at a high

level in order to provide a foundation for concepts that will be discussed in

later sections and chapters.

3

In a modern operating system, a process contains information for a

single running program, which includes executable code, private data, and

processor state, as well as other resources provided by the operating system.

Modern operating systems are multi-tasking; i.e. they can run multiple pro-

cesses. These processes are typically given a period of time, or time slice, to

execute and then preempted so that another processes may run. Switching

execution from one process to another is called a context switch. A scheduler

algorithmically decides which processes will execute and in which order.

Systems with multiple identical processors commonly use symmetric

multiprocessing [5] (SMP) architectures in which the processors are connected

to a common main memory. This permits multiple processes to be executed

concurrently, and the ability to balance a computing workload between the

available processors. It also permits rapid and efficient exchange of data be-

tween the processors.

Modern operating systems also have protected memory, in that a pro-

cess can access only the memory that the operating system allocates to it.

Even though processes (and sometimes multiple processors) share the same

physical memory, this prevents the processors from interfering with each other

or with the operating system. These systems also commonly have virtual mem-

ory. This gives processes the appearance of a particular memory organization

that may not reflect the actual arrangement in memory, and can even permit

a system to use more memory than is available by reading and writing excess

memory to disk. The virtual memory manager is a component of a processor

4

and an operating system that manages both protected and virtual memory.

It is often useful for multiple processes on the same system to com-

municate so that they can exchange information, synchronize, or speed up

computation. This set of techniques is called Inter-Process Communication

(IPC), and are resources provided by the operating system. Examples of IPC

include files, signals, queues, pipes, shared memory, and semaphores.

A process may contain multiple threads of execution. The threads in a

process all share the same process space, in that they have the same view of

virtual memory and operating system resources. Each thread has its own copy

of the processor state. Threads can be executed preemptively or concurrently

in the same manner as processes. Threads are also sometimes referred to as

lightweight processes.

A number of computers can be connected together to form a cluster,

working together to solve a common problem. A cluster of computers is also

commonly referred to as a distributed system, where each computer in the

cluster has a private local memory and the computers communicate by mes-

sage passing. The computers are often interconnected via a high-speed local

network to facilitate rapid exchange of these messages. Communication via

message passing is typically slower than communication via shared memory,

but is capable of scaling to larger systems.

5

1.2 Concurrent Programming

Concurrent programming is the process of writing software as collec-

tions of computational processes that could be executed in parallel. A program

developed for concurrency, along with parallel hardware, may execute much

faster than a program on a single processor. For a large class of computa-

tional problems, desired execution performance can be met only with parallel

hardware and concurrent programs that take advantage of the parallelism.

Concurrent programming has become increasingly relevant as systems

with multiple independent processors have become commonplace. Multipro-

cessing systems have been available for several decades in high-end systems,

but have become increasingly commoditized and now occur frequently in con-

sumer-grade computers. Processors with multiple cores in the same physical

package, or multi-core processors, have driven this trend even further.

The two major classes of explicit communication between concurrent

components are shared memory communication and message passing commu-

nication. For shared memory communication, processes (or threads) commu-

nicate by altering data in shared memory locations. Typically some kind of

locking will be required for coordination between them, such as semaphores or

mutual exclusion (mutex), to prevent corruption of the data due to multiple

actors simultaneously modifying a shared resource. Obviously shared memory

communication for concurrent programming requires a shared memory archi-

tecture, such as a single SMP system.

6

For concurrent programming of shared memory systems, the use of

threads is widespread [3]. Threads can exploit the parallelism of multiple

processors, just as processes can. Shared memory communication between

threads within a process is considerably easier than communication between

different processes because the threads share the same memory space. Context

switching between threads within a process is also typically less expensive than

context switching between processes.

POSIX [6], the Portable Operating System Interface (for Unix), is a

family of standards specified by the IEEE to define the application program-

ming interface (API) for Unix systems. It also describes other standards for

these systems, such as shells, utilities, and filesystem layout. POSIX threads,

or Pthreads [7], is the POSIX standard API for creating and manipulating

threads.

OpenMP [8] is an API for shared memory parallelism that allows the

addition of simple statements to software that can automatically parallelize

some sequential code. OpenMP is fairly easy to use and built into many

current compilers. At a typical construct such as loop parallelization, multiple

threads can execute concurrently until the parallel work is complete. Once

complete, the threads join together and the program continues sequentially.

This use of OpenMP has fundamentally sequential underpinnings, which will

lead limited scalability. Additionally, OpenMP does not target distributed

memory systems.

There exist several projects to make clusters with distributed memory

7

systems appear as a single computer, or a single-system image (SSI). Exam-

ples include MOSIX [9][10], OpenSSI [11], DIPC [12][13], and LinuxPMI [14].

These projects maintain the appearance of a single shared memory system

on a distributed system, and are sometimes called distributed shared memory

(DSM) systems. These systems can offer ease of programming and portability,

but tightly coupled memory accesses between distributed nodes make them

particularly prone to thrashing [15]. Although the communication mecha-

nism is hidden from the programmer, the latency of the communication is still

present. For increased performance, it is useful to capture some knowledge

about the actual memory layout.

Explicit message passing is commonly used on distributed systems in

the absence of shared memory. In this case, concurrent components explicitly

communicate by exchanging messages. Although BSD Sockets [16] provide a

fairly universal way for remote computers to communicate, software applica-

tions designed for clusters are typically built upon a communication library.

MapReduce [17] has received considerable attention for certain classes of prob-

lems, but largely for applications outside of scientific computing. The de facto

standard communication library for scientific cluster computing is the Message

Passing Interface (MPI) [18].

MPI is an application programming interface for message passing pro-

posed as a standard by a broadly based committee of vendors, implementers,

and users. Although there is a single specification, there are several compet-

ing implementations. Examples include MPICH [19], LAM/MPI [20][21], and

8

OpenMPI [22]. MPI has been called the “assembly language of parallel com-

puting” [23] because it is an explicit, low-level interface for message passing.

The use of message passing (including MPI) is not limited to distributed

memory systems. Message passing can also be efficiently implemented on a

shared memory system. The Process Network model, introduced in Section

1.4, is a form a message passing.

The following section discusses common problems than can be encoun-

tered when developing software that executes concurrently.

1.3 Pitfalls of Parallel Programming

It is widely acknowledged that parallel computer programs are more dif-

ficult to develop and debug than sequential ones [24]. Concurrency introduces

new classes of potential errors, such as race conditions. In a race condition,

the result of a program unexpectedly depends on timing or the sequence of

execution of concurrent components. This violates our first stated goal of de-

terminism: the program does not produce the same results every time that it

is executed.

1.3.1 Shared Memory Model

For the shared memory model, preventing this nondeterminism is sim-

ple in concept: concurrent components must prevent race conditions by pre-

venting simultaneous modification of any shared resource, such as a shared

variable in memory. A common approach is to have concurrent components

9

use synchronization, such as acquiring a mutex or semaphore before modifying

a shared resource. The portion of software that accesses a shared resource is

commonly referred to as a critical section.

Threads are the dominant model for programming shared memory sys-

tems (and systems with the abstraction of having shared memory). Lee [3]

specifically addresses determinism in the context of thread programming.

The core abstraction of computation ..., on which all widely-used

programming languages are built, emphasizes deterministic com-

position of deterministic components. The actions are determin-

istic and their sequential composition is deterministic. Sequential

execution is, semantically, function composition, a neat, simple

model where deterministic components compose into deterministic

results.

Threads, on the other hand, are wildly nondeterministic. The job

of the programmer is to prune away that nondeterminism. We

have, of course, developed tools to assist in the pruning. Sema-

phores, monitors, and more modern overlays on threads ... offer

the programmer ever more effective pruning. But pruning a wild

mass of brambles rarely yields a satisfactory hedge.

In practice, correctly determining all of the necessary critical sections

can be challenging. Any that are missed can lead to nondeterminism in the

program. Even if all of the critical sections are properly identified and locked,

a second class of potential concurrency errors arises: deadlock.

10

Deadlock is a situation in which multiple processes are unable to pro-

ceed because each is waiting on one of the others in order to continue. There

are very simple rules for avoiding deadlock, such as to always acquire locks in

the same order [25]. However, for programs with large numbers of locks, this

can be extremely difficult to enforce.

Another method for deadlock prevention is the try-lock. Rather than

blocking while waiting to obtain a lock, the attempting process is simply no-

tified that the lock is already being held. A similar method is the timed-lock,

which will block up until a specified timeout while attempting to obtain a

lock [7]. These approaches are intended to avoid deadlock by breaking the

cycle of multiple processes waiting on each other. If a process cannot obtain a

needed lock, it can simply try again later. However, this approach can lead to

live lock, where the state of the processes involved may be constantly changing,

but one or more processes are not actually progressing.

There is a tension between concurrency and deadlock. Using coarse-

grained locking may simplify the task of acquiring locks in order, but reduces

concurrency. Fine-grained locks permit more concurrency, but increase the

difficulty of preventing deadlock. A notorious example of coarse-grained lock-

ing is Linux’s Big Kernel Lock, introduced in the 2.0 series in 1996 when SMP

systems were first being supported. This is a single global lock that is held

whenever a thread enters kernel space. Although simple, this eliminated any

concurrency in kernel space, making it a bottleneck. Although increasingly

fine-grained locking has since been implemented throughout the kernel, the

11

removal of the big lock is still an ongoing task [26].

1.3.2 Message Passing Model

Message passing is the other major class of explicit communication be-

tween concurrent components, and eliminates shared memory race conditions.

However, unintended nondeterminism can still occur with races among mes-

sages, where their order of arrival at a process is not guaranteed and is affected

nondeterministically by things such as scheduling variations and network la-

tencies [27]. There are several variations in how a message passing system

could behave, such as whether messages are reliable or unreliable, whether

they are guaranteed to be delivered in order, and whether communication

between processes is synchronous or asynchronous.

In a synchronous system, a message sender will not proceed until the re-

ceiver has received the message. This provides synchronization points between

concurrent components at communication boundaries, which can simplify rea-

soning about the program. However, it also reduces concurrency because the

communicating programs must wait on each other to proceed. By buffering

messages and using asynchronous messaging, processes can overlap computa-

tion and communication. Deadlock can still occur in message passing pro-

grams, such as when processes are waiting for messages that will never arrive,

or when writing to full buffers.

MPI, the de facto standard library for writing message passing pro-

grams for computer clusters, provides a flexible and wide variety of function

12

calls for exchanging messages between concurrent components. However, de-

tection and prevention of the mentioned pitfalls of parallel programming is left

entirely in the hands of the programmer and widely acknowledged as difficult.

1.3.3 Formal Models

To address these difficulties, theoretical models of concurrent compu-

tation have been developed in attempts to formally reason about concurrent

systems, and have generally been based upon a message passing system. Ex-

amples include the Actor Model [28] and different Process Calculi such as

Communicating Sequential Processes (CSP) [29], both developed in the 1970’s.

Also developed in the 1970’s is the Process Network model, which has been

successfully used to model computations in streaming data applications such

as signal processing systems [30][31][32]. “G,” the programming language that

powers LabVIEW from National Instruments, is said to be similar to Kahn

Process Networks [33]. Ptolemy, a tool for modeling real-time embedded sys-

tems, also includes Process Networks as one of its models of computation [34].

The Process Network model is introduced in the next section and thoroughly

discussed in Chapter 2.

1.4 Kahn Process Networks

Kahn Process Networks (KPN or simply PN) is a formal model of con-

current computation in which a set of deterministic processes communicates

via a series of unbounded first-in first-out (FIFO) queues [35]. Programs can

13

A B
P

Figure 1.1: A simple Process Network program.

be represented as a directed graph, in which nodes represent processes and

edges represent queues. Fig. 1.1 shows a simple Process Network program in

which processes A and B execute concurrently, and A sends data to B through

P , a unidirectional channel (FIFO queue).

Each node in a Process Network is a Turing equivalent computing pro-

cess, and these processes are networked together while following simple dy-

namic firing rules at each node: blocking reads and non-blocking writes. That

is, execution of a process is suspended when trying to consume data from an

empty queue, but processes are never suspended for producing data (so queues

can grow without bound). A process cannot detect the presence of data on an

incoming queue, but attempt to read (and potentially block).

PN naturally models functional parallelism in a system, such as a

pipeline. It is also natural for describing streams of data samples in a sig-

nal processing system, where nodes may transform streams from one data

type to another. However, PN modeling is not limited to functional paral-

lelism. By using scattering and gathering nodes, data parallelism can also

be achieved. Fig. 1.2 shows a Process Network program that contains data

parallelism, where process A scatters data to both processes B1 and B2, and

14

A

B1

B2

C

Figure 1.2: A Process Network program with data parallelism.

process C gathers the results.

Kahn’s model provides the mathematically provable property of deter-

minism of the program result regardless of the execution order of the processes

in the program, which includes concurrent execution. Termination of a general

PN program is undecidable in finite time, as is boundedness of the queues. The

unbounded property of the queues makes an actual implementation of the PN

model infeasible in bounded memory. Chapter 2 details the theory underlying

Kahn’s model.

1.4.1 Scheduling of Process Networks

Parks [36][37] shows that clever scheduling of the processes allows ex-

ecution in bounded memory, if it is possible. By transforming the PN graph

to have a feedback queue for every original queue, the transformed graph puts

a limit on the queue sizes. If these queue bounds cause execution of the pro-

gram to halt earlier than the original unbounded execution would have, it is

an artificial deadlock. Parks addresses this issue by requiring online dynamic

15

deadlock detection and resolution. He argues that lengthening the shortest

deadlocked full queue will resolve the artificial deadlock and allow execution

to continue. If the program can be executed in bounded memory, then the

bound will eventually be found. Parks’s original paper is a seminal work on

the bounded scheduling of PN, but contains some important mistakes. Still,

he sparked further work into the bounded scheduling of PN.

Parks states that global deadlock of the network, in which no process is

able to execute, is required before detecting and resolving an artificial dead-

lock. However, not all artificial deadlocks result in a global deadlock. Geilen

and Basten show [38] an example where Parks’ algorithm produces an in-

complete execution, which arguably compromises the determinacy of Kahn’s

model. They also point out that Parks’ algorithm cannot schedule a PN graph

composed of disjoint chains. They present an improved scheduling algorithm

using local deadlock detection. They also argue that bounded scheduling will

not yield a complete execution unless the PN is effective. They define an ef-

fective PN to mean that all produced tokens will eventually be consumed. In

Section 2.3, I show a counterexample of a non-effective PN graph that can be

scheduled correctly. This demonstrates that there is a larger set of PN pro-

grams that can be completely executed in bounded memory than Geilen and

Basten propose.

Although Parks, Geilen, and Basten all describe the use of a dynamic

deadlock detection and resolution algorithm, none of them provide a detailed

algorithm for use. In Section 3.3 I develop and prove a distributed dynamic

16

deadlock detection and resolution algorithm (D4R) for use with bounded ex-

ecution of process networks [39]. This algorithm is based on a previous dis-

tributed algorithm by Mitchell & Merritt [40]. The D4R algorithm detects

local deadlocks and determines whether a deadlock is real or artificial. For

artificial deadlocks, the algorithm locates the blocked process that is key to

resolving the deadlock: the process that is blocked writing to a queue that

must grow in order for the network to proceed. The D4R algorithm is also

distributed and scalable, which makes it appropriate for a distributed PN im-

plementation.

1.4.2 Synchronous Dataflow

Synchronous Dataflow (SDF) [41][42] is another model of computation

similar to Process Networks that represents a system as a directed graph of

FIFO queues connecting processing elements. In dataflow, the nodes are re-

ferred to as actors, and the data samples flowing over the queues are referred

to as tokens. Each actor fires or executes according to firing rules that specify

what tokens must be available at its inputs. When firing, an actor consumes

some number of input tokens and produces some number of output tokens.

In Synchronous Dataflow, whenever an actor fires it always consumes

and produces the same number of tokens. Each different actor may consume or

produce a different number of tokens, but the number for each individual actor

is invariant. Because of the restrictive model and the predictable behavior of

each actor, it is possible to compute a static, sequential execution order of

17

actors, and also to know the flow of control and memory requirement for each

queue. An SDF schedule compiler can construct a static schedule that is

repeatedly executed. The asymptotic complexity to determine a sequential

schedule for SDF is O(N3) for a system with N nodes [43].

SDF is well suited for modeling many digital signal processing (DSP)

systems and subsystems, in which the fixed schedule is repeatedly executed

and the overhead of a dynamic scheduler is eliminated. The SDF model has

been used in some commercial electronic design automation (EDA) tools [44],

such as the HP/Agilent EEsof Advanced Design System [45] and the Coware

Signal Processing Worksystem.

1.4.3 Computation Graphs

Computation Graphs (CG) by Karp & Miller [46] are another model

of computation similar to Process Networks. As in SDF, the firing behavior

of each actor is fixed: each time a node executes, it will consume and pro-

duce the same number of tokens on each of its inputs and outputs. However,

Computation Graphs bring an important concept that is leveraged in this

dissertation: firing thresholds. Before an actor can fire, there is a threshold

minimum number of tokens that must be present on the input. Clearly the

threshold number of tokens required for firing has to be equal to or greater

than the number of tokens that will be consumed. Computation Graphs have

necessary and sufficient conditions for both termination and boundedness, and

a static execution schedule can be determined at compile time. Synchronous

18

Dataflow is a special case of Computation Graphs where the number of tokens

consumed upon firing of an actor is always equal to the firing threshold (for

every actor input in the system).

The concept of a firing threshold has applications in high-throughput

DSP systems, where it is common to have algorithms that operate on contin-

uous, overlapping streams of data, or sliding window algorithms. Examples

include filters, and sliding window fast Fourier transform (FFT) algorithms.

For example, a finite impulse response (FIR) filter of order N requires N + 1

input samples to compute a single output sample. Computing the next output

sample would require reuse of the N previous samples and one new sample.

If such a filter were modeled as a Kahn Process Network or as Synchronous

Dataflow, the node implementing the filter would be required to store these N

previous samples internally as node (process) state.

With firing thresholds in Computation Graphs, a node can require more

tokens to be present on a queue than it will actually consume upon execution.

For example, a filter node could require that N + 1 samples be present on a

queue before executing, and then consume only a single input sample. The N

newest samples are still present in the queue, so it is not necessary to store

their state in the filter node.

This separation of consumption and threshold counts permits efficient

modeling of algorithms on overlapping continuous streams of data, and per-

mits implementation with memoryless nodes. This ability to model these

DSP algorithms as memoryless is an additional desirable property of a model

19

of computation. This simplifies implementation of composable components

that compute sliding window algorithms, because all of the overlap state is

retained in the queues. Such a model can also enable more efficient execution

of sliding window algorithms, which are very common in embedded real-time

signal processing systems.

Table 1.1 summarizes some desirable properties of the models of com-

putation that have been discussed in this section. The following section intro-

duces, Computational Process Networks, a new model of computation.

Table 1.1: Properties of Models of Computation.

Model
Property SDF CG KPN

Determinism 3 3 3

Boundedness 3 3

Scalability 3

Composability 3

Firing Thresholds 3

1.5 Computational Process Networks

In this dissertation, I propose the Computational Process Network

(CPN) model which is based on the formalisms of Kahn’s PN model, but with

enhancements that are designed to make it efficiently implementable. These

enhancements include multi-token transactions to reduce execution overhead,

multi-channel queues for multi-dimensional synchronous data, and both con-

sumer and producer firing thresholds for queues. Section 4.2 describes these

20

enhancements in more detail.

Multi-token transactions are a simple extension to the Kahn Process

Network model, but can provide a significant performance enhancement as the

overhead for a queue transaction is amortized. Multi-channel queues permit

straightforward modeling of systems with multiple channels, such as audio

streams in a surround sound system, or beams in a sonar beamforming system.

Firing thresholds for consumers, a concept borrowed from Computation

Graphs, enable memoryless computation of sliding window algorithms. The

benefits of this model to signal processing systems are discussed in the previous

subsection, 1.4.3.

CPN also provides the dual to consumer firing thresholds, which is fir-

ing thresholds for producers. A node can access more free space than it will fill,

thereby allowing variable-rate outputs without requiring data copies. These

thresholds allow the decoupling of computation from communication when

developing process nodes, and permit a zero-copy queue implementation. By

eliminating unnecessary data copying in high-throughput systems, the com-

puter is free for additional computation tasks. CPN is useful for modeling

signal processing systems of streaming data, and naturally captures concur-

rency in these systems.

1.6 Thesis Statement and Expected Contributions

In this dissertation, I defend the following thesis statement:

21

The Computational Process Network model preserves the formal

properties of Kahn Process Networks while reducing the operations

required to implement sliding window algorithms, which are com-

mon in digital signal processing. The CPN model is also efficiently

implementable.

First I present an algorithm for distributed, dynamic deadlock detection

and resolution, dubbed the D4R algorithm. Dynamic deadlock resolution is

required for complete execution of Process Networks in bounded memory, and

the D4R algorithm is suitable for use in distributed implementations of both

KPN and CPN.

Second, I show by graph transformation that the CPN model preserves

the formal properties of KPN: determinism, scalability, and composability. I

show the reduction in operations of CPN versus KPN for sliding window algo-

rithms, including an example of measured execution. The CPN semantics also

provide multi-token firings, multi-channel queues, and a zero-copy interface,

for a general reduction in operations compared to KPN for multi-dimensional

signal processing.

Third, I present a high-throughput CPN framework implementation

in C++, which maps naturally onto distributed targets. This framework uses

POSIX threads, and can exploit parallelism in both multi-core and distributed

systems. Using a simple coordination language to describe a CPN program

graph, developers can build systems from deterministic, composable compo-

nents.

22

I also present several case studies to illustrate the capabilities and per-

formance of the CPN model and framework. I present the Sieve of Eratos-

thenes, a simple algorithm for finding prime numbers. This algorithm has

been used in previous PN literature, and I compare execution performance

using the enhancements present in the CPN model. I present a case study of

randomly generated graphs with dynamically changing connections to demon-

strate the robustness and stability of the CPN framework. I also present a 3D

circular convolution sonar beamformer and replica correlator. This final case

study demonstrates the high throughput and scalability of a real-time multi-

dimensional signal processing system using the CPN model and framework.

1.7 Conclusion

Table 1.2 provides a list of definitions for acronyms that are used in

this dissertation.

Many signal and image processing systems for high-throughput, high-

performance applications require concurrent implementations in order to real-

ize desired performance. Examples may include sonar beamforming, synthetic

aperture radar processing, or high definition video processing. Multi-core pro-

cessors [47] and distributed systems are attractive targets for implementing

these types of applications.

Developing software for concurrent systems is widely acknowledged to

be difficult, with common industry practice leaving the burden of preventing

concurrency problems on the programmer. Formal models have been devel-

23

Table 1.2: Acronyms used in this dissertation

API application programming interface
BPN Bounded Process Network
BSD Berkeley Software Distribution
CG Computation Graphs
CPN Computational Process Network
CSP Communicating Sequential Processes
D4R Distributed Dynamic Deadlock Detection and Resolution
DSM distributed shared memory
DSP digital signal processing
EDA electronic design automation
FFT fast Fourier transform
FFTW the Fastest Fourier Transform in the West
FIFO first-in first-out
FIR finite impulse response (filter)
FLOPS floating point operations per second
IEEE Institute of Electrical and Electronic Engineers
IPC inter-process communication
JSON JavaScript Object Notation
KPN Kahn Process Network
LFM linear frequency modulated (pulse)
LFSR linear feedback shift register
MPI Message Passing Interface
PN (Kahn) Process Network
POSIX Portable Operating System Interface for Unix
RDMA remote direct memory access
SDF Synchronous Dataflow
SIMD single instruction multiple data
SMP symmetric multiprocessing
SSE Streaming SIMD Extensions
SSI single-system image
STL Standard Template Library
TCP/IP transmission control protocol / internet protocol
VMM virtual memory manager
XML Extensible Markup Language

24

oped to aid reasoning about concurrent systems. A model that has been

successfully used for signal and image processing systems is Process Networks.

Chapter 2 discusses Kahn’s formal Process Network model. It details

the theory underlying Kahn’s model, and discusses the approaches that have

been taken toward scheduling PN in bounded memory. This chapter also ad-

dresses Computation Graphs, which introduce the concept of firing thresholds.

Chapter 3 discusses deadlock detection, which is required for bounded

scheduling of PN. It discusses previous work in deadlock detection, and then

presents the D4R algorithm: Distributed Dynamic Deadlock Detection and

Resolution. This algorithm detects deadlocks in a PN graph and determines

whether a deadlock is real or artificial. Proofs and case studies are presented

in support of the D4R algorithm. The D4R algorithm is suitable for use in

distributed implementations of both KPN and CPN

Chapter 4 proposes the Computational Process Network model which is

based on the formalisms of Kahn’s PN model, but with enhancements that are

designed to make it efficiently implementable. I show by graph transformation

that the formal properties of KPN are preserved, and also that CPN reduces

the number of operations required to implement sliding window algorithms as

compared to KPN.

Chapter 5 describes details of the reference CPN framework implemen-

tation. CPN Nodes map to POSIX threads to exploit concurrent hardware,

and queues use the virtual memory manager to provide apparent data cir-

25

cularity. The CPN framework can allow rapid development of determinate,

scalable concurrent systems built from composable components.

Chapter 6 describes case studies used to illustrate the utility of the

CPN model and implementation. First is the Sieve of Eratosthenes, a simple

algorithm for finding prime numbers. Second is a case study of random graphs

with dynamic connections to demonstrate the robustness and stability of the

CPN framework. Third is a 3D circular convolution beamformer and replica

correlator that is representative of a real-time signal processing algorithm that

can be implemented within the provided model and framework.

Chapter 7 concludes this dissertation.

26

Chapter 2

Kahn Process Networks

Developing concurrent computer programs is widely acknowledged to

be difficult, so efforts have been undertaken to reason formally about concur-

rent systems. Kahn Process Networks is a formal model of concurrent compu-

tation first introduced by French computer scientist Gilles Kahn in 1974 [35].

Kahn introduces a language with simple semantics and formally studies the

results, with the goal of applying mathematical approaches to programming

languages and system design.

Kahn’s model can naturally describe signal processing systems in which

infinite streams of data samples are incrementally transformed by a collection

of processes executing in sequence or in parallel [36]. As such, Process Net-

works have been used in a number of concurrent applications, including digital

signal processing systems [30].

Section 2.1 introduces Kahn’s simple semantics for communication.

Section 2.2 details Kahn’s illustrative sample program and discusses the for-

mal consequences. Section 2.3 discusses progress toward scheduling of process

networks in bounded memory. Section 2.4 introduces Computation Graphs, a

similar model from which this work leverages the concept of firing thresholds.

27

Section 2.5 concludes this chapter.

2.1 Introduction

In Kahn’s model, a set of processes communicates with each other via

a network of unbounded FIFO queues [35]. He describes it as a set of Turing

machines connected via one-way tapes, in which each machine can use its own

separate working tape. These processes may have any number of input or

output queues, but they can communicate only via the queues. Queues carry

a particular type of data, such as the primitive type int.

The semantics for communication are the blocking read data function

get and the non-blocking write data function put. When a processes wishes

to receive a data value (token) from an input queue, it calls get on the queue.

If no data is available in the queue, then the process will be suspended until

a data value arrives. When data is present in the queue, get returns the first

data element in the queue. A process cannot determine whether or not data

is present in an input queue, and it can only call get on one queue at a time.

When a process wishes to send a data element to an output queue, it calls

put with two arguments: the data element to send, and the queue. Because

queues can be unbounded in length, calling put can never cause a process to

be suspended. (Kahn’s original semantics were wait and send, which he later

updated to get and put [48]).

At any point in time, a process is either enabled or it is suspended. A

suspended process is blocked waiting on (only) one of its inputs. Kahn shows

28

that programs following these semantics are determinate: the history of tokens

in the queues is the same regardless of the execution order of the processes.

2.2 Kahn Process Networks

Kahn [35] presents an elementary concurrent sample program built

upon his simple semantics of get and put, using a language similar to Algol.

He then examines the behavior of this program from a formal, mathematical

viewpoint, and draws conclusions about provable properties for general pro-

grams obeying these semantics. Here I recreate Kahn’s example, describing it

with the more current object-oriented C++ programming language [49].

2.2.1 Kahn’s Simple Example

Figure 2.1 shows a diagram of Kahn’s example. Four processes are

connected by one-way FIFO queues. There are single instances of processes f

and g, and two instances of process h each taking different parameters. The

following three figures define the functions which implement these processes,

and which communicate only via get and put over the associated queues.

Figure 2.2 defines the function f, which takes two queues of integers as

inputs, and a single queue of integers as an output. It eternally interleaves

the two input queues (U and V) into the single output queue (W), and never

returns.

The code iqueue<int> represents a C++ template input queue class

that carries tokens of type int. The class iqueue provides only the method get,

29

f

h(0)
Y

g
X

h(1)

Z

S

T

Figure 2.1: Kahn’s example of a simple Process Network program.

void f (iqueue<int> U, iqueue<int> V, oqueue<int> W)
{

while (true) {
W. put (U. get ()) ;
W. put (V. get ()) ;
}

}

Figure 2.2: A function, f, that interleaves two input queues into one output.

30

void g (iqueue<int> U, oqueue<int> V, oqueue<int> W)
{

while (true) {
V. put (U. get ()) ;
W. put (U. get ()) ;
}

}

Figure 2.3: A function, g, that distributes one input queue into two outputs.

which takes no argument and returns a single token of type int (the template

argument type). According to Kahn’s semantics, get will block until a token

is available, remove it from the queue, and return it. The code oqueue<int>

represents a C++ template output queue class also carrying tokens of type

int. The class oqueue provides only the method put, which takes an argument

of int (the template argument type) and has no return value. According to

Kahn’s semantics, put will immediately insert the token into the queue and

return nothing to the caller. Recall that in Kahn’s model, queues may be

infinitely long and put will never block.

Figure 2.3 defines the function g, which takes a single queue of integers

as input, and two queues of integers as outputs. It eternally distributes tokens

from the input queue (U) into the two output queues (V and W), and never

returns.

Figure 2.4 defines the function h, which takes a single integer (x), and

input and output queues of integers (U and V). Function h inserts a token at

the head of a queue by first sending the single integer parameter to the output

31

void h(int x , iqueue<int> U, oqueue<int> V)
{

V. put (x) ;
while (true) {

V. put (U. get ()) ;
}

}

Figure 2.4: A function, h, that inserts an element at the head of a queue.

main ()
{

queue<int> X, Y, Z , S , T;
process<f>(Y, Z , X) ;
process<g>(X, S , T) ;
process<h>(0 , S , Y) ;
process<h>(1 , T, Z) ;

}

Figure 2.5: A main program implementing Kahn’s example in Figure 2.1.

queue, and then eternally copying integer tokens from the input queue to the

output queue.

Figure 2.5 contains a main function that implements Kahn’s full ex-

ample from Figure 2.1, by instantiating the five queues and spawning the

four processes. The template class queue multiply inherits from both classes

iqueue and oqueue, and is specified to carry integer tokens. For now, we will

conveniently ignore the fact that Kahn’s model requires queues of possibly

unbounded size. All of the queues are empty upon instantiation, and have the

32

same names as shown in Figure 2.1.

A template class process could be implemented by using template

meta-programming techniques and taking a function as a template parameter.

(It may require somewhat more syntax than shown, but adding this would

not further the discussion.) The class constructor could create a new thread,

which calls the specified (template parameter) function using the provided

arguments. With such a process class, the main function in Figure 2.5 will

spawn four thread processes, one executing function f, one executing function

g, and two executing function h but with different integer parameters.

Initially, processes f and g are blocked waiting on their inputs, but

processes h(0) and h(1) can write tokens 0 and 1 to their respective outputs.

The ambitious reader can follow these tokens around the loops. The 0 token

will pass around the upper loop from queues Y to X to S, and then again

back to queue Y and eternally repeating the cycle. Similarly, the 1 token

will cycle around the bottom loop. With some examination, one can see that

the sequence of tokens on queue X will be alternating 0’s and 1’s that repeat

forever. For this simple example, Kahn [35] sets out to formally prove three

assertions:

1. All processes in the program will execute forever,

2. Queue X will pass an alternating sequence of 0’s and 1’s forever, and

3. If any process were to (erroneously) stop, the whole system would stop.

33

We proceed with Kahn’s formal, mathematical representation of process net-

works. For clarity, I borrow heavily from the notation later used by Parks [36].

2.2.2 Mathematical Representation

In Kahn’s representation, the queues (or channels) are streams, and the

processes are mathematical functions that map streams into other streams.

With these definitions, a process network can be described by a set of mathe-

matical equations, and one can solve for the least fixed point of these equations.

Kahn showed that the least fixed point is unique. First we proceed with some

definitions.

2.2.2.1 Streams

A stream is defined as a sequence of data elements (or tokens), e.g.

X = [x0, x1, x2, . . .]. In the context of a process network, the contents of a

stream X represent the tokens that have been inserted into a queue. Sequences

can be ordered in a prefix order, such that if X is a prefix of Y (or they are

equal) it is written as X v Y . For example, [0] v [0, 1] v [0, 1, 2]. The empty

sequence ⊥ is a prefix of all sequences, i.e. ∀X,⊥ v X.

A sequence of prefix-ordered streams, ~X = (X0, X1, . . .) where X0 v

X1 v · · · , is an increasing chain of streams. An increasing chain ~X represents

the entire history of tokens that have been inserted into a PN queue as exe-

cution progresses; each stream element of ~X contains the history of the queue

at some point in the execution. The supremum (or least upper bound) of

34

an increasing chain of streams ~X is the shortest stream such that all streams

in ~X are a prefix of the supremum sup(~X), i.e. ∀Xi ∈ ~X,Xi v sup(~X).

For any increasing chain of streams ~X, the supremum exists and is unique:

sup(~X) ≡ lim
n→∞

Xn. The order is complete because every increasing chain of

streams has a supremum that is itself a stream.

The prefix order binary relation v is a partial order on the set of all

streams because it is reflexive, antisymmetric, and transitive. The set of all

streams using the prefix order v is therefore a complete partial order. Tuples of

streams are also a complete partial order. For example, (X0, X1) v (Y0, Y1)↔

X0 v Y0, X1 v Y1. The fact that streams form a complete partial order will

aid in solving for the least fixed point of a set of equations that describe a

process network in Section 2.2.2.3.

2.2.2.2 Processes

A process is a functional mapping between input streams and output

streams. For each process, a mathematical equation can be written to describe

the mapping. For example, the C++ function in Figure 2.2 can be described

by the equation W = f(U, V). Similarly, the function in Figure 2.3 can be

described by the equation (V,W) = g(U).

A functional mapping f : X → X between partially ordered sets is

defined to be continuous (for the increasing chain X0 v X1 v · · ·) if and only

if

f(lim
n→∞

Xn) = lim
n→∞

f(Xn) (2.1)

35

All such continuous functions are also monotonic, i.e. for the function f :

Xn v Xm ⇒ f(Xn) v f(Xm) (2.2)

Table 2.1 describes three examples of continuous functions that are commonly

used in functional programming: first, rest, and cons. Continuous, monotonic

functions of a complete partial order have a least fixed point that can be

computed.

Table 2.1: Examples of continuous functions.

function behavior behavior for ⊥
first(U) returns first token of stream U first(⊥) = ⊥
rest(U) returns stream U with first token removed rest(⊥) = ⊥

cons(x, U) inserts token x at beginning of stream U
cons(⊥, U) = ⊥
cons(x,⊥) = [x]

2.2.2.3 Least Fixed Point

The Kleene fixed-point theorem [50] states that every continuous func-

tional mapping f : X → X between partially ordered sets has a unique least

fixed point. The solution is computed by iterating the function f on the least

element ⊥ of X, which gives the increasing chain

~X = [⊥, f(⊥), f(f(⊥)), · · · , fn(⊥), · · ·] (2.3)

The unique least fixed point of the function f is simply the supremum of the

increasing chain sup(~X) with ~X as defined in (2.3). This increasing chain ~X

36

f

g
U

f
V

Figure 2.6: Recursive definition of a process f.

may grow to be of infinite length (just as queues in a process network may be

unbounded). By defining a function f recursively (where the process is defined

in terms of itself) and using mathematical induction, the least fixed point may

still be computed. Figure 2.6 shows a graphical representation of a sample

process f that is recursively defined. Written as equations, it is recursively

defined as f(U) = f(g(U)).

By applying this approach to a set of equations (describing processes

in a process network) and solving for the least fixed point for the system of

equations, Kahn [35] proves that the history of the streams (and queues) in the

network can be analytically computed. Further, this solution is a property of

the system of equations and does not vary with execution order or concurrent

operation of processes in the system. We now return to Kahn’s example.

2.2.3 Proving Kahn’s Assertions for a Simple Example

The processes in Kahn’s simple example (Figures 2.2, 2.3, and 2.4)

can be defined recursively in terms of the continuous, monotonic functions in

37

Table 2.1. Process g, with two outputs, can be separated into two continuous

functions, g1 and g2.

f(U, V) = cons(first(U), cons(first(V), f(rest(U), rest(V)))) (2.4)

g(U) = (g1(U), g2(U)) (2.5)

g1(U) = cons(first(U), g1(rest(rest(U)))) (2.6)

g2(U) = cons(first(rest(U)), g2(rest(rest(U)))) (2.7)

h(x, U) = cons(x, U) (2.8)

The process f (described by function f) is represented graphically in Figure 2.7.

All of the functions describing the simple example from (2.4) to (2.8) are

therefore also continuous and monotonic. Similarly, any process that uses the

simple blocking get and non-blocking put semantics can be defined recursively

and has a corresponding set of continuous, monotonic functions [35].

The set of functions that describe such a system is a set of fixed point

equations over complete partial orders, in which the operators are continu-

ous. This set of equations has a unique least fixed point, and that solution

corresponds to the history of tokens produced on the queues [35].

The system that is Kahn’s simple example (Figures 2.1 – 2.5) can be

38

f

U

V

f irst

rest

first
rest

cons

consf

W

Figure 2.7: Recursive definition of process f from Figure 2.2.

described by the following system of equations:

X = f(Y, Z) (2.9)

Y = h(0, S) (2.10)

Z = h(1, T) (2.11)

(S, T) = g(X) (2.12)

By solving for X and splitting g as before in (2.5), this system of equations

can be reduced to a single equation:

X = f(h(0, g1(X)), h(1, g2(X))) (2.13)

Kahn [35] proves by structural induction that the history of stream X is an

infinite alternating sequence of zeros and ones.

39

Parks [35] alternatively solves for (S, T) and illustrates the iterative

procedure to solve for the least fixed point. Here, the single system equation

reduces to:

(S, T) = g(f(h(0, S), h(1, T))) (2.14)

Iterating (2.14) by beginning with the empty sequence for each stream gives

the following history:

(S0, T0) = (⊥,⊥) (2.15)

(S1, T1) = g(f(h(0,⊥), h(1,⊥))) = ([0], [1]) (2.16)

(S2, T2) = g(f(h(0, [0]), h(1, [1]))) = ([0, 0], [1, 1]) (2.17)

(S3, T3) = g(f(h(0, [0, 0]), h(1, [1, 1]))) = ([0, 0, 0], [1, 1, 1]) (2.18)

(Sn, Tn) = g(f(h(0, Sn−1), h(1, Tn−1))) = ([0, 0, 0, · · ·], [1, 1, 1, · · ·]) (2.19)

Proving by induction, sup(~S) = [0, 0, 0, · · ·] and sup(~T) = [1, 1, 1, · · ·]. Using

these results with (2.9) to (2.11) we conclude that

sup(~Y) = h(0, sup(~S)) = [0, 0, 0, · · ·] (2.20)

sup(~Z) = h(1, sup(~T)) = [1, 1, 1, · · ·] (2.21)

sup(~X) = f(sup(~Y), sup(~Z)) = [1, 0, 1, 0, · · ·] (2.22)

Equation (2.22) matches the result from Kahn [35], thereby analytically solving

for the history of queue X and answering the first two questions raised about

this simple example in Section 2.2.1. Kahn states the following:

40

The simplicity of the program and the proof produced should not

induce the reader into believing that only very simple minded

proofs are feasible.

All programs comprised of processes that use the simple blocking get and non-

blocking put semantics can be described as a system of continuous equations

on streams. The unique fixed point solution is a function of the values of the

streams [35]. The fact that the fixed point solution of the network equations

corresponds to the behavior of the executing processes is sometimes called the

Kahn Principle [38][51].

More concretely, the Process Network model of computation is both

composable and determinate. Processes written to obey this model can be

combined with hierarchy and clustering to create larger, more complex sys-

tems. Individual process behavior can be analyzed and tested in isolation,

because processes are modular and self-contained. As long as the externally

visible behavior of a process is unchanged, differing internal details will not

introduce perturbations in the remainder of the system. The value of the his-

tory of tokens on all of the queues depends only on the solution to the fixed

point equation, not on execution order of the processes in the system.

The only exception to this solution is an incomplete execution, in which

at least one process does not execute to completion. In an incomplete execu-

tion, the program will produce less output than the solution to the fixed point

equation. What is produced is correct. Kahn [35] mentions an unfair scheduler

(which starves a ready process) as something that could cause an incomplete

41

execution. An unfair scheduler addresses Kahn’s final question raised about

the simple example in Section 2.2.1. It is well known that the Kahn Princi-

ple hinges on fair scheduling of the processes, where fairness means that all

processes that can make progress should make progress at some point [38][52].

Fixed point equations can also be used to describe recursive Process

Networks, where continuous functions on streams are defined recursively. Such

continuous mappings describe a complete partial order where f v g if and only

if ∀X, f(X) v g(X). This leads to the potential for unbounded parallelism, in

which an unbounded number of processes may compute in parallel. The Sieve

of Eratosthenes case study in Section 6.2 is an example of such unbounded

parallelism.

2.2.4 Termination

Just like determinism, whether a Process Network program will termi-

nate is given only by its definition and is not affected by the execution order of

the processes in the system [53]. The least fixed point of the system of equa-

tions describing the program determines the value (and therefore the length)

of every stream in the program. If the length of every stream in the solution

is finite, then the program will terminate. If one or more stream is of infinite

length, the program will never terminate.

Kahn’s simple example in Figure 2.1 produces an infinite number of

tokens and is non-terminating. By removing a single process we change it to a

terminating program, as in Figure 2.8. The modified program can be described

42

f

h(0)
Y

g
X

T

S

Figure 2.8: A terminating Process Network program.

by the single system equation:

(S, T) = g(f(h(0, S), T)) (2.23)

Again finding the least fixed point by iterating (2.23) gives the following result:

(S0, T0) = (⊥,⊥) (2.24)

(S1, T1) = g(f(h(0,⊥),⊥)) = ([0],⊥) (2.25)

(S2, T2) = g(f(h(0, [0]),⊥)) = ([0],⊥) (2.26)

Streams S and T (and all others in the network) have finite length, so the

program terminates.

The least fixed point solution determines the content and length of

every stream, including the ordering of tokens in each stream, but says nothing

about the execution order in which tokens are produced. There are generally

many possible execution orders that can lead to the least fixed point. In a

complete execution of a Process Network, the result corresponds to the least

fixed point solution and none of the streams can be extended. In a partial

43

execution, one or more of the streams can still be extended and the least fixed

point solution has not been reached.

Parks [36] defines a terminating Process Network program to be one

where all complete executions have a finite number of operations, and a non-

terminating program to be one where all complete executions have an infinite

number of operations. He also points out that determining whether a general

Process Network program will terminate is not possible in finite time. This is

related to the halting problem for Turing machines, which is undecidable in

finite time.

Parks’s [36] main contribution is to take Kahn’s unbounded queue

model and attempt to implement Kahn Process Networks in bounded mem-

ory when possible, by using clever scheduling. Park’s bounded scheduling

approach is discussed in the next section.

2.3 Bounded Scheduling of Process Networks

The previous section shows that a Process Network is determinate.

That is, the history of tokens on all of the queues depends only on the solution

to the fixed point equation and not on the execution order of the processes in

the system. However, the execution order (or schedule) can affect the bound-

edness of a Process Network program.

Boundedness is related to the number of unconsumed tokens in the

queues of a Process Network during its execution. For some Process Net-

44

work programs, the queues will grow to be of infinite length, and are therefore

impossible to implement in finite memory. For bounded Process Network pro-

grams, the number of unconsumed tokens in queues may be finite and the

program can be implemented in finite memory. A Process Network program

with infinite length streams may still be bounded. For example, Kahn’s simple

example in Fig. 2.1 has infinite (and non-terminating) result streams in the

least fixed point solution. However, it is bounded because there are only ever

a finite number of unconsumed tokens in the queues.

This section discusses scheduling policies that have been developed to-

ward implementing Process Networks in bounded memory. First we define

execution order and boundedness more rigorously.

2.3.1 Execution Order

We define the execution order of a Process Network to be the order of

the get and put operations in the system, as in Parks [36]. Given the stream

X = [x0, x1, x2, . . .], tput(x0) is the time that token x0 was written (with put)

into the associated queue and tget(x0) is the time that token x0 was read (with

get) from the associated queue. A token must be written before it can be read,

so tput(xi) ≤ tget(xi) for every token and every queue in a Process Network.

The fact that the queues have FIFO behavior also gives, for all i and j that

are indices of tokens in a queue, that

tget(xi) ≤ tget(xj)←→ tput(xi) ≤ tput(xj) (2.27)

45

Some operations can occur simultaneously; e.g. if a process produces two to-

kens xi and xi+1 simultaneously, then tput(xi) = tput(xi+1). The processes can

impose additional restrictions on ordering. The function f from Figure 2.2 in-

terleaves two input streams into a single output stream, and is defined mathe-

matically as W = f(U, V). This process reads alternately from the two inputs

and imposes an order on its input tokens,

tget(ui) ≤ tget(vi) ≤ tget(ui+1) ≤ tget(vi+1) ≤ · · · (2.28)

Because the process writes to its output W after reading from each input

stream U and V , it also imposes the order

tget(ui) ≤ tput(w2i) ≤ tget(vi) ≤ tout(w2i+1) ≤ · · · (2.29)

A sequential execution of a Process Network is a total ordering of all

get and put operations. For any pair of operations (on any of the queues)

the execution schedule dictates an ordering, e.g. either tget(xi) ≤ tput(yj) or

tput(yj) ≤ tget(xi). However, a parallel execution is not so ordered; it is only

a partial ordering of the operations. For some operations the ordering is not

given by a schedule and is unknown, e.g. tput(yi) and tput(zi) in Figure 2.1.

Any execution order must satisfy all of the ordering restrictions: write-

before-read for each token, FIFO queues, and any orders imposed by the defi-

nitions of the processes in the network. Given that processes can be arbitrarily

complex, the ordering restrictions imposed by the processes may not be fully

characterized. In general, there will be many possible execution orders that

46

satisfy all of the restrictions. I can now define boundedness of a Process Net-

work.

2.3.2 Boundedness

Fig. 2.9 is a simple example that can illustrate the definitions of different

types of boundedness for Process Networks, as previously defined by Parks [36].

If process A eternally produces single tokens and process B eternally consumes

single tokens, then the number of unconsumed tokens that accumulate on

queue P depends on the execution order of A and B.

A queue is defined to be bounded by b if there exists at least one com-

plete execution of the Process Network in which the number of unconsumed

tokens in the queue does not exceed b. A queue is said to be bounded if there

exists a finite constant b such that the queue is bounded by b. A Process Net-

work is defined to be bounded by b if every channel in the network is bounded

by b. A Process Network is bounded if there exists a finite constant b such

that it is bounded by b. If A and B in Fig. 2.9 are always scheduled to execute

alternately, then P would only ever contain a single unconsumed token and is

bounded by 1. If A executes b times before B executes, then P will have at

most b unconsumed tokens. The queue P and the Process Network in Fig. 2.9

are bounded (when B consumes data as defined) because there exist complete

executions with a finite number of unconsumed tokens. However, this exam-

ple is not strictly bounded because some of the (infinite number of) execution

orders are unbounded.

47

A B
P

Figure 2.9: A simple Process Network program.

A queue is defined to be strictly bounded by b if the number of uncon-

sumed tokens in the queue does not exceed b for all complete executions of

the Process Network. A queue is said to be strictly bounded if there exists

a finite constant b such that the queue is strictly bounded by b. A Process

Network is defined to be strictly bounded by b if every channel in the network

is strictly bounded by b. A Process Network is strictly bounded if there exists

a finite constant b such that it is strictly bounded by b. Regardless of the

choice of b, the Process Network in Fig. 2.9 always has an execution order in

which more than b unconsumed tokens are present on P , so it is not strictly

bounded. If we were to alter the behavior of process B in Fig. 2.9 such that

it never consumes tokens, then P would increasingly fill with tokens and both

P and this Process Network would be unbounded.

Kahn’s simple example from Fig. 2.1 is strictly bounded because its

queues are strictly bounded. For all execution orders, queues S, T , Y , and

Z can never contain more than a single unconsumed token, and are therefore

strictly bounded by 1. For all execution orders, queue X can never contain

more than two unconsumed tokens, and is therefore strictly bounded by 2.

Kahn’s simple example from Fig. 2.1 is strictly bounded by 2.

48

With the definitions for bounded and strictly bounded as provided, a

Process Network can be bounded even if it has an unbounded number of queues

such as in a recursively defined Process Network. If a Process Network is not

bounded, then it is unbounded. That is, at least one channel is not bounded

for all complete executions of the Process Network.

Any arbitrary Process Network program can be transformed to be

strictly bounded by adding a feedback queue for each existing queue and chang-

ing every process’s interaction with queues. This transformation is the key to

Parks’s bounded scheduling of Process Networks.

2.3.3 Scheduling for Boundedness

For some restrictive subsets of Process Networks such as Synchronous

Dataflow [41][42], it is possible to compile a finite schedule that can be repeat-

edly executed. However, for general Process Networks the questions of termi-

nation and boundedness are undecidable in finite time and so the program must

be scheduled dynamically. If the program being executed is non-terminating,

then the dynamic scheduler conveniently has infinite time to determine these

properties. Parks [36] lists two requirements for such a dynamic scheduler:

Axiom 2.3.1. (Complete Execution) The scheduler should implement a com-

plete execution of the of the Kahn Process Network program. If the program

is non-terminating, then it should be executed forever without terminating.

Axiom 2.3.2. (Bounded Execution) The scheduler should, if possible, execute

the Kahn Process Network program so that only a bounded number of tokens

49

ever accumulate on any of the queues.

When these requirements conflict, Parks’ intention was to prefer a complete,

unbounded execution to a partial, bounded execution. For Process Network

programs that are bounded (which is a property of the program, not the exe-

cution order), some execution orders lead to bounded queue sizes. Parks [36]

presents a scheduling policy intending to always execute bounded programs

in bounded memory. Parks claims that terminating programs terminate as

expected when using this scheduling policy. He also claims that in the case

of an unbounded program, the scheduling policy will execute forever (or as

long as memory is available) and not introduce deadlock. Counterexamples

to Parks’ scheduling policy (where it leads to a partial, bounded execution)

were later presented [38], but his general approach is a seminal step toward

bounded scheduling of Process Networks.

Any arbitrary Process Network program can be transformed to be

strictly bounded by adding a feedback queue for each existing queue as in

Fig. 2.10 and modifying each process [36]. Before a process can write a token

to an existing queue, it must read a token from the associated feedback queue.

When a process reads a token from an existing queue it also writes a token to

the associated feedback queue. With this transformation, the initial number

of tokens on the feedback queue strictly bounds the number of tokens that can

ever be present on the existing queue. For example, if Pf initially contains

one token, then A and B must alternate and P is strictly bounded by one.

50

A B
P

Pf

Figure 2.10: A feedback queue makes Fig. 2.9 strictly bounded.

However, this transformation may introduce the side effect of artificial dead-

lock and cause the program to terminate earlier than it would have without

the transformation. This is in contrast to a true deadlock that a terminating

program would reach naturally (and without the transformation).

Parks’s approach is to transform the program graph G to produce the

semantically equivalent feedback graph G0 that is strictly bounded by b0. If

the program executes without stopping then a complete, bounded execution

has been realized. If execution stops and the result is only a partial execution

of the original program graph G, then we have reached artificial deadlock and

the bound b0 was too small. We must choose a new larger bound b1 > b0

and try again. If the program is bounded, we know that a bound b exists

and is finite. This approach will eventually discover a bound bN ≥ b where a

complete execution of GN corresponds to a complete execution of the original

graph G. Parks [36] states:

So we see that this bounded scheduling policy has the desired

behavior for terminating and non-terminating programs, strictly

bounded, bounded and unbounded programs. This is important

because termination and boundedness are undecidable. There will

51

always be programs that we cannot classify, so our scheduling pol-

icy must have a reasonable behavior for all types of programs.

Parks points out that any scheduling policy can be used for the processes in

the transformed graph, and any execution order will lead to bounded buffering

on the queues if the original graph is bounded.

There is no reason to increase the capacity of every queue equally. If

execution stops because of an artificial deadlock, then at least one process is

blocked and attempting to write to a full queue. By increasing the capacity

of one of these full queues, the execution can continue. Parks argues that it is

sufficient to increase the full queue with the smallest capacity, and this will pre-

vent queues from growing without bound. This approach can use significantly

less memory than if the capacity of every queue is increased equally.

Rather than actually executing a transformed graph, this leads to a set

of dynamic scheduling rules at each process in the system:

1. Block when attempting to read from an empty queue,

2. Block when attempting to write to a full queue, and

3. On artificial deadlock, increase the capacity of the smallest (deadlocked)

full queue such that execution can continue.

Parks states that global deadlock of the network, in which no process is able

to execute, is required for detecting and resolving an artificial deadlock. How-

ever, not all artificial deadlocks result in a global deadlock. Geilen and Basten

52

void A(int n , oqueue<int> P)
{

while (n>0) {
P. put (n) ;
n −= 1 ;

}
}

Figure 2.11: A function, A, that produces n output tokens and terminates.

show [38] an example where Parks’ algorithm produces an incomplete exe-

cution, and also point out that it cannot schedule a PN graph composed of

disjoint components.

Geilen and Basten argue that a dynamic deadlock detector for Process

Networks must detect local deadlocks. If any cycle of processes is unable to

proceed because of a queue of insufficient length in the cycle, then artificial

deadlock should be declared and resolved by increasing the length of the small-

est full queue in the cycle. This holds regardless of whether processes outside

of the deadlocked cycle can execute.

Local deadlock detection increases the set of Process Network programs

for which bounded scheduling will lead to a complete execution. However,

Geilen and Basten argue that bounded scheduling cannot provide a complete

execution for a large class of Process Network programs [38].

53

2.3.4 Complete Execution with Bounded Scheduling

Geilen and Basten argue that bounded scheduling will not yield a com-

plete execution of a Process Network program unless all tokens that are pro-

duced in the program are also eventually consumed. They call such Pro-

cess Network programs effective. This restriction can be particularly limiting

for signal processing systems that use sliding window algorithms (and firing

thresholds in general). Consider one way to implement an FIR filter of order

N is to require N + 1 input samples to compute a single output sample. It

would be expected that such a filter would terminate with N unconsumed

tokens at its input. It seems reasonable that bounded scheduling with such a

filter should not preclude a complete execution, despite not being effective.

I show that effectiveness is too strong of a restriction: there exist non-

effective Process Network programs that will achieve complete execution when

using bounded scheduling. In fact, there exist an infinite number of such pro-

grams. I produce a set of counterexamples to the requirement for effectiveness

by defining processes A and B as shown in Figs. 2.11 and 2.12, and by using

the trivial PN program in Fig. 2.9.

The Process Network program in which process A feeds process B (in

Figs. 2.11 and 2.12) is not effective when n > m. When executed with (Kahn’s

original) unbounded scheduling rules, this program will terminate with n−m

unconsumed tokens. By using bounded scheduling and defining a queue bound

bP for queue P , the execution will be complete if bP ≥ n − m. In the case

that bP < n − m, process B will terminate before a complete execution has

54

void B(int m, iqueue<int> P)
{

while (m>0) {
P. get () ;
m −= 1 ;

}
}

Figure 2.12: A function, B, that consumes m input tokens and terminates.

been reached. Additionally, process A will be blocked and waiting on queue P

when process B terminates. Parks’s transformation to make a Process Network

strictly bounded [36] does not discuss behavior for when a process terminates.

When a consuming process terminates, it leaves a dangling queue without a

consumer. It is reasonable to assume that a queue without a consumer is

bounded by zero because it never needs to store a token. Also, a producer

process need never block on a queue with no consumer. When process B in

this example terminates, any tokens currently in the queue can be discarded.

Process A can then execute to completion. Even though the queue bound

is smaller than the number of unconsumed tokens, bounded scheduling has

yielded a complete execution.

Clearly Parks’ original specification for a (global) dynamic deadlock

detector significantly reduces the set of Process Network programs for which

bounded scheduling will lead to a complete execution. Even with a local dy-

namic deadlock detector, Geilen and Basten argue that to achieve a complete

execution with bounded scheduling, a Process Network program must be effec-

55

tive. However, I have shown that there are an infinite number of non-effective

programs that yield a complete execution. Geilen and Basten provide exam-

ples of Process Network programs for which bounded scheduling will not yield

a complete execution [38]. In each of their examples, incomplete execution

occurs because at least one process does not read from one of its inputs for an

indefinite amount of time.

2.3.5 Fair Processes and Scheduler

I argue that to achieve a complete execution with bounded scheduling,

a Process Network must be fair.

Definition 2.3.1. A Process Network is fair if it has a fair scheduler, and each

of the processes in the network is fair with respect to its inputs and outputs.

Kahn [35] requires a (loosely) fair scheduler to achieve a complete execution

even with unbounded queues:

A parallel program can be safely simulated on a sequential machine,

provided the scheduling algorithm is fair enough, i.e. it eventually

attributes some more computing time to a process which wants

it. If this algorithm is not fair however, the only thing that may

happen is for the parallel program to produce less output than

what could be expected. But what is produced is correct.

If the scheduler is fair, then eventually the network will converge to the unique

least fixed point.

56

If each process in the network is fair with respect to its inputs and

outputs, then bounded scheduling (with artificial deadlock resolution) will

achieve a complete execution for a bounded program.

Definition 2.3.2. A process is fair with respect to its inputs and outputs if,

when that process is making progress, it will eventually consume from each of

its inputs and produce on each of its outputs.

Stated another way, a fair process cannot indefinitely neglect any of its inputs

or outputs. A fair scheduler and fair processes will allow the network to proceed

and eventually converge to the least fixed point.

This definition assumes that the process eventually has sufficient input

tokens available and sufficient output free space available. If a process never

progresses because it is blocked reading or writing a queue, that does not

render it unfair. For example, a process that would access each of its queues in

round-robin fashion is fair, even though it could be prevented from progressing

by a deadlock condition. A process is also fair if it releases an input (or

output) indicating that it will not read (or write) more data on that queue.

A process that terminates is also fair because its queues can be released upon

termination. A terminated process therefore does not impede progress of the

network.

When a consumer indefinitely ignores an input, the associated queue

may become full and indefinitely block the associated producer process. This

blocked process prevents the Process Network from progressing toward a com-

57

plete execution, as it would in the absence of bounded scheduling. When

a producer indefinitely ignores an output, it can similarly impede progress

toward a complete execution.

By requiring all processes to be fair, any full queues are eventually and

periodically read from, and any such blocked producers will eventually make

progress. As long as processes that are blocked on full queues can eventu-

ally make progress, the Process Network will eventually proceed and converge

to the least fixed point. That is, given a fair Process Network program, a

bounded scheduler will find a complete and bounded execution if one exists.

For an unbounded Process Network, the required dynamic deadlock detector

will repeatedly detect artificial deadlocks and grow queue bounds until mem-

ory is exhausted. Just as the Kahn Principle requires a fair scheduler [38] for a

complete execution, bounded scheduling requires fair processes in the network

for a complete execution.

An effective Process Network is typically also a fair one, so assertion of

fairness for complete execution with a bounded scheduler is not in conflict with

the conclusions of Geilen and Basten [38]. There exist pathological examples

of Process Networks that are effective but not fair (e.g. no tokens are ever

produced or consumed). However, an effective program typically must read

from its inputs for it to consume all of the tokens that have been produced.

There also exist Process Networks that are not fair, but can be executed to

completion with a bounded scheduler. For example, a producer that never

writes any outputs could be connected to a consumer that never reads any

58

inputs. Even though both processes (and the Process Network) are unfair, no

tokens will ever accumulate and execution progress will never be impeded.

It is sometimes easy to determine whether a process is fair or unfair.

For example, a very large class of processes that implement common signal

processing operations are fair because they read from their inputs, perform a

computation, and write a result to their outputs. However, fairness is generally

undecidable in finite time. Sometimes the behavior of a process depends on

its input values (e.g. a selector), and the determination of fairness depends on

the inputs to the process (and ultimately the entire network). Determining

whether a Process Network is effective is also generally undecidable in finite

time.

However, if the vision of Process Network is to model “infinite streams

of data samples [that] are incrementally transformed by a collection of pro-

cesses” [36], then a very large class of interesting problems can be solved using

processes that are easily shown to be fair. Signal processing systems that in-

clude sliding window algorithms are likely to be fair but not effective. Having

a complete execution with bounded scheduling for this large class of Process

Network systems is an important result.

Even for fair Process Networks, bounded scheduling requires a correct

and complete dynamic deadlock detector. Chapter 3 is dedicated to deadlock

detection. Computation Graphs, discussed in the following section, are fur-

ther evidence that non-effective programs can achieve complete execution with

bounded (and even static) scheduling.

59

2.4 Computation Graphs

Computation Graphs is a model of computation developed by Karp and

Miller [46], and Computational Process Networks (the subject of this disserta-

tion) use the concept of firing thresholds from this model. The Computation

Graphs model is similar to Process Networks in that it is a dataflow model

and programs can be represented as a directed graph of compute nodes and

communication channels. However, Computation Graphs are significantly less

expressive than Process Networks. Because of restrictions in the model, Com-

putation Graphs have necessary and sufficient conditions for both termination

and boundedness, and a static execution schedule for a given program can be

determined at compile time [46].

A Computation Graph consists of a finite set of nodes n1, . . . , nl and a

set of queues d1, . . . , dt. Each queue di is directed from one node np to another

node nc and behaves as a one-way FIFO. Each queue di has four non-negative

constant integer parameters associated with it:

• Ai, the number of tokens initially present on queue di,

• Ui, the number of tokens inserted in queue di at each firing of the asso-

ciated producer node np,

• Wi, the number of tokens removed from queue di at each firing of the

associated consumer node nc, and

60

• Ti, the number of tokens that must be present on queue di before the

associated consumer node nc can fire, where Ti ≥ Wi.

This last parameter, Ti is called the firing threshold, and allows a node to

require the presence of more tokens than it will consume upon firing. The

concept of a firing threshold has applications in DSP systems, where it is

common to have algorithms that operate on continuous, overlapping streams

of data, or sliding window algorithms. Examples include filters and overlap-

save FFT algorithms.

Consider one way to implement an FIR filter of order N is to require

N+1 input samples to compute a single output sample. In this case, T = N+1

and W = 1 for the filter’s input queue, and U = 1 for the filter’s output queue.

In this implementation, the filter node is memoryless; i.e. the N most recent

samples need not be stored in the node state because they are present on

the input queue. Synchronous Dataflow [41] is a special case of Computation

Graphs in which the number of tokens consumed upon firing of an actor is

always equal to the firing threshold (Wi = Ti).

2.5 Conclusion

This chapter covers Kahn’s formal Process Network model [35]. It intro-

duces his get and put semantics and recreates his illustrative sample program.

It details Kahn’s mathematical representation of Process Networks: functions

that map streams onto streams. The formal consequences of this model are

61

that the tokens in the queues are determinate and do not depend on execution

order, including concurrent execution. The set of mathematical equations that

describe a Process Network can be solved for the unique least fixed point, and

this corresponds to the queue contents in an execution.

Kahn’s model requires potentially infinite queues. This chapter also

discusses execution of Process Networks in bounded memory by using clever

scheduling and an online deadlock detector. Parks [36] introduces the gen-

eral approach for bounded scheduling, and Geilen and Basten [38] refine it.

Geilen and Basten also discuss which set of Process Network programs can be

executed to completion using bounded scheduling techniques and call this set

effective. I argue for a set of fair Process Network programs that can achieve

complete execution with bounded scheduling. Fair programs are more likely

to occur in signal processing systems that use sliding window algorithms.

Finally this chapter introduces Computation Graphs, a model similar

to Process Networks, from which this dissertation leverages the concept of

firing thresholds.

Chapter 3, which follows, is dedicated to deadlock detection. Deadlock

detection is required for bounded scheduling of Process Networks.

62

Chapter 3

Deadlock Detection

In multi-tasking systems, multiple processes may compete for finite

resources. If a process requests a resource that is not available (in use by a

different process), it may be suspended and wait until the resource is available.

Deadlock is a situation in which multiple processes are unable to proceed

because each is waiting on one of the others in order to continue.

As discussed in Chapter 2, dynamic deadlock detection and resolution

is required for a complete execution of Kahn Process Networks when using

a bounded scheduler. Although deadlock detection is a widely studied sub-

ject, one must carefully select an appropriate distributed deadlock detection

algorithm as it applies to bounded scheduling of Process Networks.

Section 3.1 introduces deadlock and wait-for graphs. Section 3.2 sum-

marizes some previous work in distributed deadlock detection. Section 3.3

details the distributed dynamic deadlock detection and resolution (D4R) al-

gorithm, suitable for use in a distributed Process Network implementation.

Section 3.5 includes case studies that illustrate the effectiveness of the D4R

algorithm. Section 3.6 concludes this chapter.

63

3.1 Introduction

A multi-tasking computer system consists of a finite number of re-

sources to be shared among a number of competing processes [54]. Memory,

CPU time, and I/O devices are all examples of resources. Resources can be

partitioned into several types, each consisting of some number of identical in-

stances (such as multiple CPUs in an SMP system). If a process requests a

resource type, the allocation of any instance of the type will satisfy the request.

A process must request a resource before using it, and then release

the resource when finished using it. During normal operation, a process may

utilize a resource in only the following sequence:

1. Request. If the request cannot be granted immediately (e.g. the resource

is in use by another process), then the requesting process must wait until

it can acquire the resource.

2. Use. The process can operate on the resource.

3. Release. The process releases the resource, and it is now available for

use by other processes.

In an operating system, these requests and releases of system resources are

made through system calls.

A set of processes is in a deadlock state when every processes in the

set is waiting for an event that can be caused only by another process in the

64

set. Deadlock can arise if the four following conditions hold simultaneously in

a system:

1. Mutual exclusion. At least one resource must be non-sharable; that is,

only one process at a time can use the resource. If another process re-

quests that resource, it must be wait until the resource has been released.

2. Hold and wait. A process must be holding at least one resource and

waiting to acquire additional resources (that are held by other processes).

3. No preemption. Resources cannot be preempted; that is, a resource can

be released only voluntarily by the process holding it.

4. Circular wait. A set {P0, P1, . . . , PN} of waiting processes must exist

such that P0 is waiting for a resource held by P1, P1 is waiting for a

resource held by P2, . . ., Pn−1 is waiting for a resource held by Pn, and

Pn is waiting for a resource held by P0.

All four conditions must hold for a deadlock to occur [54].

There exist several models for processes requesting resources in a sys-

tem [55]. The simplest model is single-resource, in which a process can have

only a single outstanding resource request. In this model, a blocked process is

waiting for only one other process. Other examples of resource request models

include the AND and OR models. In the AND model, a process can simultane-

ously request multiple resources and the request is satisfied only after all of the

65

P1 P2 P3

Figure 3.1: An example of a wait-for graph.

resources are acquired. In the OR model, a process can simultaneously request

multiple resources and the request is satisfied if any one of the resources are

acquired. The AND-OR model is a generalization of these models, in which a

process may specify any combination of and and or for a resource request.

Given a set of processes that share resources, we can construct a wait-

for graph, which is a directed graph that contains a node for every process.

An edge indicates that a process is blocked and waiting for another process.

The direction of the wait-for edges is from the waiting process to the process

being waited on. Fig. 3.1 shows an example of a wait-for graph in which two

processes P1 and P3 are waiting on process P2. In the single-resource model,

the out-degree of a node in the wait-for graph can be at most one, and a cycle

in the wait-for graph indicates a deadlock. In other models, the out-degree

may be more than one, and a cycle may not always imply a deadlock.

In a Process Network, processes communicate only via the queues be-

tween them, and the resources that are being shared are the tokens that the

processes are passing between them. When a process reads from an input

queue, it is requesting a (token) resource and waits until it can acquire the

resource. A process releases resources (for other processes to acquire) by writ-

66

ing tokens to an output queue. Although the set of resources is not fixed,

processes still follow the cycle of request, use, and release for resources.

In the case of bounded scheduling (according to Parks’ feedback trans-

formation [36]), a process is requesting a resource when writing to an output

queue: it is reading a token from the feedback queue that indicates space is

available for writing. One could also consider a process to be waiting for the

resource of free space in the output queue. Similarly, reading from a input

queue releases the resource of a feedback token (or free space) in the queue.

The deadlock conditions hold for Process Networks. The mutual exclu-

sion condition holds because queues have only a single endpoint from which

tokens can be read and can therefore only be used by the single destination

process. The hold and wait condition is also in effect for processes with both

input and output queues; a processes, while waiting on tokens from an in-

put queue, is holding tokens to be written to an output queue. In the case

of bounded scheduling, hold and wait is in effect for a process with any two

queues whether they are inputs or outputs. The non-preemption condition

also holds because a process can only write to a queue voluntarily.

According to Kahn’s definition [35], the Process Network model is a

single-resource model. A process can only read from one input queue at a

time and, if blocked, it is waiting for the producer process at the other end

of the queue. In the case of bounded scheduling, a process that is blocked

writing is waiting for the respective consumer process. Cycles in the wait-for

graph imply a deadlock.

67

This indicates that we can apply general deadlock detection algorithms

for the single-resource model to the problem of deadlock detection in a Process

Network. The following section describes previous work in deadlock detection.

3.2 Previous Work

Deadlock prevention is inefficient and impractical in distributed sys-

tems, so deadlock detection in these systems is typically the best approach

to handle deadlocks [55]. Deadlock detection is a very widely covered topic.

Singhal [56] provides a survey of deadlock detection algorithms prior to 1990.

The Process Network model is defined to be a single-resource model, so it is

reasonable to focus on algorithms that fit this model.

Singhal [56] lists correctness criteria for deadlock detection algorithms:

1. Progress (No undetected deadlocks): the algorithm must detect all exist-

ing deadlocks in finite time.

2. Safety (No false deadlocks): the algorithm should not report deadlocks

that do not exist.

Singhal states that it is difficult to design a correct distributed deadlock de-

tection algorithm, and that many algorithms reported in the literature are

incorrect [56].

Deadlock detection algorithms can generally be categorized as central-

ized or distributed. In a centralized algorithm, a designated control node is

68

responsible for constructing the global state of the graph and searching it for

cycles. The control node may maintain the global state at all times, or it

may build it when deadlock detection is to be carried out. One method for

constructing the global state is by taking a snapshot of the current state of

the distributed system. Another method is for each node to send its local

wait-for graph information to the control node, so that it can construct the

global graph. Centralized algorithms are straightforward and easy to imple-

ment, because the control node contains the entire graph state. However,

centralized algorithms suffer from bottlenecks at the control node (leading to

limited scalability) and a single point of failure [56].

In a distributed deadlock detection algorithm, the responsibility of

deadlock detection is shared equally among the nodes. The global state is

not contained in any one place, but is spread over the many nodes. In such

a distributed algorithm, there is no single point of failure and no bottleneck,

so the algorithm is scalable. Potential disadvantages of distributed algorithms

include deadlocks that are detected multiple times and in multiple nodes, and

determining which of several distributed nodes should resolve a detected dead-

lock [56]. Proof of correctness of distributed deadlock detection algorithms is

also said to be difficult [56].

Singhal [56] also mentions hierarchical algorithms, in which nodes are

arranged hierarchically and a node detects deadlocks involving only its descen-

dants. This has the advantages of distributed algorithms while attempting to

reduce overhead and improve efficiency.

69

A common method used in distributed deadlock detection algorithms

is edge-chasing. In edge-chasing algorithms, special messages called probes are

sent along the edges of the wait-for graph. (In a Process Network program, the

edges of the wait-for graph are coincident with edges in the Process Network).

When a node blocks, the node will send a probe message along each outgoing

edge. (In Process Networks and other single-resource models, the wait-for

graph can have only one outgoing edge.) If a node is not blocked, it will

discard any probe messages that it receives. When a node receives a probe

message that it previously sent, the wait-for graph must contain a cycle. This

condition indicates a deadlock. In edge-chasing algorithms, probe messages

can typically be a very short fixed size.

Mitchell and Merritt [40] provide a simple example of an edge-chasing

distributed deadlock detection algorithm for the single resource model. This

algorithm was originally developed for use in distributed database systems. In

the Mitchell and Merritt algorithm, each node has two labels: one public and

one private. Probe messages sent along the wait-for graph are a fixed size and

contain only the public and private labels. Probe messages may propagate

upstream in the wait-for graph, until a cycle is detected. A useful feature of

this algorithm is that only one process in the cycle will detect the deadlock.

Mitchell and Merritt show that a deadlock cycle is detected in N − 1 steps of

the algorithm, where N is the number of nodes in the deadlock cycle.

Singhal [56] shows the Mitchell and Merritt algorithm to be one of sev-

eral that requires a worst case of N2 messages to detect a deadlock (again

70

where N is the number of nodes in the deadlock cycle). In fact, Kshemkalyani

and Singhal [57] show that any edge-chasing algorithm in which nodes are

constrained to exchanging messages with immediate neighbors in the wait-for

graph take a worst case of O(N2) messages to detect a deadlock. More sophis-

ticated distributed deadlock detection algorithms than that of Mitchell and

Merritt exist, such as Chandry-Misra-Haas [58] or Kshemkalyani-Singhal [57].

However, these algorithms are attempting to address deadlock detection in

models that are more general than the single resource model. Given that their

added complexity gives no asymptotic improvement in performance when used

with the single resource model of Process Networks, the Mitchell and Merritt

algorithm appears to be the more reasonable choice for deadlock detection in

Process Networks.

An algorithm by Prieto, Willadangos, Farina, and Corboda [59] can

detect a deadlock cycle with only O(N) messages. However, this algorithm

requires that every node in the deadlock cycle can communicate directly with

any other node in the cycle. This approach is effectively reducing the number

of message by requiring N2 connections. Huang and Qi present [1] a deadlock

detection and resolution algorithm based on the algorithm of Prieto et al. [59].

Generally, the nodes in a Process Network will not be fully connected and

such an approach would require significantly more connections than an edge-

chasing algorithm. Again, the Mitchell and Merritt algorithm appears to be a

more appropriate choice for deadlock detection in Process Networks.

Olsen and Evans [60] are the first authors known to apply the Mitchell

71

and Merritt algorithm [40] to deadlock detection in a Process Network. The

application presented by Olson and Evans could detect whether a deadlock

was present, but it did not specifically locate or resolve the deadlock.

Section 3.3 presents an algorithm based on a different Mitchell and

Merritt algorithm that both detects and resolves deadlocks using process pri-

orities [40]. I call this algorithm the distributed dynamic deadlock detection

and resolution algorithm, or D4R algorithm.

3.3 D4R Algorithm

Mitchell and Merritt present a second algorithm [40] that both detects

and resolves deadlocks. This second algorithm uses process priorities, and

identifies the lowest priority process in the deadlock cycle so that it can be

resolved. The D4R algorithm assigns the process priorities such that it can

be determined whether a deadlock is real or artificial, and can identify the

node that is blocked writing to the queue that must be lengthened in order to

resolve the deadlock.

The wait-for graph of the D4R algorithm coincides with the nodes and

edges of the Process Network graph being monitored for deadlock. In the

wait-for graph, an edge indicates that a process is blocked and waiting on a

single other process. The direction of the wait-for edges is from the waiting

process to the process being waited on. For nodes that are blocked writing,

the direction of the wait-for edge is the same as in the original PN graph. For

nodes that are blocked reading, the direction of the wait-for edge is opposite

72

count
public private

count
nodeID
qSize qSize

nodeID

qID qID

Figure 3.2: D4R algorithm state data at each node.

that in the original PN graph. State for the D4R algorithm is a small table

present at each node.

3.3.1 Algorithm Description

The algorithmic state data used for D4R is shown in Fig. 3.2, consisting

of public and private sets of four unsigned numbers: a non-decreasing counter

count, a unique node identifier nodeID, a queue size variable qSize, and a second

unique identifier qID. Each process is initialized with public and private sets

equal. The public set changes as the algorithm progresses, but the private set

remains unique to that node.

Note that count and nodeID are combined into a single variable in the

algorithm by Mitchell and Merritt. The use of these variables in D4R is con-

sistent with the suggestion of “keeping the low-order bits of the label constant

and unique while increasing the high-order bits when desired [40].” The nota-

tion count:nodeID is used to show these variables concatenated into one. The

variables qSize and qID are also combined in the algorithm by Mitchell and

Merritt and serve the function of the priority variable for deadlock resolution.

73

B
L

O
C

K
TR

A
N

SM
IT

D
ET

EC
T

STATE BEFORE STATE AFTER

AC
TI

VA
TE

u v
a
q
a

t v
a
q
a

t
a
q
a

outdegree=0 t=max(u,v)+1

(u:a<v:b) or (u:a=v:b, q:x>r:y)

u
a

v
b

q rs p

v
b

v
b
r

p:w=min(r:y, s:z)
wx z y y

u
a
q
x

u
a
q
x

u
a
q
x

u
a
q
x

q
x

q
x

Figure 3.3: State transitions for the D4R algorithm.

The notation qSize:qID is used to show these variables concatenated into one.

The node state data and wait-for edges define the state of the D4R

algorithm at any time. Fig. 3.3 shows the possible state transitions for this

algorithm in the order that they occur: Block, Transmit, Detect, and Activate.

State data that is unchanging or unused in a transition has been left blank.

The Block state transition occurs when a Process Network node blocks

on a queue, creating an edge in the wait-for graph. The blocking node’s state

74

data is fully initialized, and its count variables are incremented to be greater

than that of both nodes. The qSize variable is also initialized during this

state transition. The qSize is what permits the D4R algorithm to determine

whether a deadlock is artificial, and localize the smallest full blocked queue.

The variable qSize is set as follows: when a process blocks on a write, set qSize

to the size of the blocking (full) queue; when a process blocks on a read, set

qSize = MAX UINT. Note that this is MAX UINT for the word size of the

variable, the same as if the variable were set to -1: all bits are set. Clearly

MAX UINT must be larger than any actual queue size in the implementation,

e.g. a 64-bit variable on a 64-bit architecture. The variables nodeID and qID

are both initialized to the same unique number that identifies the node in the

Process Network. Although nodeID and qID are initialized to the same value,

they will change to different values as the algorithm progresses.

The Transmit state transition occurs when a waiting process detects a

change in the public state of the node upon which it is waiting, and certain

criteria are met: if the other node’s public count:nodeID is larger than its own,

or if they are equal and qSize:qID is smaller. If the criteria are met and the

state transition occurs, then the waiting node replaces its public count:nodeID

with the one it just read, and sets its public qSize:qID to the minimum of

the two nodes. In implementation, each time a node’s public state changes, it

will notify any dependent nodes. The effect is that larger counts and smaller

qSizes migrate along the edges of the wait-for graph, in the opposite direction.

The Detect state transition occurs when a waiting process sees that

75

its entire public set matches that of the node upon which it is waiting, its

public and private qSize match each other, and its public and private qID also

match each other. It then knows that it is not only a part of a deadlock cycle,

but that it also has the smallest qSize of any node in the cycle. (If multiple

nodes have the same qSize, the node with the smallest qID will break the

tie.) Only one process will detect the deadlock, and the value of qSize tells

the type of deadlock: if qSize is MAX UINT, this is a real program deadlock

(and all nodes in the cycle are blocked on reads); otherwise this is an artificial

deadlock, and the smallest, blocked, full queue has been identified. This is

precisely the queue that must be lengthened for correct bounded scheduling

of Process Networks [38].

The Activate state transition may occur after Detect. If the deadlock

was real, the program has terminated. If it was artificial, the culpable queue

has been lengthened so that the Process Network program may continue. Of

course, Activate will also repeatedly occur after Block as the Process Network

proceeds normally in the absence of any deadlock.

3.3.2 Algorithm Proof

Portions of the D4R algorithm have intentionally been made equivalent

to the Mitchell and Merritt priority-based algorithm. The following theorem

is therefore included from their paper [40] without further proof.

Theorem 3.3.1. If a cycle of N nodes forms and persists long enough, the

lowest priority process (with the smallest qSize:qID) in the cycle will execute

76

the Detect step after at least N − 1 and at most 2N − 2 consecutive Transmit

steps.

Mitchell and Merritt assign a fixed priority to each node, whereas the

D4R algorithm dynamically sets qSize and qID each time the Block state

transition is executed. It must therefore be shown that this dynamic updating

in the D4R algorithm does not violate the rules of the original algorithm.

Lemma 3.3.2. If a node has an outdegree of 0 in its wait-for graph, it can

change the value of its private qSize and qID. That is, a node’s private qSize

and qID need only be fixed when it has non-zero outdegree in the wait-for

graph.

Proof. The private qSize and qID of a node is unused unless the node has a

non-zero outdegree. No other node can access these private variables at any

time. The deadlock detection algorithm will therefore proceed unaffected.

Theorem 3.3.3. A node can change its qSize and qID during its Block state

transition (both public and private).

Proof. Just prior to a Block state transition, a node must have an outdegree of

0 because this is a single-resource algorithm, and a process can only block on

a single queue. By Lemma 3.3.2, the node can set its private qSize and qID at

this time. Prior to executing the Block state transition, the public qSize and

qID are unused. During the Block state transition, a node’s public qSize:qID

is initialized with its private qSize:qID.

77

I have shown that I can correctly schedule bounded Process Networks

using the D4R algorithm as described in Section 3.3. The D4R algorithm

modifies that of Mitchell and Merritt [40] to set the qSize based on the size of

the queue that a node is about to block on, and whether that node is blocking

on a read or a write.

As a further discussion topic, a count that continuously increases is

not implementable for a program that never terminates. I wish to examine

the possibility of periodically resetting the count variables to prevent “rolling

over”.

Proposition 3.3.4. If a node has an outdegree of 0 and an indegree of 0 in

the wait-for graph, it can change its public and private count variables. The

nodeID variable is still unique and unchanged.

Proof. The count variables are only used when the node has non-zero outde-

gree or indegree. When both are zero, it is as if the node has never been in

a wait-for graph. Adding an arc to the wait-for graph requires a Block step,

which will increment the count variables as necessary for the algorithm.

While it is easy to determine that outdegree is 0, it is not obvious

how to inexpensively and easily determine that indegree is 0. For the current

implementation, the count variables simply must be large enough to prevent

rollover in any reasonable amount of time.

78

3.4 D4R Implementation

In addition to proving correctness, the presented D4R algorithm is

implemented in the Computational Process Network framework described in

Chapter 5. It is important to point out that this D4R algorithm can also be

applied to bound scheduling of general (not “Computational”) Process Net-

works. Goals for the CPN framework include high performance and very low

overhead, with the ability to handle high-throughput streams of data for signal

processing.

Performance is intentionally not a goal for the implementation of the

D4R algorithm. Artificial deadlock in a program is an undesired state, and

considered an exception to normal operation. In a real deadlock, as opposed to

an artificial deadlock, that portion of the program has terminated. In any case

where there is a performance tradeoff between the D4R algorithm and normal

queue operation, faster normal queue operation is preferred. This makes the

framework faster and lower overhead for programs where the minimum queue

lengths have already been determined.

The CPN framework implementation permits disabling of the D4R al-

gorithm in order to reduce overhead. This may yield an incomplete execution

for some programs, but can be beneficial when the queue sizes are already

known to be sufficiently large to prevent artificial deadlock.

Currently, when a node blocks on another node it immediately sends a

D4R message to its peer to indicate that it is attempting to perform the Block

79

state transition. Sometimes, this blocked state will simply resolve itself as the

peer node makes more data (or free space) available in the adjoining queue. By

waiting a small delay time before sending a block message, the D4R messaging

overhead would be reduced and the latency of detecting deadlocks would be

increased. The longer the delay, the lower the overhead but the greater the

latency. By varying this delay time, it could be possible to adjust between the

tradeoffs of overhead and latency in the D4R implementation. The approach of

reducing overhead by delaying the start of the deadlock detection algorithm has

been explored in the literature [61]. This is not currently implemented in D4R

for the CPN framework. The delay time currently takes on two effective values:

zero and infinity. When D4R is enabled, the delay time is zero. This yields

maximum D4R messaging overhead and the minimum latency for deadlock

detection. When D4R is disabled, the delay time is effectively infinity. This

yields no D4R messaging overhead and infinite latency for deadlock detection.

The presented D4R algorithm can dynamically detect and resolve ar-

tificial deadlocks. It also detects real deadlocks, which indicate that some

local portion of the program will make no further progress. The CPN frame-

work therefore correctly schedules bounded, fair Process Networks in bounded

memory. Because the presented D4R algorithm is based completely on local

data between connected nodes (and do not require any global synchronization)

implementation on a distributed system is straightforward and scalable.

80

A

B
P

CQ

R

Figure 3.4: A simple artificial deadlock detection and resolution example.

3.5 D4R Case Studies

To demonstrate that the D4R algorithm successfully detects and re-

solves deadlocks, a series of case studies have been implemented within the

CPN framework. These case studies include both artificial deadlocks (which

can be resolved by growing the correct queue and continuing) and a real dead-

lock (which indicate that a portion of the program has terminated). Also

included is an unbounded program.

The first case study is a simple 3-process artificial deadlock detection

and resolution, as shown in Fig. 3.4. This example is also available online in

animated form [62]. The processes A, B, and C are defined in Figs. 3.5 to

3.7. In this example, the queues P , Q, and R all begin empty and with a

capacity of one sample. The nodes in this example could proceed in any of a

large number of execution orders. However, in any of these execution orders

the D4R algorithm detects that Q is preventing A from executing because Q

is not sufficiently large. To resolve this artificial deadlock, Q must grow to size

two, and then the network can proceed unhindered.

The following is a possible execution order for the steps of deadlock

81

void A(oqueue<int> Q, oqueue<int> P)
{

while (true) {
Q. put (1) ;
Q. put (1) ;
P . put (1) ;

}
}

Figure 3.5: Implementation of node A from Fig. 3.4.

void B(iqueue<int> P, oqueue<int> R)
{

while (true) {
int x = P. get () ;
R. put (x) ;

}
}

Figure 3.6: Implementation of node B from Fig. 3.4.

void C(iqueue<int> Q, iqueue<int> R)
{

while (true) {
R. get () ;
Q. get () ;
Q. get () ;

}
}

Figure 3.7: Implementation of node C from Fig. 3.4.

82

detection and resolution in this example.

1. Initial conditions: all queues are empty and have capacity of one.

2. Node A executes and produces a single token on queue Q.

3. A attempts to produce another token, but Q is full. A initializes its D4R

state variables as it Blocks on C. qSize is 1 because A is blocked writing

and Q has a capacity of 1.

4. B attempts to read from P , which is empty. B initializes its D4R state

variables as it Blocks on A. qSize is MAX UINT because B is blocked

reading.

5. C attempts to read from R, which is empty. C initializes its D4R state

variables as it Blocks on B. qSize is MAX UINT. Note that there is

now a cycle in the wait-for graph: C → B → A→ C.

6. C performs Transmit of the public D4R variables upstream (in the wait-

for graph) to A. A now has the public D4R variables from C, except it

keeps qSize = 1, the minimum of the queue sizes.

7. A performs Transmit of the public D4R variables upstream to B. B now

has the public D4R variables from A.

8. B performs Transmit of the public D4R variables upstream to C. C now

has the public D4R variables from B.

83

9. A Detects that its D4R variables match those of C. Because qSize is

one, this is an artificial deadlock. A is blocked on the culpable queue,

Q, which must grow in order to resolve the deadlock.

10. Q grows to size two so that A can proceed.

11. A Activates and proceeds by producing a token on Q and a token on P .

12. B Activates and proceeds by consuming from P and producing on R.

13. C Activates and proceeds by consuming from R and twice from Q.

14. Each queue is again empty, and each node has returned to its beginning.

The artificial deadlock has been detected and resolved. The system can now

execute repeatedly without further deadlock.

A second case study is the detection of a real (as opposed to artificial)

deadlock as shown in Fig. 3.8. In this example, each node attempts to read

one token from its input and then writes that token to its output. However

all of the queues are empty, so none of the nodes can ever proceed. As in

the previous example, each of the nodes will execute the Block and Transmit

stages of the D4R algorithm. Eventually one of the nodes will Detect its D4R

variables in the peer that it is blocked on, and declare that a deadlock cycle has

been detected. However in this example, the detected qSize is MAX UINT.

This indicates that all processes in the deadlock cycle are blocked reading,

and that the deadlock cannot be resolved. This is a real deadlock, and the

program has terminated.

84

A

B
P

CQ

R

Figure 3.8: An example with real (as opposed to artificial) deadlock.

A B
P 1

2
Q 1

1

Figure 3.9: An unbounded example that will grow indefinitely.

A third case study is of an unbounded program as shown in Fig. 3.9. In

this example A produces 2 tokens on P and 1 token on Q, and then repeats.

B consumes 1 token from P and 1 token from Q, and then repeats. Clearly

tokens will accumulate on P . In synchronous dataflow, this would be called an

unbalanced program [41]. However, it is a valid construct in process networks,

which can be unbounded.

As this example executes, the D4R algorithm will repeatedly detect an

artificial deadlock a A, which is blocked writing to P . This artificial deadlock

will be resolved by growing P so that A can continue. This cycle will repeat,

and P will grow indefinitely, until memory is exhausted.

Two examples from the literature on bounded scheduling of process

networks are also included as case studies. Fig. 3.10 from is a simple example

of artificial deadlock from [1], but with 8 nodes. In this example, the queue

85

A B
10

w

C
10w

G

10

r

D
10

w
E

5
w

F

10
w

H
10

r

10

r

Figure 3.10: An example of artificial deadlock from [1].

A B
10

w

C

10

w

D

10

E
10

r

F
10

w

J
10

w

N

10
w

Q

5

w

G
10

w

H

10

r

K
10

w

O
10

w

10

L
10

r

P10

r

10
r

I
10

r

M
10

r

10

r

Figure 3.11: A seventeen-node deadlock resolution example from [2].

between nodes D and E will grow to resolve the artificial deadlock. Fig. 3.11

from is an example from [2] in which artificial deadlock must be detected and

resolved multiple times. First, the queue between nodes N and Q must grow.

Next, some queue between D and O must grow.

Basten and Hoogerbrugge [2] discuss how Parks’ approach of increas-

ing the smallest full queue may sometimes use more memory than necessary,

because the smallest queue may not need to grow for the process network to

generate more output. Kahn [35] defines the state of the process network as

the state of all the tokens on all of the queues, so Parks’ approach is making

86

A

B

r

C

w

Figure 3.12: An example of artificial deadlock without a cycle.

progress according to Kahn’s definition, even if not producing more output.

Basten and Hoogerbrugge [2] also show examples of artificial deadlock

in a process network without a cycle in the wait-for graph. In Fig. 3.12, B

cannot produce any more output until C consumes some input and allows A to

progress. In the absence of bounded queues (as in Kahn’s original model), B

would be produce this output regardless of the behavior of C. In Section 2.3,

I assert that a complete execution with bounded scheduling requires fair pro-

cesses. If C is fair, then C will eventually read its inputs, and A and B will

eventually produce the same outputs given by the Kahn Principle.

The D4R algorithm is based on cycle detection, a necessary condition

for the classical definition of deadlock. As currently specified, the D4R al-

gorithm does not detect artificial deadlocks that do not include a cycle. In

the presented examples [2], there is a wait-for chain from an output (sink)

node through at least one process that is blocked on a write. Much of the

information needed to detect this condition is already included in the state

variables maintained and exchanged by the D4R algorithm. If nodes have

87

knowledge that they are an endpoint (source or a sink) of the process network,

I believe that it is possible to extend the D4R algorithm to detect artificial

deadlocks that do not include a cycle. If there exists a wait-for chain from a

sink through a node blocked on a write, there could be an artificial deadlock

that can be resolved. The smallest write-blocked queue in that wait-for chain

could be increased so that the dependency is resolved and additional output

can be produced. However, given that determining fairness is generally un-

decidable in finite time, this may also lead to unnecessary increases in queue

size. Development of such an extension to the D4R algorithm would be future

work.

3.6 Conclusion

This chapter covers deadlock detection both for general multiprocess-

ing, and as it relates to complete executions with bounded scheduling of pro-

cess networks. Deadlock can arise if four conditions hold simultaneously in a

system: mutual exclusion of a resource, holding a resource while waiting to

acquire other resources, no preemption of processes that are held, and a cycle

of processes blocked waiting for each other to acquire a resources. Processes

networks are an example of the single-resource model, in which a process can

block waiting for only a single other process. In the single-resource model, a

cycle in the wait-for dependency graph represents a deadlock.

Deadlock detection algorithms have been well-developed in the litera-

ture, with different algorithms suited for different models and using different

88

approaches. One simple approach is edge-chasing, where processes send small

probe messages along edges of the wait-for graph. When a message comes back

to its origin, a deadlock cycle has been detected. Mitchell and Merritt [40]

provide a simple example of an edge-chasing distributed deadlock detection

algorithm for the single resource model.

I present the distributed dynamic deadlock detection and resolution

algorithm, or D4R algorithm. This algorithm is based on the algorithm of

Mitchell and Merritt [40], but is designed for use with a dynamic scheduler

in Process Networks. Not only does this algorithm detect deadlocks, it can

determine whether a deadlock is artificial and, if so, identify the queue that

must be lengthened in order to resolve the detected deadlock. I describe the

D4R algorithm in detail, and provide proofs of correctness. The D4R algorithm

dynamically assigns node priorities based on queue sizes in a wait-for graph. In

an artificial deadlock, the process with the lowest priority is located and known

to be blocked on the culpable queue. I also discuss implementation of the

D4R algorithm as included in the Computational Process Network framework

described in Chapter 5. The D4R algorithm is suitable for use with Process

Networks and Computational Process Networks.

I present case studies of the D4R algorithm that are used to demon-

strate correct behavior. This includes artificial deadlock, real deadlock, an

unbounded program, and examples from the literature.

Chapter 4, which follows, details the Computational Process Networks

model, and how it relates to Kahn’s model of Process Networks.

89

Chapter 4

Computational Process Networks

Kahn’s Process Network model [35] provides determinism, scalability,

and composability for a concurrent model of computation. Having these prop-

erties can allow rapid development of determinate, scalable concurrent systems

built from composable components. This can allow the developer to focus on

the task at hand, with less concern about the complications of concurrent and

distributed systems.

I propose the Computational Process Network model, which is based on

the formalisms of Kahn’s PN model, but with enhancements that are designed

to make it efficiently implementable. The Computational Process Network

model preserves the formal properties of Process Networks, while reducing the

operations required to implement algorithms operating on overlapping con-

tinuous streams of data commonly found in digital signal processing systems,

as mentioned in Section 1.4.3. Using CPN, nodes implementing such algo-

rithms can be memoryless because the state is retained on the queues. The

PN model naturally models functional parallelism, but would typically use

scattering and gathering process nodes to achieve data parallelism. CPN in-

cludes multi-channel queues as an aid for systems with data parallelism. CPN

90

also uses bounded scheduling (in Section 2.3) with the D4R algorithm (in

Section 3.3) so as to achieve complete execution in bounded memory where

possible.

Section 4.1 introduces the enhancements that the CPN model provides

to Kahn’s PN model. Section 4.2 describes the communication semantics for

the CPN model. Section 4.3 shows how the CPN semantics preserve the formal

properties of the PN model. Section 4.4 shows how the CPN model semantics

can improve performance over the KPN model. Section 4.5 concludes this

chapter.

4.1 Introduction

CPN makes enhancements to the original KPN model to make it effi-

ciently implementable while still preserving the formal properties of determin-

ism, scalability, and composability. These enhancements include multi-token

transactions to reduce execution overhead, multi-channel queues for multi-

dimensional synchronous data, and firing thresholds for queues as both con-

sumers and producers.

Multi-token transactions are a straightforward extension to Kahn’s

original semantics for the Process Network model, but can provide a signif-

icant performance enhancement as the overhead for a queue transaction is

amortized. Multi-channel queues permit straightforward modeling of systems

with multiple synchronous channels, such as audio streams in a surround sound

system, or beams in a sonar beamforming system.

91

Consumer firing thresholds is a concept borrowed from Computation

Graphs, discussed in Section 2.4. This approach has applications in high-

throughput DSP systems, where it is common to have algorithms that operate

on continuous, overlapping streams of data, or sliding window algorithms.

Examples include filters, and sliding window fast Fourier transform (FFT)

algorithms. For example, a finite impulse response (FIR) filter of order N

requires N + 1 input samples to compute a single output sample. Computing

the next output sample would require reuse of the N previous samples and

one new sample.

If such a filter were modeled as a Kahn Process Network, the node

implementing the filter would be required to store these N newest samples

internally as process state. With firing thresholds, a node can require more

tokens to be present on a queue than it will actually consume upon execution.

For example, a filter node could require that N + 1 samples be present on a

queue before executing, and then consume only a single input sample. The N

previous samples are still present in the queue, so it is not necessary to store

their state in the filter node.

Firing thresholds allow the decoupling of computation from commu-

nication when developing process nodes, and permit a zero-copy queue im-

plementation. This decoupling also permits efficient modeling of algorithms

on overlapping continuous streams of data, and permits implementation with

memoryless nodes. This simplifies implementation of composable components

that compute sliding window algorithms, because all of the overlap state is

92

A B
P

Figure 4.1: A simple Process Network program.

retained on the arcs. Such a model can also enable more efficient execution

for these types of algorithms, which are very common in embedded real-time

signal processing systems.

CPN also provides the dual to consumer firing thresholds, which is fir-

ing thresholds for producers. A node can access more free space than it will fill,

thereby allowing variable-rate outputs without requiring data copies. These

thresholds allow the decoupling of computation from communication when

developing process nodes, and permit a zero-copy queue implementation. By

eliminating unnecessary data copying in high-throughput systems, the com-

puter is free for additional computation tasks. CPN is useful for modeling

signal processing systems of streaming data, and naturally captures concur-

rency in these systems.

4.2 The Semantics of CPN

Recall from Section 2.2 that Kahn’s semantics for communication are

the read function get and the write function put. When a processes wishes to

receive a token from an input queue, it calls get on the queue. If the queue is

empty, get will block until data is available. When a process wishes to send

93

void A(oqueue<int> P) {
while (true)

P. put (0) ;
}

void B(iqueue<int> P) {
while (true)

P. get () ;
}

main () {
queue<int> P;
process<A>(P) ;
process(P) ;

}

Figure 4.2: A program that implements the Process Network of Figure 4.1.

a token to an output queue, it calls put on the queue with the argument of

the value to send. In Kahn’s original semantics, put could never block, but

bounded scheduling (Section 2.3) allows for queues that can become full and

force producers to block. Queues carry a particular type of data, such as the

primitive type int.

In Section 2.2, I describe Kahn’s semantics with object-oriented C++

using template data types. For example, template class iqueue<T> models

the semantics of an input queue and provides only the method get() that

returns a token. Template class oqueue<T> models the semantics of an output

queue and provides only the method put(T) that sends a token. The class

queue<T> inherits from both iqueue<T> and oqueue<T>, so that the declara-

94

tion queue<int> Q creates a queue that carries integers. With these semantics,

the Process Network program in Figure 4.1 can be completely implemented

by the program in Figure 4.2. Process A produces a continuous stream of

zero tokens and sends them over the queue P. Process B consumes the tokens

from queue P. These semantics recreate Kahn’s original semantics, and permit

sending and receiving (only) a single token per queue transaction.

4.2.1 Extending Kahn’s Semantics

It is trivial to extend these semantics to send multiple tokens per queue

transaction. For class iqueue<T>, I define a new method read(T*,unsigned).

The method read takes a pointer and length, like a typed version of the tra-

ditional read system call in POSIX [6]. For class oqueue<T>, I define a new

method write(const T*,unsigned). The method write also takes a pointer

and length, like the function in POSIX. These new methods are simply imple-

mented as a for loop which repeatedly calls Kahn’s original get or put. This

is a simple extension to the communication semantics, but the performance

consequences can be profound because the overhead for a queue transaction is

amortized over many tokens.

Figure 4.3 shows the processes from Figure 4.1 using multi-token trans-

actions with the semantics of read and write in place of get and put. Note

that processes A and B need not operate on the same number of tokens per

transaction. In fact, each transaction of each process could be with a different

number of tokens.

95

void A(oqueue<int> P) {
int output [4] = { 0 , 0 , 0 , 0 } ;
while (true)

P. wr i t e (output , 4) ;
}

void B(iqueue<int> P) {
int input [5] ;
while (true)

P. read (input , 5) ;
}

Figure 4.3: Process Network functions that use multi-token transactions.

Semantics for multi-channel queues is perhaps less obvious, having no

direct parallel in POSIX. However it can provide a performance enhancement

similar to multi-token transactions, and could be a common construct in multi-

dimensional digital signal processing. Multi-channel queues carry multiple

synchronous channels within a single queue, such as multiple audio channels

in a surround sound system. A token in a multi-channel queue simply consists

of multiple primitive values. For example, a multi-channel queue containing

8 channels of integers could be declared with queue<int[8]>, and be used

to carry 7.1 surround sound audio samples. The semantics of get, put, read,

and write could be used in this manner, although multi-token transactions on

multi-channel queues must have the input or output data organized in a very

specific manner.

Computation Graphs [46] (and CPN) have firing thresholds, where a

96

process can access more tokens in a queue than it will consume. This could be

implemented by extending the traditional POSIX read to have two separate

length parameters: the threshold number of tokens to read into the user’s

buffer, and the number of tokens to discard from the stream. However, the

CPN semantics avoid this approach in favor of zero-copy semantics.

4.2.2 Zero-copy Semantics

For high-throughput systems, read and write present an additional

problem: they are based on copy semantics. When read is called, data must

always be copied from where it currently resides into the buffer requested by

the caller. For the program in Figure 4.1 to communicate using read and

write, process A must copy data to queue P , and then process B must copy it

out of queue P . For systems moving significant amounts of data, the copying

overhead can be significant.

Consequently, zero-copy semantics have been explored in an effort to

improve efficiency of I/O systems [63][64]. One approach has been for peers

to exchange preallocated shared memory buffers, so that sending or receiving

a buffer requires only a small pointer transaction instead of copying the entire

buffer contents. This approach requires two steps for each zero-copy transac-

tion. One example [64] implements read in the following two steps: one to

request a full buffer (uf read), and one to release that buffer (uf deallocate)

once its data is no longer needed. The implementation of write is also in two

steps: one to request an empty buffer (uf allocate), and one to send that buffer

97

template <typename T>
class cpn iqueue {

. . .
public :
const T∗ GetDequeuePtr (u int thresh , u int chan =0);
void Dequeue (u int count) ;

} ;

template <typename T>
class cpn oqueue {

. . .
public :
T∗ GetEnqueuePtr (u int thresh , u int chan =0);
void Enqueue (u int count) ;

} ;

Figure 4.4: Basic input and output semantics for CPN.

(uf write) once filled.

4.2.3 The Semantics of CPN

CPN uses semantics that provide for both firing thresholds and a zero-

copy interface, as well as multi-token and multi-channel transactions. As pre-

viously in [64], read and write are separated into two steps. To implement a

read operation, CPN uses GetDequeuePtr followed by Dequeue. To implement

a write operation, CPN uses GetEnqueuePtr followed by Enqueue. Figure 4.4

provides portions of the class declarations that describe the basic CPN queue

interface semantics. The semantics of CPN are as follows:

const T* cpn iqueue<T>::GetDequeuePtr(uint thresh, uint chan=0)

98

The parameter thresh is the (read) firing threshold in tokens. GetDe-

queuePtr blocks until at least thresh tokens are available for consumption

in the referenced input queue. Once sufficient tokens are available, Get-

DequeuePtr returns a pointer to the tokens, which can then be treated

as a sequential array. This pointer is const to prevent modification of

tokens in an input queue. If the referenced queue has multiple channels,

the parameter chan identifies which channel the return pointer refer-

ences. If any channel in a queue has sufficient tokens, then all channels

must.

void cpn iqueue<T>::Dequeue(uint count)

The parameter count is the number of tokens that Dequeue will dequeue

(and discard) from the referenced input queue. If insufficient tokens are

available, Dequeue will block until count tokens are available. If the

referenced queue has multiple channels, count tokens are discarded from

each of the channels.

T* cpn oqueue<T>::GetEnqueuePtr(uint thresh, uint chan=0)

The parameter thresh is the (write) firing threshold in tokens. GetEn-

queuePtr blocks until free space is available for at least thresh tokens

in the referenced output queue. Once sufficient free space is available,

GetEnqueuePtr returns a pointer (which can be treated as a sequential

array) to where the tokens should be written. If the referenced queue

has multiple channels, the parameter chan identifies which channel the

99

return pointer references. If any channel in a queue has sufficient free

space, then all channels must.

void cpn iqueue<T>::Enqueue(uint count)

The parameter count is the number of tokens that Enqueue will en-

queue into the referenced output queue. If the referenced queue has

multiple channels, count tokens are enqueued into each of the channels.

Before calling Enqueue, the first count tokens of all channels should have

been set by dereferencing pointers returned from GetEnqueuePtr. If any

tokens were not set, then unknown data will be enqueued. The GetEn-

queuePtr parameter thresh should be greater than or equal to count. If

not, unknown data will be enqueued and Enqueue may have insufficient

free space to enqueue tokens. If insufficient free space is available in the

referenced queue, Enqueue will block until free space for count tokens is

available.

The four class methods detailed above are the basic input and out-

put semantics for Computational Process Networks. They provide both firing

thresholds and a zero-copy interface, as well as multi-token and multi-channel

transactions. Note that the output transactions are blocking, so these se-

mantics implement bounded scheduling as described in Section 2.3. Bounded

scheduling requires an online deadlock detection algorithm such as D4R, de-

scribed in Section 3.3.

100

1 const unsigned Nf f t = 1024 ;
2 const unsigned Nolap = Nf f t /2 ;
3 typedef complex<f loat> T;
4 T f i l t e r [N f f t] ;

Figure 4.5: Definitions to be used in Figures 4.6 and 4.7.

4.2.4 Example: FIR Filter Using Overlap-Save FFT

The overlap-save method is commonly used to compute the convolu-

tion between a very long (possibly infinite) signal and an FIR filter [65]. An

overlap in the input signal is required to produce the same output as a linear

convolution, and overlap-save can often be implemented in fewer operations

than linear convolution. In this section, I implement the same overlap-save

FIR filter with two different semantics for comparison: extended KPN (based

on traditional read and write) and CPN. Figure 4.5 provides definitions that

will be used in both implementations, and shows that this filter example uses

a 1024-point overlap-save FFT with 50% overlap and complex single-precision

floating point. The variable filter contains the FIR filter that will be con-

volved with the signal carried by the queues. This filter must be in the fre-

quency domain, and of order no greater than the number of points of overlap.

Figure 4.6 implements the filter using extended KPN semantics, as

discussed in Section 4.2.1. These traditional (read and write) semantics require

two temporary buffers (line 3): ibuf where the overlap of the input signal is

managed, and obuf where the output results are temporarily stored. The

buffer ibuf contains the filter history, so it must be initialized (to zero in this

101

1 void f f t f i r p n (iqueue<T> iQ , oqueue<T> oQ)
2 {
3 T obuf [N f f t] , i b u f [N f f t] = { 0 } ;
4 while (true) {
5 // e x p l i c i t l y copy f o r over lap−save
6 memcpy(ibuf , i b u f+Nfft−Nolap , Nolap∗ s izeof (T)) ;
7 // dequeue and copy in new tokens
8 iQ . read (i b u f+Nolap , Nfft−Nolap) ;
9

10 // perform f i l t e r i n g o p e r a t i o n s
11 f f t (ibuf , obuf , N f f t) ;
12 cpx mult ip ly (f i l t e r , obuf , obuf , N f f t) ;
13 i f f t (obuf , obuf , N f f t) ;
14
15 // copy out and enqueue r e s u l t s
16 oQ. wr i t e (obuf , Nfft−Nolap) ;
17 }
18 }

Figure 4.6: An FIR filter with overlap-save using extended KPN semantics.

case). The remaining steps in the filter implementation are repeated forever:

copy in new data while managing the overlap, call functions that implement

the filtering, and copy out the results.

To manage the overlap, the POSIX function memcpy is called (line 6)

to copy the last Nolap (512) tokens from the end of the input buffer to the

beginning of the input buffer. Next, the remainder of the input buffer is filled

by calling read (line 8), which dequeues 512 tokens from the input queue and

copies them to the end of the input buffer. The read function will block until

sufficient tokens are available. These input buffer management steps require

102

copying 1024 tokens, or 8192 bytes. Now the overlapping input stream is in

a contiguous memory region so the functions that implement the filtering can

be called.

Multiplication in the frequency domain is circular convolution in the

time domain [65]. The function fft computes the FFT of ibuf and puts its

frequency domain representation into obuf (line 11). Next, cpx multiply com-

putes the complex product of the frequency domain signal and filter (line 12).

Finally, ifft computes the inverse FFT of obuf and puts the time domain re-

sult back into obuf (line 13). Functions such as these are commonly included

in signal processing libraries. For example, the Fastest Fourier Transform in

the West (FFTW) is a very widely used FFT library [66].

The remaining step is to enqueue the result (contained in obuf) to the

output queue (line 16). Only a portion of the output buffer corresponds to

linear convolution (all but the final Nolap tokens), so only the valid portion

is sent to the output. With bounded scheduling, the write function will block

until sufficient free space is available in the output queue. This output step

requires copying 512 tokens, or 4096 bytes. One “firing” of the filter has

completed, and the process loops back to the top to filter the next block of

data.

Figure 4.7 implements this same FIR filter with the zero-copy and

thresholding semantics of CPN. The call to GetDequeuePtr (line 5) will block

until 1024 tokens are available for consumption in the input queue, and then

return a pointer to those tokens in contiguous memory. The call to GetEn-

103

1 void f f t f i r c p n (cpn iqueue<T> iQ , cpn oqueue<T> oQ)
2 {
3 while (true) {
4 // b l o c k i n g c a l l s to g e t in / out p o i n t e r s
5 const T∗ iP t r = iQ . GetDequeuePtr (Nf f t) ;
6 T∗ oPtr = oQ. GetEnqueuePtr (Nf f t) ;
7
8 // perform f i l t e r i n g o p e r a t i o n s
9 f f t (iPtr , oPtr , N f f t) ;

10 cpx mult ip ly (f i l t e r , oPtr , oPtr , N f f t) ;
11 i f f t (oPtr , oPtr , N f f t) ;
12
13 // complete the queue t r a n s a c t i o n s
14 iQ . Dequeue (Nfft−Nolap) ;
15 oQ. Enqueue (Nfft−Nolap) ;
16 }
17 }

Figure 4.7: An FIR filter with overlap-save using CPN semantics.

queuePtr (line 6) will block until free space for 1024 tokens is available in

the output queue, and then return a pointer to space for those tokens in con-

tiguous memory. Neither of these functions has copied any tokens, and no

management of input overlap was required. We now have contiguous input

and output buffers as required to call the filtering functions.

The functions that implement the filtering in Figure 4.7 (lines 9-11) are

exactly the same as those in Figure 4.6. The only difference is that they are

operating on the pointers returned from GetDequeuePtr and GetEnqueuePtr

instead of temporary stack buffers. At the conclusion of the filtering calls, the

results are pointed to by oPtr. Again, only portions of the results correspond

104

to linear convolution and are sent as output.

The final steps are to complete the queue transactions. The call to

Dequeue (line 14) tells the input queue to discard 512 tokens. The call to

Enqueue (line 15) tells the output queue to insert the first 512 tokens pointed

to by oPtr. Neither of these steps copies any tokens; they simply adjust indices

in the queue. For Figure 4.7, one firing of the filter has completed, and the

process loops back to the top to filter the next block of data.

The examples of Figure 4.6 and 4.7 perform the same filtering oper-

ation and compute the same results. However, the CPN semantics remove

the need to manage the overlapping input buffer and also eliminate several

copy operations. With the KPN approach, the filter state must be stored in

a buffer (ibuf) that is local to the process. However with the CPN approach,

the filter state is stored entirely in the queues and the state of the network

can be described by the tokens in the queues. The following section examines

how the CPN semantics preserve the formal properties that Kahn proved for

the semantics of Process Networks.

4.3 Preservation of Formal KPN Properties

Section 2.2.2 details Kahn’s mathematical representation of Process

Networks. Each queue is a stream, and the contents of the stream represent

the tokens that have been inserted into the queue. An increasing chain of

streams represents the entire history of tokens that have been inserted into

a given queue as execution progresses. This increasing chain is a complete

105

partial order. A processes is a continuous, monotonic functional mapping

between input streams and output streams. Continuous, monotonic functions

of a complete partial order have a least fixed point that can be computed, and

the fixed point solution of the network equations corresponds to the behavior

of the executing processes [35]. As discussed in Section 2.2.3, this holds for

all programs comprised of processes that use the simple blocking get and non-

blocking put semantics.

Although CPN uses different semantics than Kahn’s original PN to in-

sert and remove tokens from queues, any arbitrary CPN program can be trans-

formed into a KPN program that uses only get and put semantics. Because of

this transformation, CPN has precisely the same mathematical representation

as KPN and is similarly described by continuous, monotonic functions of a

complete partial order. If this transformation can be shown, then the Kahn

Principle applies, and all of the formal properties of KPN are preserved in

CPN.

This transformation of CPN to KPN is accomplished by adding queues

and modifying each process. Anywhere a queue enters or leaves a process, a

self-loop queue is added to handle firing thresholds and multi-token transac-

tions on contiguous buffers. Tokens entering or leaving a CPN process tem-

porarily pass through one of these self-loop queues. Because CPN is defined to

have blocking write semantics (via GetEnqueuePtr and Enqueue), this CPN

transformation must also include feedback queues for boundedness, as pro-

posed by Parks [36] and detailed in Section 2.3.

106

template <typename T>
T bpn iqueue<T> : : get ()
{

T r e s u l t = iqueue<T> : : get () ;
feedbackQ . put (0) ; // f e e d b a c k v a l u e unused
return r e s u l t ;

}

template <typename T>
void bpn oqueue<T> : : put (T t)
{

feedbackQ . get () ; // f e e d b a c k r e s u l t d i s c a r d e d
oqueue<T> : : put (t) ;

}

Figure 4.8: Illustration of Parks’ transformation for boundedness.

The following sub-sections illustrate the transformation of CPN as

transformed to use get and put. Before addressing CPN, I revisit Parks’ trans-

formation for boundedness.

4.3.1 Parks’ Transformation for Boundedness

Boundedness, including Parks’ transformation, is covered in Section 2.3.

Any arbitrary KPN program can be transformed to be strictly bounded by

adding a feedback queue for each existing queue and modifying each process.

When a process reads a token from an existing queue it also writes a token

to the associated feedback queue. Before a process can write a token to an

existing queue, it must read a token from the associated feedback queue.

Parks merely describes his transformation for boundedness. For clar-

107

ity, Figure 4.8 illustrates Parks’ transformation with code. In the style of

iqueue<T> and oqueue<T> from Section 2.2, I define bounded queue classes

bpn iqueue<T> and bpn oqueue<T> where the bpn prefix indicates that these

are bounded KPN. Each bounded queue class contains a feedback queue as

described by Parks, and named feedbackQ. The bounded version of get calls

Kahn’s original get, and then calls put on the feedback queue. The bounded

version of put must get a token from the feedback queue before it calls Kahn’s

original put.

An implementation of bounded scheduling does not actually add feed-

back queues. Parks argues that bounded queues that block when becoming

full (with proper artificial deadlock detection) are equivalent to the feedback

queue transformation he describes. The transformation from CPN to KPN

will be similarly described.

4.3.2 Transforming CPN to KPN

Figure 4.9 illustrates the transformation of a single CPN process (with

input P and output Q) to KPN. The feedback queues for boundedness are Pf

and Qf , and the self-loop queues for managing firing thresholds are Pt and

Qt. Queue that are grayed carry only feedback tokens, in which the value is

unimportant.

In the transformation from CPN to KPN, all tokens entering a CPN

process (including feedback tokens for boundedness) pass through a self-loop

queue. For incoming queues, a call to GetDequeuePtr ensures that the associ-

108

A
P

QfPf

Q

Pt

Qt

Figure 4.9: Transformation of a CPN node to KPN.

ated loop-back queue contains at least the number of tokens requested by the

threshold parameter. If there are fewer tokens than requested, then additional

tokens are read from the incoming queue and placed in the self-loop queue.

Using this approach, a process calling GetDequeuePtr will block until it has

the requested threshold number of tokens readily available to be accessed. A

call to Dequeue simply discards the requested number of tokens from the self-

loop queue and places the same number of (valueless) tokens in the associated

feedback queue.

For outgoing queues, a call to GetEnqueuePtr also ensures that the

associated self-loop queue contains at least the number of tokens requested by

the threshold parameter. In this case, the outgoing self-loop queue contains

feedback tokens for preservation of boundedness of the outgoing queue. If

there are fewer feedback tokens than requested, the additional feedback tokens

are read from the associated feedback queue. This way, a process calling

GetEnqueuePtr will block until it has the requested threshold amount of free

space on its output queue. When the process later calls Enqueue, it will do so

109

without blocking because the requested space was made available. A call to

Enqueue inserts the requested number of tokens into the output queue, and

discards the same number of (valueless) feedback tokens from the associated

self-loop queue.

This use of self-loop queues is out of a desire for memoryless processes,

stated to be a desirable property in Section 1.4.3. This transformation can also

be shown with persistent memory buffers associated with each queue, similar

to ibuf and obuf in Figure 4.6. For clarity, the following subsections illustrate

this transformation with code, similar to what was done in Figure 4.8, and use

persistent memory buffers.

4.3.3 CPN Dequeue Semantics

Continuing the illustration with the template class cpn iqueue<T> from

Figure 4.4, I show how the CPN semantics GetDequeuePtr and Dequeue can

be implemented using only get of new data from an input queue and put to

the feedback queue for boundedness.

The method GetDequeuePtr must form a buffer of contiguous tokens

of the requested threshold length, and return a pointer to that buffer. If

insufficient tokens are available in the buffer, GetDequeuePtr should get more

tokens from the incoming queue and add them to the buffer. The method

Dequeue must remove the number of instructed tokens from the buffer, and

put this same number of tokens into the boundedness feedback queue. The

method Dequeue must also manage any overlap needed in the input buffer.

110

const T∗ cpn iqueue<T> : : GetDequeuePtr (u int thresh , u int)
{

// i b u f must conta in >= t h r e s h tokens
while (i b u f . s i z e () < thresh)

i b u f . push back (iqueue<T> : : get ()) ;
return &(i b u f [0]) ;

}

void cpn iqueue<T> : : Dequeue (u int count)
{

// handle (abnormal) count>t h r e s h
while (count > i b u f . s i z e ()) {

iqueue<T> : : get () ; // overage d i s c a r d e d
feedbackQ . put (0) ; // f e e d b a c k v a l u e unused
count −= 1 ;

}
// manage the o v e r l a p
uint over lap = i b u f . s i z e () − count ;
for (int i =0; i<over lap ; i++)

i b u f [i] = i b u f [i+count] ;
// d i s c a r d and send f e e d b a c k
while (count) {

i b u f . pop back () ;
feedbackQ . put (0) ; // f e e d b a c k v a l u e unused
count −= 1 ;

}
}

Figure 4.10: Code transforming CPN read semantics to KPN.

111

This working input buffer is a private class member of cpn iqueue<T> called

ibuf. This member ibuf is shown to be using the vector template class from

the C++ standard template library (STL) [67], which effectively implements

a variable-length array. The member feedbackQ is also used as before in

Figure 4.8. Figure 4.10 provides code for GetDequeuePtr and Dequeue, and

these implementations use only get and put according to the stated goal. This

code is to illustrate the transformation from CPN to KPN, not an actual

implementation.

4.3.4 CPN Enqueue Semantics

CPN semantics GetEnqueuePtr and Enqueue can also be described as

a transformation from CPN to KPN. These form the semantics for a process

writing to a queue, as given by template class cpn oqueue<T> in Figure 4.4,

and must use only put of produced data and get from the feedback queue for

boundedness.

The method GetEnqueuePtr must provide an empty buffer of the re-

quested threshold length, and return a pointer to that buffer so that the client

can fill it with tokens to be sent. If insufficient space is available in the buffer,

GetEnqueuePtr should get additional tokens from the feedback queue until the

requested space is present. The method Enqueue must get boundedness feed-

back tokens for any output tokens it will send, and then put the first tokens

from the output buffer into the outgoing queue. This working output buffer is

a private class member of cpn oqueue<T> called obuf, and again uses the STL

112

T∗ cpn oqueue<T> : : GetEnqueuePtr (u int thresh , u int)
{

// obuf must have space f o r >=t h r e s h tokens
while (obuf . s i z e () < thresh) {

feedbackQ . get () ; // f e e d b a c k r e s u l t d i s c a r d e d
obuf . push back (0) ; // f r e e space p l a c e h o l d e r

}
return &(obuf [0]) ;

}

void cpn oqueue<T> : : Enqueue (u int count)
{

// put tokens from head o f obuf
uint ntok = obuf . s i z e () ;
i f (ntok>count) ntok = count ;
for (u int i =0; i<ntok ; i++) {

feedbackQ . get () ; // f e e d b a c k r e s u l t d i s c a r d e d
oqueue<T> : : put (obuf [i]) ;

}
// remove sen t tokens from obuf
// (no need to manage o v e r l a p)
obuf . r e s i z e (obuf . s i z e ()−ntok) ;
count −= ntok ;
// handle (abnormal) count>t h r e s h
while (count) {

feedbackQ . get () ; // f e e d b a c k r e s u l t d i s c a r d e d
oqueue<T> : : put (0) ; // garbage i n s e r t e d !
count −= 1 ;

}
}

Figure 4.11: Code transforming CPN write semantics to KPN.

113

vector class. The member feedbackQ is also used as before. Figure 4.11 pro-

vides code for GetEnqueuePtr and Enqueue. Again, this code is to illustrate

the transformation from CPN to KPN, not an actual implementation.

I have shown the CPN semantics operations as using buffers (ibuf and

obuf) that reside as part of process memory, meaning that the processes are

no longer memoryless. However this use of process memory is only for clarity,

and this state information can be put onto self-loop queues for each process.

With that approach, the overlap state would again be contained in the queue

memory.

4.3.5 Multi-Channel Queues

A queue containing multiple channels and using Kahn’s PN seman-

tics can simply send and receive tokens consisting of tuples with one value

for each channel. For example, to carry stereo audio data one could declare

queue<int[2]>, where the two integers represent one sample each for the left

and right channels. In this example, get would return a 2-tuple (pair) of inte-

gers, and put would take a pair of integers as an argument. Tuples of values

are sent and received synchronously by get and put as a single token. Although

not specifically mentioned by Kahn, this use of tuples for tokens follows his

mathematical model and preserves the formal properties that he asserts.

Parks used feedback queues for each data-carrying queue to achieve

bounded scheduling when possible [36]. These feedback queues need not carry

tuples, as the values in the feedback queues are unimportant and are simply

114

a placeholder for space in the data-carrying queue. Parks’ transformation is

not affected by multi-channel queues.

In Sections 4.3.3 and 4.3.4, details on multi-channel queues is omitted

for clarity. For the methods GetDequeuePtr and GetEnqueuePtr, the final

parameter is channel. A default parameter of zero gives the first channel

unless otherwise specified.

For the case of multi-channels queues in the transformation from CPN

to KPN, the members ibuf and obuf simply become a vector of vectors: one

vector for each channel. Each channel is operated on identically with the tuple

tokens being exchanged via get and put : if a sample is inserted or removed

from one channel of the buffer, all channels must perform the same operation.

When get returns a tuple of samples (one per channel), one sample is inserted

into each channel of the input buffer ibuf. When calling put to send a tuple of

samples, one sample is removed from each channel of the output buffer obuf.

The methods GetDequeuePtr and GetEnqueuePtr again verify that the input

or output buffer is of the requested threshold length, and return a pointer to

the buffer containing the requested channel.

I assert that the Computational Process Networks can be transformed

to Kahn Process Networks as shown, and that the CPN semantics as defined

can be implemented using only Kahn’s simple get and put semantics. There-

fore, CPN indeed preserves all of the formal properties of KPN: determinism,

scalability, and composability. The next section addresses the performance

advantages of CPN over KPN.

115

4.4 Performance Improvements of CPN Over KPN

Kahn [35] points out that Process Networks are Turing complete. By

transformation, CPN is also Turing complete. Although it is therefore true

that KPN can eventually compute anything that CPN can compute, CPN can

compute a particular important class of problems in fewer operations than

KPN. Specifically, CPN efficiently models algorithms operating on overlap-

ping continuous streams of data commonly found in digital signal processing

systems, and CPN also uses zero-copy semantics.

Although transforming CPN to KPN is fairly complicated, implement-

ing the semantics of KPN in terms of the semantics of CPN is trivial, and

illustrates the additional operations implicit in the copy semantics of KPN. In

Section 4.2.1 I extended Kahn’s single-token get and put semantics with multi-

token transactions read and write, based on the traditional POSIX functions

of the same name. This is a simple extension to the Kahn’s semantics, but the

performance consequences can be profound because the overhead for a queue

transaction is amortized over multiple tokens.

It is also illustrative to express these traditional read and write seman-

tics using the semantics of CPN, as shown in Figure 4.12. Note that get and

put are special cases of read and write where count is one. Deconstructing

read and write in this manner makes obvious their implicit copy. In both

functions, a pointer to the source or destination data is obtained, the copy is

performed, and the queue state is updated. Clearly using zero-copy semantics

can eliminate the implicit copy in read and write. In Figure 4.12, the threshold

116

int iqueue<T> : : read (T∗ ptr , unsigned count) {
const T∗ p = GetDequeuePtr (count) ;
for (unsigned i =0; i<count ; i++)

ptr [i] = p [i] ; // copy count tokens
Dequeue (count) ;
return count ;

}

int oqueue<T> : : wr i t e (const T∗ ptr , unsigned count) {
T∗ p = GetEnqueuePtr (count) ;
for (unsigned i =0; i<count ; i++)

p [i] = ptr [i] ; // copy count tokens
Enqueue (count) ;
return count ;

}

Figure 4.12: Implementing traditional read and write with CPN semantics.

(number of tokens or free space pointed to) and the count (number of tokens

dequeued or enqueued) are necessarily equal. However, the semantics of CPN

also support thresholds that are larger than the count.

Sliding window algorithms, which operate on continuous, overlapping

streams of data, are common in DSP systems. Examples include filters and

overlap-save FFTs. Firing thresholds and zero-copy semantics efficiently model

sliding window algorithms, and serve to reduce copying that is typically re-

quired for data management. The performance advantage of firing thresholds

is readily apparent in the overlap-save FFT example from Section 4.2.4 which

compares traditional read and write semantics to the semantics of CPN.

When using DSP algorithm implementations (such as FFTs) that are

117

written to assume operation on contiguous input or output buffers, the user

must manage the overlap if a sliding window is to be used. Some DSP pro-

cessors provide modulo addressing hardware to aid this problem, but this is

not typically available on general purpose processors. Figure 4.6 shows the

overlap-save FFT example using traditional read and write semantics. Gener-

ally, the steps for executing one iteration of a sliding window algorithm using

these traditional semantics are as follows:

1. Copy overlap data from the tail to the head of the input buffer (line 6)

2. Copy new incoming data after the overlap data (implicit in read, line 8)

3. Perform the desired operations on the contiguous buffer (lines 11-13)

4. Copy result data to the output (implicit in write, line 16)

Step 1 above is necessary to manage the contiguous input buffer, but is not

required with the semantics of CPN (as in Figure 4.7). The implicit copies

performed by read and write in steps 2 and 4 are eliminated with the seman-

tics of CPN, even if the algorithm does not require a sliding window. While

the semantics of CPN clearly require fewer operations than the traditional ap-

proach, the magnitude of performance improvement depends on the relative

execution times of these steps. For workloads where step 3 is relatively dom-

inant, the elimination of the copies in the other steps may appear negligible.

However, memory latency is frequently a bottleneck in computer systems [68],

and eliminating these copies (and the associated memory access operations)

118

can remove unnecessary overhead. Section 5.4.2 presents simulation results for

the FFT example in Section 4.2.4.

The CPN semantics also offer multi-channel queues, which can help to

capture data parallelism. By using multi-channel queues instead of multiple

queues, the number of queue transactions is reduced, which can additionally

reduce runtime overhead.

4.5 Conclusion

This chapter proposes the Computational Process Network model. The

CPN model is based on the formalisms of Kahn’s Process Network model, but

with enhancements that are designed to make it efficiently implementable. The

enhancements include multi-token transactions to reduce execution overhead,

multi-channel queues for multi-dimensional synchronous data, firing thresholds

for queues as both consumers and producers, and zero-copy queue communi-

cation semantics.

This chapter details the semantics of CPN: GetDequeuePtr, Dequeue,

GetEnqueuePtr, and Enqueue, and compares them to the traditional read

and write semantics present in POSIX. An example of an FIR filter using

an overlap-save FFT is provided for both sets of semantics.

To prove that the formal properties of Kahn’s PN model are preserved,

I describe how any CPN program can be transformed into a KPN program

by adding queues and modifying each process. A CPN program is therefore a

119

set of continuous, monotonic functions of a complete partial order with a least

fixed point that corresponds to the behavior of the executing processes [35].

I also provide code that illustrates this transformation from CPN to KPN by

implementing the CPN semantics only in terms of Kahn’s simple get and put

operations. I argue that the semantics of CPN can reduce the number of oper-

ations performed when implementing sliding-window algorithms, as compared

to the traditional read and write semantics.

Chapter 5, which follows, details my high-performance implementation

framework for Computational Process Networks, and targeting parallel and

distributed POSIX systems.

120

Chapter 5

Implementation of CPN Framework

The Computational Process Network model, detailed in Chapter 4, is

designed to be efficiently implementable while preserving the formal proper-

ties of Kahn’s PN model. Additionally, the CPN model reduces the operations

required to implement algorithms operating on common signal processing algo-

rithms. In this chapter, I present details about the CPN framework implemen-

tation, which is targets high-throughput computationally intensive algorithms

being implemented on workstations and workstation clusters.

Section 5.1 provides an introduction. Section 5.2 describes the CPN

kernel. Section 5.3 describes the implementation of nodes in CPN. Section 5.4

describes the implementation of queues in CPN. Section 5.5 describes the

distribution of CPN programs across multiple computers. Section 5.6 describes

building CPN programs from a coordination language. Section 5.7 discusses

the use of CPN as an embedded library. Section 5.8 concludes this chapter.

5.1 Introduction

The CPN framework is a high-performance implementation of the CPN

model targeting POSIX (Unix) systems. This scalable software framework is

121

written in C++ and uses a layered inheritance approach to build interfaces

and functionality. It can exploit multi-core parallelism because it is built on

POSIX threads, and it can also exploit distributed parallelism via a network.

The queues implement the CPN semantics (Section 4.2), which include firing

thresholds and a zero-copy interface. The queues use C++ templates so that

they can carry various different data types. The queue implementation uses a

novel technique with the virtual memory manager (VMM) to achieve apparent

circularity and reduce overhead for high-throughput systems.

5.1.1 Development History and Public Release

Portions of this framework have been implemented and in use for many

years. Early versions targeted only large SMP servers [69], and required writing

C++ code to build a CPN system by manually instantiating nodes and con-

necting them with queues. However, recent versions can create a distributed

parallel system from descriptions in a simple coordination language and dy-

namically loadable libraries of nodes. The CPN Kernel helps nodes to coordi-

nate with each other, so that nodes connect and communicate using the same

interface regardless of whether their peer is local or remote. Recent versions

also contain D4R (Section 3.3), to yield complete, bounded execution. Using

the CPN framework, developers can build high-performance, high-throughput,

distributed systems from deterministic, composable components.

The CPN framework is released as open source software under the GNU

Library General Public License (LGPL) [70]. As of the last release, it contains

122

about 26000 lines of source code in about 330 source code files (as estimated

by the line counting tool cloc [71]). It contains extensive unit tests, aiming

for robustness and stability. It fully executes on both Linux and MacOS X,

and would probably work on other POSIX systems with minimal effort. The

CPN framework is the product of several man-years worth of effort, supported

by the Independent Research and Development program at Applied Research

Laboratories: The University of Texas at Austin.

5.1.2 Describing a CPN System

As a practicing electrical engineer with experience in circuit design, I

naturally draw parallels between Process Networks and electrical circuits. A

circuit consists of some number of parts that are connected by some number

of wires, or nets. A circuit may have many different types of parts, including

multiple instances of the same type of part. A net is described as going from

a pin (or port) of one part to a pin of another part. The list of all the parts

(including part type) in a circuit is called the part list, and a list of all the nets

is called a netlist. We commonly draw schematic diagrams of circuits, but the

salient information contained in a schematic can generally be boiled down to

a part list and a netlist.

One can also describe a Process Network with a part list (of node

designators and types) and a netlist (of connections between nodes). Kahn’s

original example from Section 2.2.1 is reproduced here in Figure 5.1, and can

be described by the part list in Table 5.1 and the netlist in Table 5.2. There

123

f

h(0)
Y

g
X

h(1)

Z

S

T

Figure 5.1: Kahn’s example of a simple Process Network program.

are two instantiations of the node type h, each taking a different parameter.

The are no parameters in this part list (parameters will later be shown to be

attributes of an instance), but designator h0 represents the node h(0).

It is easy to describe an arbitrarily complex CPN system with these

two simple lists. The level of granularity in the description is an important

consideration. Like CPN, many signal processing algorithms are modeled using

directed graphs. Often, each node represents very fine-grain computations such

as addition and multiplication [65]. Very fine granularity is inappropriate for

Table 5.1: Part list for the example in Figure 5.1

designator node type

f Kahn f
g Kahn g

h0 Kahn h
h1 Kahn h

124

Table 5.2: Netlist for the example in Figure 5.1

from to
queue name node port node port

X f out g in
S g out0 h0 in
Y h0 out f in0
T g out1 h1 in
Z h1 out f in1

this implementation, because the overhead of the dynamic scheduler in the

OS will dominate the overall execution time. This framework is intended for

use with nodes of larger granularity, such as an FFT node, a filter node, or

a beamformer node. However, if node granularity is too large, scalability is

limited.

CPN graphs can be thought of as system block diagrams, and a part

list and netlist can describe a large software system that can be built from

composable components. The portion of the CPN framework that maintains

these lists and builds the network is the CPN Kernel.

5.2 The CPN Kernel

In programs that use the CPN framework, the CPN Kernel serves as

the coordinator for building the network. Every node in the Process Network

program is spawned by a kernel (as a POSIX thread), and any modifications

to the system graph are done with the help of a kernel. The kernel provides

125

interfaces so that nodes can connect to each other without knowing higher-

level details about the system, therefore keeping the nodes modular and self-

contained. Nodes and queues can be dynamically created in the CPN model,

so the kernel also provides these interfaces. Runtime parameters to CPN nodes

are also provided by an interface from the kernel.

The intention is that one CPN Kernel is running on a shared-memory

compute host, within a single (Unix) process on that host. Because this one

process contains a number of threads (one per CPN node), it can exploit

parallel hardware. If there are multiple kernels (as in the case of cluster com-

puting), the kernels communicate and coordinate with each other, so that the

CPN nodes in the system are unaware that they may be distributed.

A CPN::KernelAttr instantiation is created so that various global pa-

rameters and options can be set. A CPN Kernel is created when the class

CPN::Kernel is instantiated, taking an attribute object as an argument. The

newly created CPN Kernel spawns a new thread in which its duties will be

performed, and then returns control to the calling thread. This way, the CPN

framework does not take complete control of a (Unix) process, and can be used

as a library that is embedded within other applications.

Because there is a single CPN Kernel coordinating a collection of CPN

nodes, one could be concerned that the kernel is a bottleneck for a parallel

system. Indeed, the kernel contains locking and critical sections for nodes that

interact with it. However, the only required kernel interaction for a node is

when a node is trying to establish its queue connections at initialization time,

126

or if a node is requesting the creation of new nodes or queues (and therefore

modifying the system graph). Nodes that start up and execute without re-

questing graph modifications are autonomous and need no further interaction

with the kernel.

More details about the CPN Kernel will be discussed in upcoming sec-

tions, in the context of those other components of the CPN framework.

5.3 CPN Nodes

Each node in a CPN program corresponds to a POSIX thread, or

Pthread. Multiple threads can run concurrently when there is parallelism,

and thus can take advantage of multiple processors on an SMP workstation.

Pthreads are intended to provide high performance with low overhead, and

can optionally be given fixed-priority real-time scheduling priority.

By realizing the CPN framework with POSIX Pthreads, it can be run

on many different Unix platforms. Because of the hierarchical design of the

framework, it could be possible to port it to additional thread implementations

by changing some key base classes. There is also a project that claims to

provide a high-quality implementation of pthreads on Microsoft Windows [72].

In Section 1.3.1 I discussed the problems with threads and echoed Lee’s

assertion [3] that threads are “wildly nondeterministic.” However, the com-

plication of thread programming is not exposed to users of the CPN frame-

work. Users need not be concerned with managing critical sections and locking

127

shared resources, only following the implementation of the formal model using

the CPN semantics. Nodes can interact with one another only via queues, so

queues are the only shared resources that need to be locked. This locking oc-

curs transparently inside the CPN framework without any effort by the user.

This limited scope of resource sharing (at queues) also helps with verification

of the CPN framework implementation.

Because the formal model provides determinacy for any execution order,

any thread scheduler will yield a correct answer. The nodes in the system will

execute as the flow of data permits. Generally the standard system scheduler

is used, although the real-time scheduler can optionally be used.

An overly fine level of node granularity will yield significant overhead

due to dynamic scheduling. The cost of executing a node should be much larger

than the cost of a thread context switch (on the order of microseconds). This

framework is intended for use with nodes of larger granularity. However, if the

computation of a node is too costly, then the node may need to be divided

into smaller pieces to increase scalability or to achieve real-time performance.

Generally, a trade-off exists between overhead, latency, and parallelism.

5.3.1 Creating a New Type of Node

In the CPN framework, a new type of node is created by subclassing

CPN::NodeBase. The user must override the method NodeBase::Process(),

which is pure virtual. When a node is instantiated, it is this member function

that executes in a new separate thread.

128

To communicate with the outside world, a newly created node queries

the CPN Kernel for its input or output queues, and any parameters it may

need. The kernel maintains a netlist of queue connections, so it can resolve and

return the queue to which the node should communicate. The NodeBase class

provides methods for performing these queries. For example, for the node to

request a means to communicate with an input queue, it will call the method

GetIQueue(portName). The parameter is a string that names the particular

port being requested. The node will call GetOQueue(portName) to get an

output queue. These calls will block until the kernel returns an object that the

node can use to communicate with the queue that is connected to the specified

port. The returned object provides the CPN queue interfaces described in

Section 4.2.3 and below in Section 5.4 on CPN Queues. For brevity and

clarity where the zero-copy semantics may be overkill (such as when sending

only a single token), the CPN framework also provides convenience queue

access methods in the style of Enqueue(pointer,length), and similar to the

traditional read and write semantics.

Similarly, the node can fetch parameters that have been set for it with

GetParam(key), and check whether a parameter exists with HasParam(key).

In both cases, the key is a string that names the parameter. If a parameter

needs to be coerced to a particular type, the CPN framework also provides

the method GetParam<type>(key).

Figure 5.2 revisits the implementation of Kahn’s simple example from

Section 2.2.1 but implemented in CPN framework. The first line is a macro

129

CPN DECLARE NODE AND FACTORY(Kahn h , Kahn h) ;

void Kahn h : : Process ()
{

IQueue<int> in = GetIQueue ("in") ;
OQueue<int> out = GetOQueue("out") ;
int value = GetParam<int>("first") ;

out . Enqueue(&value , 1) ;
while (true) {

in . Dequeue(&value , 1) ;
out . Enqueue(&value , 1) ;

}
}

Figure 5.2: Implementation of Kahn’s example process h with subclassing.

that declares a class named Kahn h as a member-less subclass of NodeBase.

It also declares a factory class for creating nodes of type Kahn h, as well as

a function that returns a node factory for Kahn h nodes (named according to

a convention). These products help the CPN Kernel to dynamically look up

factories and create nodes of a particular type.

For most cases, all that remains is to define the code that implements

the node in the Process method. The first few lines of Kahn h::Process

are the node requesting initialization information from the kernel. Note that

there is a type assignment for the queue, and that a runtime exception will be

thrown if there is a mismatch. The remaining lines of Kahn h::Process are

effectively the same as the simple example from Figure 2.4.

130

Kernel k e rne l (KernelAttr ("kernel")) ;

NodeAttr nat t r ("h0" , "Kahn_h") ; // name h0 , type Kahn h
nat t r . SetParam ("first" , 0) ; // s e t a parameter

ke rne l . CreateNode (nat t r) ; // r e q u e s t c r e a t i o n

Figure 5.3: Instantiation of a node executing Kahn h.

5.3.2 Instantiating a Node

Once a node type is defined, an instantiation can be created with the

help of a CPN Kernel. First, an instantiation of the CPN::NodeAttr class is

created so that a unique node name (designator) and node type are set, and

any parameters are set. This attribute class is passed to the kernel’s method

CreateNode, and the kernel spawns a thread that executes the specified node.

Figure 5.3 provides code that creates a kernel, and also a NodeAttr that calls

out a Kahn h node named h0. It then requests that the kernel spawn a node

of the specified type.

5.3.3 Function Nodes

The CPN framework also provides function nodes, a way to create CPN

nodes from functions and without subclassing. This method needs no macros

for “boilerplate” code (repeated in many places with little or no alteration),

may be slightly more straightforward for the developer, and has a syntax

somewhat more like the examples in Section 2.2.1. However, nodes created

this way cannot be looked up by name, do not have node factories, and cannot

131

void Kahn h funct ion (NodeBase ∗node , int f i r s t)
{

IQueue<int> in = node−>GetIQueue ("in") ;
OQueue<int> out = node−>GetOQueue("out") ;
int value = f i r s t ;

out . Enqueue(&value , 1) ;
while (true) {

in . Dequeue(&value , 1) ;
out . Enqueue(&value , 1) ;

}
}

int f i r s t = 1 ;
ke rne l . CreateFunctionNode ("h1" , Kahn h function , f i r s t) ;

Figure 5.4: Implementation of Kahn’s example process h with a function.

be automatically loaded by the CPN Kernel’s node loader. This means that

loading nodes from a coordinating language (as discussed in Section 5.6) is not

possible for function nodes.

The contents of Figure 5.4 is extremely similar to Figure 5.2. The

differences are that the node parameter first is passed as a function parameter,

and that a different kernel method, CreateFunctionNode(...), is used to

instantiate the node.

5.4 CPN Queues

The concept of requiring more data to be present than will be con-

sumed upon execution is referred to as a firing threshold, and was introduced

132

by Computation Graphs and discussed in Section 2.4. CPN also provides fir-

ing thresholds for producers, where a node can require more free space on its

output than it may fill upon execution. The CPN semantics are defined in Sec-

tion 4.2.3 to use GetDequeuePtr and Dequeue for inputs and GetEnqueuePtr

and Enqueue for outputs.

This interface allows nodes to operate directly on queue memory, and

data presented to nodes is already in a contiguous buffer. This reduces over-

head by eliminating the need for nodes to copy and rearrange data, and sim-

plifies the implementation of algorithms that interface to these queues. This

interface is also intended to make up for the lack of circular address buffers

in general purpose processors. By eliminating unnecessary data copying in

high-throughput systems, the process is free for additional computation tasks.

The component of the CPN framework that makes this interface possible is

the ThresholdQueue.

5.4.1 Threshold Queues

The ThresholdQueue implements its apparent circular addressing by

mirroring the beginning of the queue’s data region (up to a maximum thresh-

old) just past the end of the queue’s data region. Using this methodology, the

queue can provide a pointer to a contiguous block of data elements even when

operating near the end of the data region. The queue manages this mirror-

ing, and guarantees that the same data resides in both locations. Figure 5.5

illustrates the ThresholdQueue mirroring implementation.

133

mirrored data

queue data region mirror region

virtually mapped twice

Figure 5.5: Creating the appearance of a circular queue with virtual memory.

With no hardware assistance, the ThresholdQueue has a trade-off be-

tween memory usage and overhead. Data copying need only occur when the

indices are operating near the edges of the queue. When the data region is

much larger than the mirror region, the queue rarely needs to copy data. When

the mirror region is as large as the data region, copying may occur frequently,

thereby increasing overhead and sacrificing performance. Using a larger data

region will reduce the need to copy.

However, the virtual memory manager can be used to prevent the

ThresholdQueue from having to copy data when managing the mirror region.

The system call mmap is used to map virtual memory objects into the address

space of a process. By mapping a shared memory object to multiple virtual

addresses, the same physical memory pages appear at multiple locations, and

apparent circular addressing is achieved. As a side effect, the queue data and

mirror regions must both be multiples of the system memory page size, which

is typically a power of two on the order of 4096 bytes. The queue size and

threshold size are therefore rounded up to the next multiple of the page size

when using the VMM. This mapping is maintained by the processor’s virtual-

134

channel 0
channel 1

channel N

Figure 5.6: A multi-channel threshold queue.

to-physical address translation hardware, and the user process has contiguous

access anywhere in the queue up to the length of the mirrored data. This can

result in a significant performance gain, as shown in Section 5.4.2.

The same virtual memory approach is used for a multi-channel queue,

except that there must be one circular mapping for each of the multiple chan-

nels. In this case, the same shared memory object is mapped a number of

times as shown in Figure 5.6. The ThresholdQueue provides a foundation of

the CPN framework for zero-copy interfaces and a reduction in overhead for

high-throughput systems.

5.4.2 Threshold Queue Performance

I examined the performance of queues using this virtual memory map-

ping technique in [73]. This paper compares the performance of two different

implementations of a frequency domain FIR filter using an overlap-save FFT:

one with and one without a ThresholdQueue. These two implementations are

very much like the two in Figures 4.6 and 4.7 from Section 4.2.4, except that

they are not being used within a Process Network.

135

The basic operation that is repeatedly executed is this: compute a for-

ward FFT, multiply the complex results by complex filter coefficients, and

then perform an inverse FFT. We use the well-known “Fastest Fourier Trans-

form in the West” (FFTW) library [66] for our forward and inverse FFTs,

and a vector complex multiplication function that is hand optimized to use

single instruction multiple data (SIMD) extensions for signal processing. The

implementation that does not use the zero-copy queue must manually manage

the overlap by copying data at each step. Before each forward FFT, over-

lap data is copied from the tail of the buffer to the head, and the new data

is copied in. After each inverse FFT, the “good” (non-aliased) result data

is copied to an output buffer. The virtual memory technique eliminates this

need for management of the overlap, and increases the performance of the

filter operation.

By varying algorithm parameters such as filter length and FFT length

over a series of benchmarks, we are able to make some general performance

evaluations about this implementation of zero-copy queues. We vary the FFT

size over powers-of-two from 16 to 65536, and we vary the filter length as a

percentage of the FFT length. The filter length is the same as the overlap

length, so this test is also varying the percentage of overlap. We are interested

in varying the parameters to explore the zero-copy queue performance over a

wide workload.

We benchmark with a data set that is large enough to prevent it

from fitting in cache, and run multiple trials to measure execution time.

136

4 5 6 7 8 9 10 11 12 13 14 15 16
log2 of FFT length

0

2

4

6

8

10

12

14

16

p
e
rc

e
n

t
p

e
rf

o
rm

a
n

ce
 i

m
p

ro
ve

m
e
n

t
overlap of 6.25%
overlap of 12.50%
overlap of 25.00%
overlap of 50.00%
overlap of 75.00%
overlap of 87.50%
overlap of 93.75%

Figure 5.7: Performance improvement for zero-copy queues on the Opteron.

From the measured execution time, we compute the performance in floating-

point operations per second (FLOPS) using the same method as the FFTW

project [66]. For a forward FFT, a reverse FFT, and a complex multiply we

use 10N log2N + 6N FLOPS.

In 2006, we executed these benchmarks on two different hardware and

software platforms. One was a 2.5 GHz PowerPC 970 (Apple Power Mac G5)

running MacOS X 10.4.6, and the other a 1.8 GHz AMD Opteron in a Shuttle

SN21G5 running 64-bit Red Hat Enterprise Linux 4. We have repeated these

same benchmarks on two more current systems: one with 2.33 GHz Intel Xeon

137

“Woodcrest” model 5148 processors, and another with 2.4 GHz Intel Xeon

“Nehalem” model L5530 processors. Both of these systems were running 64-bit

Red Hat Enterprise Linux 5. These benchmarks use single-precision floating

point with SIMD instruction sets. They also use only a single thread, and

therefore only a single processor core.

In all cases, the trends and performance improvement for using zero-

copy queues are similar. On the Opteron, the benchmark operates at just

under 3 GFLOPS, which is about 20 percent of the theoretical peak and

about 1.7 floating-point operations per cycle. Figure 5.7 (adapted from Fig-

ure 6 in [73]) presents the performance improvement of zero-copy queues over

processor-executed copies, as measured in the Opteron system benchmark.

The performance improvement is a function of the time spent executing

an algorithm and the time spent performing the overhead of copying data

for managing the overlap. The frequency domain FIR filter is a moderately

computationally intensive algorithm at O(N log2N), and the improvement

is certainly a measurable at 5-10%. This margin would be greater for less

computationally intensive algorithms or when the overhead due to copying is

higher.

For high-throughput signal and image processing systems, zero-copy

queues can eliminate the copies necessary for overlap management, and can

make a measurable difference in performance.

138

QueueAttr qattrX (2∗ s izeof (int) , s izeof (int)) ;
qattrX . SetDatatype<int >() . SetName ("X") ;
qattrX . SetWriter ("f" , "out") . SetReader ("g" , "in") ;
k e rne l . CreateQueue (qattrX) ;

Figure 5.8: Instantiation of the queue named X from Table 5.2.

5.4.3 Instantiating Queues

Queues in the CPN framework are built upon a ThresholdQueue and

take advantage of the virtual memory system. Like a CPN node, a CPN

queue is created with an attribute object that is passed to the CPN Kernel. An

instantiation of the CPN::QueueAttr class is created, so that queue parameters

can be set. Parameters include the queue length and maximum threshold size

(corresponding to the queue data region and mirror region in Figure 5.5).

These are the starting values for the queue size parameters, but they may

grow as the program executes as instructed by the D4R algorithm described

in Section 3.3. Other parameters to set include the data type that the queue

will carry, the name of the queue, and the name and port for the nodes at each

end of the queue. Once the parameters are set within the attribute object, it

is passed to the kernel’s method CreateQueue.

Figure 5.8 provides code that creates the queue named X from Kahn’s

simple example and the netlist in Table 5.2. A QueueAttr is created, param-

eters are set, and the queue is created when the attribute object is passed to

the CPN Kernel.

139

5.4.4 Additional Queue Interfaces

CPN Queues provide interfaces beyond the CPN semantics defined

in Section 4.2.3. In addition to GetDequeuePtr(threshold,channel) and

Dequeue(count), the IQueue also provides Dequeue(pointer,count) much

like the traditional read. In addition to GetEnqueuePtr(threshold,channel)

and Enqueue(count), the OQueue also provides Enqueue(pointer,count)

much like the traditional write. These interfaces perform implicit copies, but

may not affect performance for reduced data rates.

For multi-channel queues, the stride between channels is fixed as shown

in Figure 5.6. The CPN Queues provide a ChannelStride method so that

pointer arithmetic can be performed instead of repeated function calls to get

pointers to different channels, thus reducing calling overhead. The queues also

provide a method to fetch the queue length and maximum threshold length,

both of which were specified in the QueueAttr (but may have since grown).

Queues also contain a Release method, which informs the other side of

the queue that there will be no further communication. If a CPN Node exits,

then all of its queues are automatically released. Calls to GetEnqueuePtr on a

released output queue will yield an exception, causing that node to exit. Calls

to GetDequeuePtr on a released input queue return a NULL pointer. In this

condition, nodes can consume any remaining tokens, perform any required

shutdown, and pass the condition to its outputs by calling Release. This

way, a CPN program can be brought down in a cascade of nodes through the

system.

140

void DeterminateMerge<T> : : Process ()
{

IQueue<T> in0 = GetIQueue ("in0") ;
IQueue<T> in1 = GetIQueue ("in1") ;
OQueue<T> out = GetOQueue("out") ;
while (true) {

// b l o c k u n t i l we would merge at l e a s t one s e t
const T∗ in0p = in0 . GetDequeuePtr (1) ;
const T∗ in1p = in1 . GetDequeuePtr (1) ;
T∗ outp = out . GetEnqueuePtr (2) ;
// compute how many t o t a l can be merged
unsigned i n0cnt = in0 . Count () ;
unsigned i n1cnt = in1 . Count () ;
unsigned outcnt = out . Freespace () / 2 ;
unsigned N = min(in0cnt , in1cnt , outcnt) ;
i f (!N) break ;
// merge them a l l
for (int i =0; i<N; i++) {

outp [2∗ i] = in0p [i] ;
outp [2∗ i +1] = in1p [i] ;

}
in0 . Dequeue (N) ;
in1 . Dequeue (N) ;
out . Enqueue (2∗N) ;

}
}

Figure 5.9: Low-overhead determinate merge with Count().

141

Something that could be a point of contention is that the IQueue pro-

vides the methods Empty() and Count(), and the OQueue provides the meth-

ods Full() and Freespace(). These methods could allow a node to determine

whether it will block before attempting to access a queue, which could lead to

non-deterministic behavior. Some claim [31] that augmenting the PN model

with explicit nondeterminism is commonly desirable for embedded software

applications. Expected non-determinism, like a non-determinate merge, can

be useful. However, my primary motivation for including these interfaces is

performance for a common use case.

To illustrate, I use the example of determinately merging two streams,

as shown in Figure 5.9. The DeterminateMerge node first obtains its two

input queues and one output queue. The node then repeatedly attempts to

merge some number of tokens. First, the node blocks on each of its 3 queues,

ensuring that it could immediately merge at least one set of tokens onto the

output. However, rather than proceeding to merge only 2 tokens, it computes

the maximum number of tokens that it could possibly merge and does all that

it can. This computation requires knowing the count of tokens in both inputs,

and the amount of free space for tokens in the output, but this process is still

completely determinate (with respect to how it merges the two streams into

one).

This process has the potential for significantly lower overhead than a

version that merges only one set of tokens at a time, while still producing the

same result. If the tokens arrive one at a time, the process behaves correctly

142

with low latency (but high overhead). However, if the tokens arrive in bursts

or if the process is starved for compute time, the process will make the most

of its time slice. The approach of performing as much work as possible when

given the opportunity to execute should lead to an overall reduction in sys-

tem overhead, and should be the preferred approach for implementing process

nodes.

5.4.5 D4R

Section 3.3 discusses the distributed dynamic deadlock detection and

resolution (D4R) algorithm. Because bounded execution of process networks

(with blocking writes) can lead to artificial deadlock, an online deadlock reso-

lution algorithm is required to prevent incomplete execution. Each CPN Node

contains the D4R state variables, and all communication for D4R occurs over

existing CPN Queues that are connected between nodes. The only time a

D4R state transaction can occur is when a node is accessing one of its queues.

All D4R communication can therefore occur inside queue transaction methods

(such as GetEnqueuePtr), and deadlock detection is a feature of the network;

support for D4R requires no coding on the part of CPN Nodes, and occurs

invisibly during execution. D4R does incur some overhead due to additional

locking and message traffic. Consequently, there is a CPN Kernel parameter

that can disable the use of CPN at runtime.

143

5.5 Distribution on Multiple Hosts

The CPN framework is capable of distributing nodes across multiple

compute hosts. Additional parameters that can be set (with a KernelAttr)

when creating a CPN Kernel include the kernel name, the host name on which

the kernel is executing, and a CPN::Context. The CPN Context class stores

and maintains the state of the global CPN graph (the list of nodes and queues).

In the single-host case, the single kernel invisibly creates an internal local

context.

5.5.1 Remote Context

For multiple CPN Kernels to coordinate with each other to build a dis-

tributed system, they all communicate with a remote context daemon. This

daemon must be executing somewhere in the system, and listens for connec-

tions from CPN Kernels. Kernel attribute objects contain a RemoteContext,

which has a host name and port number where the context daemon can be

contacted. Each kernel must have a unique name so that it can be uniquely

identified. A context not only maintains the graph state, it also notifies kernels

when they must take some action. Examples of such actions are creating a

new node or queue.

An additional attribute that we could add for each node in our part

list from Section 5.1 is the specification on which kernel (or host) the node

will execute. When a CPN Node is created with a NodeAttr object, one of

the methods that can be called is SetKernel, telling on which kernel the node

144

should execute. When unspecified, the node will execute on the local kernel.

However, with the proper attribute a node can be instructed to execute on

any of the hosts (via a kernel) that is a member of the context.

Again, one could be concerned that having a single process (the remote

context daemon) could be a bottleneck for a distributed system, and will limit

scalability. While this is true in some sense, the only interaction with the

remote context is when nodes and queues are being constructed and the CPN

graph is being modified. This may typically happen at initialization time,

but once nodes are instantiated and connected they interact directly with one

another without assistance from either a kernel or the context.

This single remote context daemon process is also a design choice for

simplicity of implementation. At some level a CPN Context is similar to a

database, and distributed database implementations are a challenging problem

in their own right. The CPN framework is implemented with inheritance

hierarchy, and it would be possible to substitute a distributed implementation

of a context if one were to be created. One advantage of a single remote

context is that it is trivial to get a current snapshot of the CPN graph for

examination.

5.5.2 Remote Queues

CPN Queues as described in Section 5.4 are shared memory objects,

which clearly do not work on a distributed system. The CPN framework

also provides the class RemoteQueue, so that nodes on different hosts can

145

communicate in the same manner. The class RemoteQueue is a specialization

of a ThresholdQueue that is split into two parts across a network socket.

Tokens that are enqueued at the producer end of a remote queue are sent over

the network. At the consumer end, received tokens await consumption by the

receiving node in a ThresholdQueue.

For two nodes that are communicating, the fact that a peer may be

remote is transparent. As in the non-distributed case, nodes request that

the kernel provide a communication endpoint (via GetIQueue or GetOQueue)

and then use the provided queue. Because the kernel (with the help of the

context) knows where each node is executing and how the nodes and queues

in the graph are to be connected, the kernel can create the network endpoints

and provide them to each node. There is one additional parameter for remote

queues, dubbed alpha. For each queue in a CPN system, the overall queue

length is specified. The parameter alpha varies from zero to one, and specifies

the split of queue length allocated between the reader and writer sides of the

queue (where zero is all space on the reader side).

Current implementations of the RemoteQueue use the transmission con-

trol protocol (TCP) of the internet protocol (IP) suite, or TCP/IP, which will

work on nearly any network interface. So far, remote queues have been imple-

mented over both Ethernet and InfiniBand, a high-speed low latency switched

fabric communication link that is used in high-performance computing[74]. It

would also be trivial to create queues that operate over other types of reliable

data stream.

146

5.6 CPN from a Coordination Language

While it is certainly possible to build a distributed CPN system by

writing one C++ program for each host, this approach would be error prone

and time-consuming to develop and deploy. Lee argues [3] that concurrent sys-

tems should be built with coordination languages based on sound, composable

formalisms. I propose that a reasonable description language to build concur-

rent systems is a part list and a net list. These describe a composable system

that coordinates with the formal CPN semantics. For distributed systems, I

use one additional list: a node map which maps each node onto a particular

network host.

JSON (JavaScript Object Notation) is a lightweight text-based data-

interchange format that is both human and machine readable [75]. It is an

open standard and in fairly wide use. The CPN framework provides a parser

and loader that can read a simple JSON description of a CPN program to

be built and executed. Figure 5.10 provides JSON that implements Kahn’s

simple example as described in Section 5.1. By adding a node map, one can

specify how the (unmodified) program is to be distributed and executed across

multiple compute hosts.

The CPN framework includes a parser for a similar dialect built on the

widely used Extensible Markup Language (XML) [76]. A description of the

CPN coordination language for both JSON and XML is available in the CPN

tutorial, which is included in the CPN source code release [77].

147

{ "nodes" : [
{ "name" : "f" , "type" : "Kahn_f" } ,
{ "name" : "g" , "type" : "Kahn_g" } ,
{ "name" : "h0" , "type" : "Kahn_h" ,

"param" : { "first" : 0 } } ,
{ "name" : "h1" , "type" : "Kahn_h" ,

"param" : { "first" : 1 } } ,
] ,
"queues" : [
{ "name" : "X" , "datatype" : "int32_t" ,

"writernode" : "f" , "writerport" : "out" ,
"readernode" : "g" , "readerport" : "in" }

} ,
{ "name" : "S" , "datatype" : "int32_t" ,

"writernode" : "g" , "writerport" : "out0" ,
"readernode" : "h0" , "readerport" : "in" }

} ,
{ "name" : "Y" , "datatype" : "int32_t" ,

"writernode" : "h0" , "writerport" : "out" ,
"readernode" : "f" , "readerport" : "in0" }

} ,
{ "name" : "T" , "datatype" : "int32_t" ,

"writernode" : "g" , "writerport" : "out1" ,
"readernode" : "h1" , "readerport" : "in" }

} ,
{ "name" : "Z" , "datatype" : "int32_t" ,

"writernode" : "h1" , "writerport" : "out" ,
"readernode" : "f" , "readerport" : "in1" }

}
]}

Figure 5.10: Implementation of Kahn’s simple example with JSON.

148

{ "nodemap" : [
{ "f" : "kernel0" } ,
{ "g" : "kernel1" } ,
{ "h0" : "kernel0" } ,
{ "h1" : "kernel1" } ,

]}

Figure 5.11: A mapping of Figure 5.10 onto two hosts with JSON.

With a CPN Remote Context daemon and multiple hosts running (iden-

tical) programs containing CPN Kernels, a parser program can push a system

description out to be loaded and executed on a workstation cluster. The CPN

framework has the ability to locate, load, and instantiate node classes that

are compiled into dynamically loadable shared libraries. This way code that

implements all of the different types of nodes simply needs to be available on

a shared network volume.

The power of building composable, scalable distributed systems from a

simple text description is not in programmers editing text files, but in lever-

aging electronic design automation (EDA) tools. Designers could draw block

diagrams of a system using schematic capture tools of node libraries, and

any additional nodes that are needed can be easily developed. Part lists

and netlists could be automatically extracted and turned into a scalable, dis-

tributed system. Designers need not be experts in concurrent and distributed

systems to build and use them. Exploring the space of mapping the system

across multiple compute hosts could be done automatically by manipulating

the machine-readable mapping file, or manually specified by the designer by

149

grouping nodes.

Highly specialized or optimized signal processing libraries that have

been developed by domain experts can easily be used within the framework

because communication and computation have been separated. It is simple to

wrap an algorithm into a CPN Node (much like what was done with FFTW)

and use it in a distributed, concurrent software system.

5.7 CPN as an Embedded Library

As mentioned in Section 5.2, a CPN Kernel spawns a new thread in

which its duties will be performed, and then returns control to the calling

thread. This way, the CPN framework does not take complete control of a

(Unix) process, and can be used as a library that is embedded within other

applications. The CPN Kernel therefore provides a few methods to allow the

calling thread to examine the state of the running CPN program:

Terminate() instructs the kernel to terminate

Wait() waits for the kernel to terminate (after Terminate is called)

WaitForNodeStart(nodename) waits for a named node to start

WaitForNode(nodename) waits for a named node to terminate

WaitForAllNodes() waits for all nodes to terminate

If a main program instantiates a kernel and then creates nodes and queues, the

main program should typically wait for the nodes to terminate before exiting.

150

Kernel k e rne l (KernelAttr ("kernel")) ;
// c r e a t e a myth ica l counter node
ke rne l . CreateNode (NodeAttr ("counter" , "counter")) ;
// c r e a t e an e x t e r n a l reader
ke rne l . CreateExternalReader ("result") ;

// a t t a c h a queue between counter and e x t e r n a l reader
QueueAttr qa t t r (2∗ s izeof (int) , s izeof (int)) ;
qa t t r . SetWriter ("counter" , "out") ;
qa t t r . SetExternalReader ("result") ;
k e rne l . CreateQueue (qa t t r) ;

// now read from the e x t e r n a l reader
IQueue<int> r e s u l t = ke rne l . GetExternalIQueue ("result") ;
int value ;
while (r e s u l t . Dequeue(&value , 1)) {

p r i n t f ("%d\n" , va lue) ;
}
ke rne l . DestroyExternalEndpoint ("result") ;

Figure 5.12: Steps to create and use an external reader.

It the main program exits without waiting, the kernel will go out of scope and

be terminated by its destructor.

The CPN Kernel also provides methods for attaching to a CPN queue

from outside a CPN program. This could be useful for injecting data into a

CPN program, or for reading results out of a CPN program. This is achieved

by using external readers and external writers, which are accessed via the

following CPN Kernel methods:

CreateExternalReader(name) create a named external reader

151

CreateExternalWriter(name) create a named external writer

GetExternalIQueue(name) returns an IQueue ready to be accessed

GetExternalOQueue(name) returns an OQueue ready to be accessed

DestroyExternalEndpoint(name) destroy a named reader or writer

When initializing a QueueAttr, the consumer end can be specified as an ex-

ternal reader by using SetExternalReader(name) instead of SetReader as

in Section 5.4.3. For an external writer, SetExternalWriter(name) is used

instead of SetWriter.

Figure 5.12 provides an example of using an external reader. Before

creating a queue, the external reader must be created. The queue is specified

to use the external reader as its consumer end. The IQueue is then requested

from the kernel, and can be read from as if it were part of the CPN program.

5.8 Conclusion

This chapter presents details about the CPN framework implementa-

tion, which is intended for high-throughput computationally intensive algo-

rithms on symmetric multiprocessing workstations and workstation clusters.

This scalable software framework uses POSIX threads and C++ template data

types, and uses a layered approach based on the C++ inheritance mechanism

to build interfaces and functionality. Using a simple coordination language,

152

developers can use this framework to build high-performance, distributed sys-

tems from deterministic, composable components.

Chapter 6 presents case studies that demonstrate the capabilities of the

CPN framework.

153

Chapter 6

CPN Case Studies

In Chapter 4, I describe the enhancements I have made to Kahn’s

Process Network model to make an efficiently implementable model, Compu-

tational Process Networks, which preserves Kahn’s formal properties of deter-

minacy and scalability. Chapter 5 presents details on the implementation of

the CPN framework, and how it can be used to build systems that execute on

multi-core or distributed compute hosts. This chapter presents case studies

that exercise the CPN framework and demonstrate its capabilities and utility.

Section 6.1 provides an introduction. Section 6.2 presents a case study

using the classic Sieve of Eratosthenes, a simple algorithm for finding prime

numbers. Section 6.3 presents a case study that exercises the framework im-

plementation with randomly generated program graphs. Section 6.4 presents

a 3D circular convolution sonar beamformer and replica correlator that is rep-

resentative of a real-time signal processing algorithm that can be implemented

with the provided framework. Section 6.5 provides a conclusion.

154

6.1 Introduction

In this chapter, I provide the results of benchmarks that have been

executed on two target platforms. The first platform represents a fairly large

multi-core system. It is a server-class machine with two 2.66 GHz Intel Xeon

“Westmere” model X5650 processors and 6 GB of memory. Each processor

has six-cores with Hyper-Threading [78], so this platform appears to have 24

processors. This server is running Red Hat Enterprise Linux 5.5.

The second target on which these CPN benchmarks have been per-

formed is a cluster system that has been maintained specifically for this project.

This cluster has a root node and 7 diskless compute nodes that are booted

from the root over a gigabit Ethernet network. The nodes are additionally

networked together with InfiniBand [74], a high-speed low latency communica-

tion link used in high-performance computing. These links use 4X InfiniBand,

which operates at 8 gigabits per second. Each node in this cluster contains

a pair of dual-core 2.33 GHz Intel Xeon “Woodcrest” model 5148 processors.

This cluster is running Red Hat Enterprise Linux 5.5, the root node has 16

GB of memory, and each compute node has 8 GB of memory.

The code that implements these case studies is included as part of the

CPN framework distribution. I begin with the Sieve of Eratosthenes.

155

6.2 Sieve of Eratosthenes

The first example that Kahn provides [48] of a Process Network per-

forming a useful computation is the Sieve of Eratosthenes [79], which is a

simple method for finding prime numbers. Eratosthenes was a Greek math-

ematician who lived circa 200 BC [80]. The algorithm is extremely simple,

operating on a list of sequential integers from 2 up to some value N :

1. pick the next number from the start of the list and declare it a prime,

2. remove all multiples of this prime from the list, and

3. repeat.

After reaching a prime that is greater than or equal to
√
N , the algorithm

ends and all that remains in the list are the primes up to N .

Kahn attributes to [81] the prime sieve in the form of concurrent pro-

cesses that filter multiples of prime numbers. This form of the algorithm is

simple as well, and starts with a base process that creates a stream of se-

quential integers starting at 2. Following the base process is a series of filter

processes. Each filter process reads the first number on its input and declares

that number a prime. It then repeatedly reads from its input, eliminates any

multiples of its prime, and sends the remaining integers to its output. Each

filter in the sequence is filtering the next prime number. Figure 6.1 shows a

prime sieve in the form of a series of filter processes.

156

count
2 to N

filter(2) filter(3) filter(5)

Figure 6.1: A prime sieve as a series of concurrent processes.

The Sieve of Eratosthenes is an example of an algorithm that requires

dynamic execution, and cannot be implemented by more restrictive static mod-

els of computation such as SDF (Section 1.4.2) or CG (Section 2.4). The prime

sieve also demonstrates the composability of the PN model, also not available

in SDF or CG. The number of filters that need to exist in the sieve is not

known in advance. Instead, the series of filtering processes is created recur-

f

rest

f i rst

filter(P)
in

P

fout

Figure 6.2: A recursive node f that creates prime filters.

157

sively, and each process creates an identical subprocess to where it can send

its filtered output. Figure 6.2 shows the definition of a node f that recursively

creates prime filters. This definition also separates the first token, known to

be a prime (P), from the remaining prime candidates to be filtered.

6.2.1 Implementation

One thing to notice about the prime sieve is that there is a significant

imbalance in the quantity of prime candidates at each node. The closer a node

is to the beginning, the more prime candidates it must examine. This makes

the first several nodes an extreme bottleneck. Why should the base node emit

even numbers when they are immediately going to be filtered? Why not emit

a 2, followed by only the odd numbers up to N? The prime wheel [82] is a

generalization of this idea, and is commonly used as an improved emitter of

prime candidates.

The “circumference” of a prime wheel of order M is the product of

the first M prime numbers. The “spokes” are the numbers that are prime

candidates each time the wheel revolves. For example, a 2nd order prime

wheel has a circumference of 2 · 3 = 6. All prime candidates greater than 6

must be of the form 6k+1 or 6k+5, where k is a positive integer. This method

significantly reduces the number of prime candidates, but does not scale well.

For example, a 6th order wheel has a circumference of 30030, and an 8th order

wheel has a circumference of 9699690.

For implementation of a prime sieve in the CPN framework, one could

158

make the observation that a filter node does only a very small amount of work

per execution: it consumes a single prime candidate from its input, determines

whether the candidate is a multiple of its prime number, and if not, places the

single candidate on its output queue. As discussed in Section 5.3, CPN nodes

should execute for at least on the order of a thread context switch to avoid

being dominated by dynamic scheduling overhead. One way that prime sieve

filter nodes can be made to do more work at each firing is with multi-token

transactions, a feature of the CPN framework. A node can read a set of

multiple prime candidates, eliminate all of the multiples of its prime number,

and then send the remaining list of non-candidates to its output.

An additional method for increasing the amount of work at each filter

node is to have it filter for more than one prime number. A naive approach

would be to have a multiple-prime filter node perform the same operations

that multiple single-prime filter nodes perform (as in simple node clustering).

However, I implement a node that filters multiple primes more efficiently. This

node maintains a heap data structure with one entry per prime number being

filtered. Each entry in the heap contains a current working multiple of the

prime, and the heap is reverse-sorted on these working multiples.

To check if a candidate is prime, it is compared to the smallest working

multiple in the heap. If the candidate is larger than the smallest working

multiple, the working multiple is increased (by a multiple of the prime number)

and the heap is reheapified. This is repeated until the candidate is not larger

than the smallest working multiple. If the candidate is equal to the smallest

159

working multiple, then the candidate is not prime and therefore blocked by

the filter as a composite of the same prime as the working multiple. If the

candidate is smaller than the smallest working multiple, then it has passed

the sieve and may be a new prime number. An original version of this node

increased working multiples by twice the prime (thus skipping the multiple of

two). The current version alternates between skipping twice the prime and

four times the prime, thereby making a prime wheel of order 2.

A multiple-prime filter node is initialized to know the maximum number

of primes that it should filter. When a candidate passes the sieve and the filter

node has room for an additional prime, the candidate is a new prime number.

The filter node adds a new entry for the prime to the heap and sets the

working multiple value to the square of the new prime. If the filter node is

already filtering its instructed maximum number of primes, it will send the

passing candidate down the line to the subsequent filter node, creating one if

it does not exist. If primes are being computed only up to some number N ,

reaching a prime of
√
N or greater indicates that no further filtering primes

are needed, and all further incoming numbers are prime.

6.2.2 Results

Figure 6.3 shows execution results on the 24-core computer for several

different variations of the prime sieve, versus the number of prime candidates

N . For each point on the plot, several runs of the prime sieve are performed

and the minimum execution time taken, which includes setup and tear down

160

103 104 105 106 107 108 109

number of prime candidates

104

105

106

107

108

109

p
ri

m
e
 c

a
n

d
id

a
te

s
p

e
r

se
co

n
d

prime wheel, rising primes/node
prime wheel, 5 primes/node
multi token, 1 prime/node
single token, 1 prime/node

Figure 6.3: Prime sieve results on target #1 (large SMP).

of the full CPN graph. The rate of prime filtering is simply computed as the

number of prime candidates divided by the execution time.

The series labeled “single token, 1 prime/node” is implemented as Kahn

did in [48]: the base node generates a sequential series of integers (starting at

2), each filter node consumes one token at a time, and each filter node filters

a single prime number. The prime-counting function, π(N), gives the number

of primes less than or equal to N [83], and π(N) ≈ N/ lnN . For N = 104, the

161

sieve can stop adding new filters when a prime greater than
√
N = 100 has

been reached. This occurs when there are about 22 filter nodes (and threads).

For N = 107, this estimate grows to 392 filter nodes.

Again, to prevent significant scheduling overhead due to thread con-

text switching, CPN nodes should perform larger-grain computation. The

series labeled “multi token, 1 prime/node” simply uses the multi-token firing

threshold feature of the CPN framework. For this and the remaining series,

firing thresholds are set to 2500 tokens. A filter node will block until it has

2500 prime candidates in its input queue, and it will also block until there is

sufficient space for 2500 in its output queue. Once these conditions are met,

the node filters all available prime candidates. Clearly this is a big improve-

ment (over 400 times faster at N = 107), but still has scaling problems. For

N = 108, this is about 1085 filtering primes and filter nodes.

The series labeled “prime wheel, 5 primes/node” uses the multiple-

prime filter node (from Section 6.2.1) to filter for 5 primes at each node. This

gives an additional performance improvement, but ultimately only divides the

number of filter nodes by a constant and postpones the scaling problem. For

N = 109, this is about 3052 filtering primes in 610 filter nodes.

The final series is labeled “prime wheel, rising primes/node”. Here,

each filter node computes how many primes it should filter based on its distance

away from the base node, as specified by simple polynomial coefficients. In

this example, the polynomial used is b0.005k3c, where k is the distance of the

filter node from the base node. (If the result is less than one, then one prime

162

is used.) With this polynomial, the first seven filter nodes use a single prime,

and then that number grows rapidly. For N = 109 there are 41 nodes with the

3000 filtering primes, and the final nodes are filtering hundreds of primes. At

N = 107, this is more than 2500 times faster than the original case of single

token firings and one prime per node.

Changing the polynomial will change the number of primes being fil-

tered at each node, and the shape of the final series. The polynomial affects

the number of threads and the amount of work performed in each thread. To

tune for a particular problem size (N , the number of prime candidates) and

0 20 40 60 80 100 120
prime index (kth prime)

10-3

10-2

10-1

100

ra
ti

o
 o

f
p

ri
m

e
 c

a
n

d
id

a
te

s
p

a
ss

in
g

 s
ie

ve

Figure 6.4: An estimate of the work performed at each prime filter.

163

amount of concurrency, one could compute the primes per filter as a function

of N and the number of desired filter nodes.

A way to estimate the amount of work at each filter node is by esti-

mating how many prime candidates it must filter. Figure 6.4 shows the ratio

of prime candidates that remain after filtering up to the kth prime. This illus-

trates the severe imbalance in workload, and the motivation for using a prime

wheel for the first several primes. The primorial (or prime factorial), pk#, is

the product of the first k primes [84]. This workload ratio is approximately

equal to (6.1).

π(pk#)− k + 1

pk#
(6.1)

Again, π(x) is the prime-counting function [83].

In any case, this prime sieve case study is included because of historical

significance to Process Networks, and because it demonstrates some design

choices when using the CPN framework. If a fast prime number generator is

needed for a practical purpose, a more modern algorithm should be used.

Figure 6.5, provides execution results from the second target platform,

the cluster computer. In this case the same CPN program is run repeatedly,

each with a different mapping of prime filter nodes onto different computers in

the cluster. The primes up to N = 109 are computed, again using a 5-prime

wheel and a rising number of primes per node. Because each computer has

4 processors, the first 4 CPN nodes are run on the first computer and the

next 4 nodes on the next computer. When there are more CPN nodes than

164

1 2 3 4 5 6 7
number of computers in cluster

70

80

90

100

110

120

130

m
il

li
o
n

s
o
f

p
ri

m
e
 c

a
n

d
id

a
te

s
p

e
r

se
co

n
d

Figure 6.5: Prime sieve results on target #2 (cluster).

computers, they cycle around again to the first computer. That is, the kth

CPN node is run on computer number bk/4c mod M , where there are M

computers being used.

The prime sieve is effectively a pipeline, and the performance is lim-

ited by the slowest stage. In the Sieve of Eratosthenes, the first stages are

the slowest stages by a large margin (based on their unbalanced workload as

shown in Figure 6.4). This significantly restricts the scalability of the prime

sieve. There is some speedup as computers are added in this distributed case,

but performance is hamstrung from the source. I have not spent significant

165

effort tuning this prime sieve for the cluster system. Again, it is of historical

significance, and more modern algorithms exist for finding prime numbers.

6.3 Randomly Generated Graphs

The second case study is included to demonstrate the robustness and

stability of the CPN framework. It has also been used during development as

a tool to find and resolve implementation problems. If my claim is to “leave

your concurrency issues to the CPN framework,” then the implementation had

better be solid. This case study pseudo-randomly and dynamically builds and

modifies CPN program graphs. Queues are randomly created, briefly used for

communication, and then deleted. With some probability, nodes are randomly

created and randomly expire. In particular, this case study stress-tests the

CPN Kernel (Section 5.2) and the CPN Remote Context (Section 5.5.1).

To randomly generate graphs, I begin with a simple pseudo-random

number generator: a linear feedback shift register (LFSR). An LFSR is a

shift register with an input bit that is an exclusive-or combination of other

bits in the register. The bits that are combined and fed back are called the

taps, and they describe a feedback polynomial. For a register of n bits, a

maximal LFSR will create a sequence of 2n − 1 numbers before repeating,

and every possible n-bit value will be represented except for 0. Creating a

maximal LFSR is a simple as using a maximal-length feedback polynomial,

which can be computed or found in a reference. LFSRs are easy to implement

in both hardware and software, and are used in many applications including

166

digital counters, cryptography, and communications [85]. Using an LFSR, a

determinate pseudo-random sequence of a chosen length can be fully described

by two integers: the polynomial and the seed, or initial value.

In this case study, each node in the system uses an LFSR (with identical

parameters) to decide what operation it will perform. Each node contains

an instantiation of the RandomInstructionGenerator class, which treats the

pseudo-random series of integers as computer “opcodes” to describe how the

system will operate. There are only four opcodes:

CREATE creates a new node,

DELETE deletes an existing node,

CHAIN marks a node to be used in a communication chain, and

NOOP is no operation.

The probability with which CREATE and DELETE operations will occur is

specified as a parameter at initialization (currently set to 1% each). DELETE

gets an argument describing which node should be deleted by taking the next

random number from the LFSR. Nearly all the remaining opcodes map to the

CHAIN operation. Which node to use in the chain is given by the integer

value of the CHAIN opcode itself. The number of CHAIN opcodes is the

largest multiple of the number of live nodes in the system (so that there is no

bias in the selection of nodes for chaining). The remaining opcodes are NOOP.

167

The initial number of nodes is also an initialization parameter. Each

node is numbered in a sequence starting at zero. Newly created nodes are put

at the end of the sequence, but nodes can be deleted from anywhere (as given

by a random argument). Once a node number is deleted it cannot be reused.

If there is only one node, it cannot be deleted.

The RandomInstructionGenerator maintains a list of nodes that have

been selected for chaining. This list grows as CHAIN opcodes are issued, until

there is a collision: the specified node is already in the chain list. Upon this

collision, the process of actually building the chain begins.

The first node in the chain list becomes a producer. The producer

creates a queue from itself to the second node in the chain, sends a few tokens

(once the connection is made), and releases the queue. The second node in the

chain becomes a transmuter. A transmuter creates a queue from itself to the

next node in the chain. It reads the tokens from its input queue, verifies their

value, and releases the input queue. It then sends tokens on its output queue

and releases the output queue. This sequence continues until we reach the

final node in the chain list. The final node in the chain becomes a consumer.

The consumer simply reads and verifies the tokens from its input, and then

release the queue.

Each node has its own RandomInstructionGenerator instantiation,

and the nodes are not synchronized (because each runs in a separate thread).

However, nodes block when trying to attach queues to a peer, and this serves

as a synchronization between them. When a node is created or deleted,

168

0

8

42

16

24

32

30

40

1

9

17

25

3633

41

2

21

10

18

26

34

29

3

11

5

19

27

35

43

4

12

20

28

44

13

3837

45

6

14

22

31

46

7

15

23

39

47

Figure 6.6: An example of a randomly generated CPN graph.

every node waits for that operation to complete (via WaitForNodeStart or

WaitForNode interfaces to the CPN Kernel). This also serves as barrier syn-

chronization for the system.

Figure 6.6 shows an example of a random CPN graph that is gen-

erated by RandomInstructionGenerator. To create this figure, the tex-

tual output was parsed and converted, and then automatically rendered with

Graphviz [86], an open source graph visualization software package.

The programs to execute this case study are included in the CPN soft-

169

ware framework distribution, and have repeatedly been executed both on the

24-core computer, and on the cluster (each described in Section 6.1). The

program RandomInstruction executes the test from within a single (Unix)

process. The initial number of nodes and the number of opcode iterations to

execute are specified as command-line parameters. A local CPN Context is

created and all kernel interactions are via function calls with mutual exclusion

(mutex) locks. More than one CPN Kernel (in the same single process) can

also be specified on the command line. In this case, the nodes are assigned

to the multiple kernels in a round-robin fashion. This stress test exercises the

CPN Kernel and interaction with a local CPN Context, and executes success-

fully with 50000 nodes. It has repeatedly run for a millions of iterations on

1000 nodes for more than 72 hours without failure.

The program RemoteRandomInstruction executes the test in a dis-

tributed fashion. It requires that a RemoteContext daemon is running (Sec-

tion 5.5.1). Multiple copies of RemoteRandomInstruction can be run, and

all will coordinate and communicate via the daemon. In this case, the initial

number of nodes, the number of opcode iterations, and other parameters are

specified in a JSON [75] configuration file. This stress test exercises the CPN

Kernel, the RemoteContext daemon, and their interaction. This test has re-

peatedly run for millions of iterations on the cluster system using 8 hosts and

1000 nodes, and it has run for more than 72 hours without failure.

If all goes well, the output generated by each of these program is un-

interesting. They should and do execute as instructed, and run to completion

170

without error. The execution time is fairly inconsequential. The stated goal

of this test is to demonstrate robustness and stability of the CPN framework,

and no effort has been made to optimize the opcode generator and parser. As

a point of reference, RemoteContext can execute with 1000 nodes and 10000

opcode iterations in under 3 seconds. Unsurprisingly, increasing the number of

nodes, opcode iterations, or kernels will increase execution time. A distributed

execution across a network will also increase execution time.

Valgrind [87][88] is a set of dynamic analysis tools for instrumenting

programs and examining their behavior. Valgrind can perform profiling and

automatic detection of various types of errors, such as memory management

errors. This random CPN graph case study has also been run through the val-

grind memory checking tool, memcheck [89], with no errors found. The CPN

framework contains extensive unit tests, and has also passed the memcheck

tests.

The final case study is an example of a high-throughput signal process-

ing system, the intended target application domain for the CPN framework.

6.4 Sonar Beamformer and Correlator

Sonar is a method for using acoustic waves to detect and locate objects

or environments, typically underwater [90]. The origin of the word sonar is the

acronym Sound Navigation and Ranging. Sonar can be used for navigation,

obstacle avoidance, communication, underwater mapping, and detection and

identification of other vessels or objects. A passive sonar operates only by

171

listening to sound in the environment. An active sonar emits sound (called a

ping) and listens for reflections. The distance to an object can be measured

by the difference in the time of the ping and the arrival time of the object’s

reflection.

The receiver in a sonar typically consists of an array of sensor elements

that convert sound pressure to a voltage. This voltage can be amplified and

digitized, and then digital signal processing applied to compute a desired re-

sult. A beamformer is spatial filter that can focus an array of elements to

determine from which direction a sound arrived. A simple way to implement a

beamformer is as a weighted delay and sum of sensor elements [91], where the

delays are the signal propagation time from each of the sensors onto a plane

that is perpendicular to the desired steering direction. In (6.2), a single beam

output b(t) is computed from a number of sensors xn(t) that are weighted by

αn and delayed by τn.

b(t) =
N∑

n=1

αnxn(t− τn) (6.2)

To form an image, it is desirable to “look” in many directions simultaneously

by forming multiple beams that are steered in multiple directions. Figure 6.7

shows an example of a set (or fan) of beams that could be formed for a sonar

system.

More elements can increase the sensitivity of an array, so that it can

detect smaller signals. More elements can also decrease the width of each

beam, yielding a more accurate measurement of a signal’s arrival angle. When

the beams narrow, more beams must be formed to cover the same angular

172

Figure 6.7: An example of multiple beams formed for a sonar system.

sector without introducing gaps in coverage. Also, the range resolution of a

sonar (accuracy of distance measurements) is improved by increasing the signal

bandwidth, and therefore the sampling frequency. The desire for high resolu-

tion drives sonars to many elements and wide bandwidths. Consequently, a

beamformer for a high-resolution sonar is a high-throughput, computationally

intensive signal processing application. A beamformer is also an example of a

multi-channel sliding window algorithm.

Another important component of an active sonar is a replica correla-

tor, also known as a pulse compressor or a matched filter. The received signals

should correlate well with what was transmitted. Given that the transmitted

pulse is known, the received signals can be filtered to look for that known

signal. The optimal filter (not accounting for distortions) is the time-reversed

173

0 2 4 6 8 10 12 14 16
3

2

1

0

1

2

3

unfiltered

0 2 4 6 8 10 12 14 16
time (ms)

10

5

0

5

10

15

20
replica correlated

Figure 6.8: An example of replica correlation of a noisy signal.

complex conjugate of the transmit pulse, or replica. Matched filtering maxi-

mizes the output signal-to-noise ratio [65], which improves signal detection in

the presence of noise. For certain types of pulses such as a linear frequency

modulated (LFM) sweep or chirp, matched filtering will also compress the

received signal in time, thus augmenting the range resolution.

Figure 6.8 shows an example of replica correlation. The upper plot

contains an LFM chirp, and the same chirp with additive noise masking the

signal (in gray). The lower plot contains the result of replica correlation for

both signals. The signal amplitude is significantly increased and is now easily

174

discernible above the noise, and the pulse has been compressed in time.

The benefit from matched filtering is proportional to the product of

the pulse’s duration and bandwidth, or the time-bandwidth product. The de-

sire for high resolution drives sonars to longer pulses and higher bandwidth,

both directly increasing the amount of computation required to implement

the filter. A replica correlator is also an example of high-throughput, compu-

tationally intensive signal processing application, as well as a multi-channel

sliding window algorithm.

6.4.1 Algorithm Description

This case study uses the same sonar array and beamforming algorithm

that I presented in [92]. The array geometry is a cylinder with 256 staves

around a circle, where each stave is a vertical column of 12 elements. This

array has a total 3072 total elements. Each of the staves lies on one of 560

points that is equidistant around the circle. Figure 6.9 shows a top-down view

of one quarter of the array. There are regular gaps in the stave spacing around

the circle to allow for mechanical structure in the array.

The beamformer in this application is separated into two stages: ver-

tical and horizontal. The horizontal beamformer performs replica correlation

in addition to beamforming. Figure 6.10 provides a block diagram of the full

beamforming system.

The vertical beamformer (also called a staveformer) forms 3 stave out-

puts for each vertical column of 12 elements, computed by weighted delaying

175

Figure 6.9: A top view of one quarter of the array geometry.

vertical

beamformer

elements
x

horizontal

beamformer

for fan 0staves
y0

horizontal

beamformer

for fan 1

y1

horizontal

beamformer

for fan 2

y2

beams
b0

b1

b2

Figure 6.10: A block diagram of the full beamforming system.

176

and summing. The sampled element data input to the vertical beamformer

is x[s][e][n], where s is the stave index, e is the vertical element within the

stave, and n is a sample index in time. The element data has already been

frequency-shifted to baseband and rate-reduced. The weights and delays for

vertical beamforming are applied together by a bank of weighted 4-tap frac-

tional delay FIR filters of the form hv[12][4]. The algorithm from [93] is used

to compute these fractional delay filters. Each of the 3 sets of vertical beams

can use a different hv so that the resulting sets of vertical beams can have

different steering angles or beam shapes.

y0[s][n] =
11∑
e=0

[
3∑

k=0

x[s][e][n− k]hv0[e][k]

]
B0[e] (6.3)

The first set of vertical beams is computed as shown in (6.3) for all 256 staves,

where B0 is a correction factor for imposing a time delay at baseband. The

other two sets of vertical beams (y1 and y2) are similarly computed from hv1

and B1 or hv2 and B2. Each output time sample computed by the vertical

beamformer requires about 74 thousand floating point operations per set of

stave outputs, or 221 thousand for all three sets.

The stave outputs from the vertical beamformer are subsequently pro-

cessed by a horizontal beamfomer. Because the staves lie on equidistant points

around a circle, the horizontal beam outputs can be computed using circular

convolution beamforming [94]. In the general (non-symmetric) case, unique

weights and delays could be required for each stave’s contribution to each

beam. By computing 560 equally spaced beams from the 560 equally spaced

177

points around the circle, the weights and delays become symmetric. Of the

560 equidistant points around the circle, only 256 points coincide with a phys-

ical stave. The remaining empty 304 positions are computed as staves of zero,

where this zero insertion can be thought of as spatial upsampling. I refer to

these spatially upsampled staves as “virtual” staves, with the three sets of vir-

tual staves being yv0, yv1, and yv2. To save on transmission bandwidth, these

virtual staves exist only inside the horizontal beamformer.

In this implementation, the weights and delays are again applied at the

same time with a bank of weighted fractional delay filters [93]. Because of the

symmetry in the weights and delays, this bank of filters can be reduced in size

by a factor of 560. In this case, the same weights, delays, and (geometrically

relative) staves are used to form each of the beams. The set of horizontal filters

is of the form hh[M][K], where K is the length of each filter and M is 560,

both the number of beams and the number of virtual staves. The baseband

correction factors are also multiplied into the filters.

The first set of horizontal beams is computed as in (6.4).

b0[d][n] =
K−1∑
k=0

M−1∑
m=0

yv0[m][n− k]hh0[(d−m) mod M][k] (6.4)

This can also be expressed (6.5) as a circular convolution of vectors in space

around the array, and convolution of vectors in time. For additional interme-

diate steps, see [92].

b0[n] =
K−1∑
k=0

(yv0[n− k]
M
~ hh0[k]) (6.5)

178

Circular convolution can be efficiently implemented with the FFT, al-

lowing all 560 beams to be calculated at once. Linear convolution can also be

efficiently implemented with the FFT, i.e. by using overlap-save [65]. Using

the FFT reduces the algorithm complexity from O(KM2) operations per sam-

ple to O(KM log2KM), and significantly reduces the number of operations

required. Matched filtering (replica correlation) is also performed in the hor-

izontal beamformer by convolving the transmitted waveform replica with the

beamforming filters. The overlap size simply must be increased by the length

of the replica.

This horizontal beamformer operates on blocks of 8192 samples in time,

and overlaps adjacent blocks by 2048 samples. For processing one block of

data, the steps of the horizontal beamformer are:

1. FFT in time of 256 staves

2. Upsample to 560 virtual staves and FFT in space

3. Multiply by beamforming filter coefficients

4. Inverse FFT in space

5. Multiply by correlation filter coefficients

6. Inverse FFT in time

For the horizontal beamformer (and replica correlator) to compute a single

block of 8192 samples, it takes about 908 million floating point operations. Of

179

60 40 20 0 20 40 60
angle (degrees)

40

35

30

25

20

15

10

5

0

b
e
a
m

 r
e
sp

o
n

se
 (

d
B

 r
e
 p

e
a
k
)

Figure 6.11: A beampattern computed by the presented beamformer.

the 8192 samples produced, 2048 must be discarded because of overlap. This

derates the useful work by 25%. One horizontal beamformer therefore requires

about 83 thousand floating point operations per sample.

For a nominal sample rate of 50 kHz, the element data rate (with

complex 16-bit integers) is about 614 MB/s, the stave data rate (for three

fans of complex 32-bit floating point) is about 307 MB/s, and the output

data rate (also three fans of complex floating point) is about 672 MB/s. The

computational load of the full beamforming system with a 3-output vertical

beamformer and 3 horizontal beamformers is about 23.5 GFLOPS.

180

One way to measure the performance of an array and beamformer is

with a beampattern, which shows the amplitude response versus angle. Fig-

ure 6.11 shows a beampattern generated with the presented beamformer by

processing simulated data. A functioning beamformer has a strong response

the desired steering direction, and a weak response in other directions. This

beamformer has about a 27 dB difference between the main lobe and the next

largest lobe. A beamforming system such as this can be used to image an

underwater environment in three dimensions [95].

6.4.2 Implementation

These beamforming algorithms have been implemented in C++ and

leverage various versions of the Intel Streaming SIMD Extension (SSE) [96]

instruction set. These kernels use techniques [97] to achieve high-performance

native signal processing. To reduce memory accesses at the vertical beam-

former input, this implementation produces all three outputs from a single

pass over the element data. To compute the required FFTs, this horizontal

beamformer implementation uses the Fastest Fourier Transform in the West

(FFTW) [66] library.

The corner turn is a commonly used method to improve efficiency when

operating on multi-dimensional data [98][99]. A corner turn is simply copying

data to change the storage order in memory, typically transposing the rows

and columns. Memory is relatively slow, so this can be an expensive operation.

This especially true for large data sets that do not fit in the processor’s cache.

181

However, providing sequential memory access for a subsequent stage of the

algorithm often leads to a significant overall performance gain. The presented

horizontal beamformer kernel implements two corner turns: one before the

forward FFT in space, and another after the inverse FFT in space. The first

corner turn also upsamples the 256 staves to 560 virtual staves by inserting

zeros. Each corner turn operates on a data set of about 35 MB.

The vertical and horizontal beamformer kernels are both good examples

of data parallelism, and each use loop parallelization features of OpenMP [8].

The horizontal beamformer additionally uses the thread support that is in-

cluded in the FFTW library.

On a single processor core from target #1, the vertical beamformer

kernel can sustain operation at about 49 thousand samples per second (ksps),

which is about 10.8 GFLOPS. Intel lists the base GFLOPS for the X5650 (on

all 6 cores) as 63.984 GFLOPS [100]. The vertical beamformer kernel operates

at about 102% of this published number (for only a single core).

On the same single processor, a single horizontal beamformer kernel can

sustain operation at about 19.1 ksps, or about 1.59 GFLOPS. The horizontal

beamformer kernel operates at only about 14.9% of Intel’s published base

GFLOPS. That is not because of a lack of effort in optimizing this kernel.

The execution time of the horizontal beamformer is dominated by FFTW.

On a single processor, about 81% of execution time is spent performing the

forward and reverse FFT operations. The remaining time is split about equally

between corner turns and SIMD vector complex multiplication. FFTW is

182

vbf0

vertical

hbf0a

horizontal

front half

hbf1a

horizontal

front half

hbf2a

horizontal

front half

hbf0b

horizontal

back half

hbf1b

horizontal

back half

hbf2b

horizontal

back half

sinksource

Figure 6.12: CPN beamformer topology on target #1 (large SMP).

known for being computationally efficient, but large FFTs, large data sets, and

non-sequential memory accesses do not make efficient use of cache. Consider

that if the horizontal beamformer and replica correlator were to be computed

without an FFT as in (6.4), they would require about 32.5 million floating

point operations per sample. That is about 390 times as many operations as

the presented algorithm.

6.4.3 Target #1 Results

To implement this beamforming system within the CPN framework,

CPN Nodes were created as described in Section 5.3 to create vertical and hor-

izontal beamformer nodes. Because of the large compute load of the horizontal

beamformer, it was split approximately in half. The “front” half executes both

forward FFTs and multiplication of the beamforming filter coefficients, and the

183

0 5 10 15 20 25
number of processors used

0

10

20

30

40

50

60
th

ro
u

g
h

p
u

t
(k

il
o
sa

m
p

le
s/

s)

CPN

OpenMP
0

5

10

15

20

25

p
e
rf

o
rm

a
n

ce
 (

G
F

L
O

P
S

)

Figure 6.13: Beamformer performance results on target #1 (large SMP).

“back” half executes the remaining steps. Figure 6.12 shows the topology of

the beamformer as a CPN program.

Figure 6.13 shows execution results of this CPN beamformer on plat-

form #1, the 24-core SMP computer. As in [92], I also include results using

only OpenMP [8] to execute the same optimized beamformer kernels in suc-

cession. While varying number of processors in use, I measure the execution

time and convert it to beamformer throughput in samples per second. I also

compute the GFLOPS based on the number of math operations per sample

from Section 6.4.1. On a single processor, both beamformers operate at just

over 5 ksps, with the OpenMP beamformer being about 5% faster. The CPN

184

beamformer scales fairly linearly from 1 to 12 processors, with a speedup of

9.3 at 12 processors. At 12 processors, the performance begins to plateau as

the transition is made to the Hyper-Thread [78] cores. The CPN beamformer

reaches and surpasses the throughput goal of 50 ksps. On all 24 processors, the

CPN beamformer operates at 52.5 ksps, which is just under 25 GFLOPS. The

OpenMP version scales well for a small number of processors, but is limited

in scalability by its sequential model underpinnings. When the Hyper-Thread

cores are used, the OpenMP-only beamformer behaves poorly.

6.4.4 Target #2 Results

I also provide performance results on target #2, the cluster system. The

processor performance on this system is considerably less than target #1. On a

single 4-core compute host, the vertical beamformer kernel (instrumented with

OpenMP) can sustain operation at about 99.4 ksps, or about 22.0 GFLOPS.

A single horizontal beamformer kernel on a single compute host can sustain

about 28.8 ksps, or about 2.39 GFLOPS. Intel lists the base GFLOPS for the

5148 processor as 18.664 GFLOPS [100]. Relative to the published reference,

the vertical kernel runs at 118%, and the horizontal kernel at only 12.8%.

Again, significant effort has been spent to optimize the horizontal kernel, and

it spends the majority of its execution time in the FFTW library.

The same executable from target #1 (and Figure 6.12) runs on a single

cluster compute host at only 11.2 ksps, which is about 5.3 GFLOPS and

22% of the target rate. The distributed capabilities of the CPN framework,

185

described in Section 5.5, can be used to increase execution performance on this

distributed target. A CPN Remote Context Daemon (Section 5.5.1) can be

run on one host of the cluster, and a CPN Kernel run on each compute host

in the cluster. CPN Nodes can then be distributed on other compute hosts as

instructed by a mapping file, as described in Section 5.6. By changing only

the mapping file, the same program runs at 41 ksps. Referring to Figure 6.12,

the source node and the vertical beamformer node are run on one host, and

every other CPN node is run on its own host. This is only a speedup of 3.7

on 8 hosts, but there is significant overhead due to high-throughput network

traffic. At 41 ksps, the network bandwidth into the sink node is 551 MB/s, or

55% of the 8 gigabit InfiniBand link.

I expect the horizontal beamformer nodes to be a bottleneck, because

the beamformer kernel benchmarks have shown them to be the slowest nodes

in the feed-forward network. The horizontal beamformer compute hosts have

some idle time, indicating that they are not fully overlapping computation

and communication. To address this, I add more computation that does not

depend on expensive external network communication. The horizontal beam-

former kernel operates on a large data set (about 36.7 MB), and breaking it

into a pipeline requires each stage to have the entire data set. To gain more

computation without additional communication, I add data parallelism to each

horizontal beamformer with simple fork and join nodes, for round robin time

multiplexing as shown in Figure 6.14. The fork node divides the incoming

stream into multiple data sets (with the necessary overlap) for multiple con-

186

f0

fork

hbf0a0

front

hbf0a1

front

hbf0a2

front

j0

join

hbf0b0

back

hbf0b1

back

hbf0b2

back

Figure 6.14: Fork and join round robin within a single horizontal beamformer.

current beamformers, and the join node restores the results to a single stream.

These nodes incur some expense because they are copying high-throughput

data, but they can also reduce the data rate into and out of the servers run-

ning horizontal beamformer nodes.

Figure 6.15 shows the beamformer results on target #2, the cluster

system. On a single compute host, the overhead of the fork and join make

the round robin version a few percent slower. However, the throughput on the

full cluster is 51.8 ksps for the case of 3-way round robin. This surpasses the

throughput goal of 50 ksps, and operates at about 24.3 GFLOPS. This is a

speedup of 4.6 over the original non-time-multiplexed case from Figure 6.12.

The data rate entering the sink compute host is now 696 MB/s, which is 69.6%

of the 8 gigabit InfiniBand link.

To achieve this level of performance, simple load balancing was per-

187

1 2 3 4 5 6 7 8
number of cluster computers used

0

10

20

30

40

50

60
th

ro
u

g
h

p
u

t
(k

il
o
sa

m
p

le
s/

s)

no round robin

2-way round robin

3-way round robin
0

5

10

15

20

25

p
e
rf

o
rm

a
n

ce
 (

G
F

L
O

P
S

)

Figure 6.15: Beamformer performance results on target #2 (cluster).

formed by manually modifying the node mapping file. This was without any

need to modify the executable program. The best results are obtained when

the horizontal beamformers are equally distributed among 6 compute hosts,

and those 6 compute hosts contain only horizontal beamformers. The fork

nodes are grouped with the source and vertical beamformer, and the join

nodes are grouped with the sink. Figure 6.16 shows the full beamforming

system as executed on the cluster, including each node mapping.

In this case, mapping the CPN nodes onto compute hosts in the cluster

was performed by inspecting the load on each host and manually editing a

file. Because it is easy to change this file, exploring the design space of node

188

source

host 1

vbf0

host 1

f0

host 1

f1

host 1

f2

host 1

hbf0a0

host 2

hbf0a1

host 2

hbf0a2

host 3

hbf0a0

host 4

hbf0a1

host 4

hbf0a2

host 5

hbf0a0

host 6

hbf0a1

host 6

hbf0a2

host 7

j0

host 8

sink

host 8

j1

host 8

j2

host 8

hbf0b0

host 2

hbf0b1

host 3

hbf0b2

host 3

hbf0b0

host 4

hbf0b1

host 5

hbf0b2

host 5

hbf0b0

host 6

hbf0b1

host 7

hbf0b2

host 7

Figure 6.16: The full CPN beamformer and mapping on target #2 (cluster).

mappings is also easy. Because this mapping file is in a format that can easily

be automatically parsed and modified by a computer, automated mapping is

an interesting avenue to be explored.

I also explored a two-fan beamforming system (refer to Figure 6.10).

Rather than forming three sets of staves and having three horizontal beam-

formers, there are only two. This can easily be explored because the number

of fans is a command-line argument to the beamformer case study application.

189

This reduces the computational load by about 50%, and ideally would increase

the beamformer throughput by a corresponding 50%. This two-fan case also

used 3-way round robin in the horizontal beamformers. The measured beam-

former throughput in the two-fan case is 74.1 ksps, which represents a 43%

increase in throughput.

6.5 Conclusion

This chapter presents three case studies that exercise the CPN frame-

work and demonstrate its capabilities and utility. These case studies are ex-

ecuted on two different target platforms: a fairly large SMP system with 12

cores and 12 Hyper-Thread cores, and a cluster with 8 quad-core processors

and a high-speed interconnect.

The first case study is the classic Sieve of Eratosthenes, a simple algo-

rithm for finding prime numbers. Using multi-token firings, multiple filtering

primes per filter, and some load balancing, the rate of prime computation was

increased several thousandfold over the base case on the SMP system. This

case study also operates on the cluster system, but does not see much speedup

because of the significant load imbalance in filters of a prime sieve. The prime

sieve case study is included because of historical significance to Process Net-

works, and because it demonstrates some design choices when using the CPN

framework.

The second case study, which randomly generates CPN graphs, demon-

strates the robustness and stability of the CPN framework. This case study

190

pseudo-randomly and dynamically builds and modifies CPN program graphs.

Queues are randomly created, briefly used for communication, and deleted.

With some probability, nodes are randomly created and randomly expire. This

case study has been executed on both target platforms for many hours without

failure.

The final case study is a 3D circular convolution sonar beamformer and

replica correlator, which is an example of a high-throughput signal processing

system. This beamformer has a nominal output data rate of 672 MB/s, and

requires about 23.5 GFLOPS to compute its result. This system achieves its

real-time goal of 50 ksps on both target platforms, and achieves near-linear

speedup on the SMP target.

Chapter 7, which follows, concludes this dissertation.

191

Chapter 7

Conclusion

This dissertation presents the Computational Process Network model,

which extends Kahn’s formal Process Network model to make it efficiently

implementable. Specifically, it adds multi-token transactions, multi-channel

queues, firing thresholds, and zero-copy semantics. This dissertation presents

the distributed dynamic deadlock detection and resolution (D4R) algorithm

which is required in general for bounded execution of PN, and suitable for use

with either KPN or CPN. This dissertation also presents a CPN framework

implementation and case studies. The CPN framework implementation targets

high-throughput computationally intensive algorithms on workstations and

workstation clusters.

7.1 Conclusions

Chapter 1 provides an introduction, and motivates the need for formal

models in concurrent computing systems. It describes desirable properties

for a formal model such as determinism, scalability, boundedness, and com-

posability. It provides a very high-level view of modern computer system

architectures, discusses common practices for programming of concurrent sys-

192

tems, and discusses common problems encountered with these approaches. It

provides a background on formal models for concurrency that can be used to

address these difficulties, introduces Kahn’s Process Network model [35], and

proposes the Computational Process Network model.

Chapter 2 covers Process Networks in greater detail. It introduces

Kahn’s simple semantics of blocking get and non-blocking put. It recreates

Kahn’s illustrative sample program in the style of an object-oriented C++

programming language, discusses the formal consequences, and details the

underlying mathematical model. A PN program can be described by system of

continuous equations on streams. This set of equations has a unique least fixed

point solution that corresponds to the behavior of the executing processes. The

value of tokens on all of the queues depends only on the solution to the fixed

point equation, not on execution order of the processes in the system. Kahn’s

model is composable and determinate. However, termination of a general PN

program is undecidable in finite time, as is boundedness of the queues.

Parks [36] attempts to address boundedness with clever scheduling of

the processes. By allowing queues to block on writing to a full queue and

including online artificial deadlock detection and resolution, bounded PN pro-

grams can be completely executed in bounded memory. Geilen and Basten [38]

find a flaw in Parks’ approach, and show that an algorithm that detects local

deadlocks is required for bounded execution. They also argue that bounded

scheduling will only yield a complete execution if the PN program is effective,

meaning all tokens that are produced are also eventually consumed.

193

I show that effectiveness is too strong of a restriction; there exist non-

effective Process Network programs that will achieve complete execution when

using bounded scheduling. This requirement of effectiveness is particularly

restrictive for sliding window algorithms, where tokens commonly may remain

in queues at termination. I provide counterexamples, and argue that to achieve

a complete execution with bounded scheduling, a Process Network must be

fair. I define a fair Process Network to mean that all of the processes in the

network are fair, and that the scheduler is fair. If this is true, then eventually

the network will progress and converge to the unique least fixed point.

Chapter 2 finally covers Computation Graphs [46], which introduce

the concept of firing thresholds. A firing threshold allows a node to require

the presence of more tokens than it will consume upon firing. Computation

Graphs are generally not effective, but can be statically scheduled in bounded

memory.

Chapter 3 introduces the concept of deadlock, discusses the necessary

conditions for deadlock, and introduces wait-for graphs. It summarizes some

previous work in distributed deadlock detection, and then presents the dis-

tributed dynamic deadlock detection and resolution (D4R) algorithm. The

D4R algorithm is described in detail, including state variables, state transi-

tions, and algorithm proof. Case studies that illustrate the effectiveness of the

D4R algorithm are also included. The D4R algorithm is suitable for use in a

distributed Process Network implementation, to assist in bounded scheduling

so that complete execution can be achieved. If D4R detects a deadlock it will

194

determine whether it is artificial and, if so, identify the queue that must be

lengthened to resolve the deadlock. D4R can be used with bounded scheduling

of either KPN or CPN.

Chapter 4 proposes the Computational Process Network model. CPN

is based on the formalisms of Kahn’s PN model, but with enhancements that

are designed to make it efficiently implementable. CPN preserves the for-

mal properties of KPN: it is determinate, scalable, and composable. The

enhancements of CPN include multi-token transactions to reduce execution

overhead, multi-channel queues for multi-dimensional synchronous data, and

firing thresholds for queues as both consumers and producers. Firing thresh-

olds help separate computation from communication, and allow memoryless

node implementations for sliding window algorithms that are common in dig-

ital signal processing systems. Nodes implementing such algorithms can be

memoryless because the overlap state is retained on the queues. The zero-

copy semantics of CPN reduce the operations required for queue transactions,

especially for sliding window algorithms. CPN uses bounded scheduling with

the D4R algorithm to achieve complete execution in bounded memory where

possible.

The semantics of CPN are: GetDequeuePtr, Dequeue, GetEnqueuePtr,

and Enqueue. To prove that the formal properties of KPN are preserved, I

describe how any CPN program can be transformed into a PN program by

adding queues and modifying each process. A CPN program is therefore a set

of continuous, monotonic functions of a complete partial order with a least

195

fixed point that corresponds to the behavior of the executing processes [35].

I also provide code that illustrates this transformation from CPN to KPN by

implementing the CPN semantics only in terms of Kahn’s simple get and put

operations.

KPN and CPN are both are Turing complete, so KPN can eventually

compute anything that CPN can compute. However, I show that CPN can

compute a particular important class of problems in fewer operations than

KPN. Specifically, CPN efficiently models sliding window algorithms that are

common in digital signal processing systems.

Table 7.1: Properties of Models of Computation.

Model
Property SDF CG KPN CPN

Determinism 3 3 3 3

Boundedness 3 3 * *
Scalability 3 3

Composability 3 3

Firing Thresholds 3 3

Zero-copy Semantics 3

Table 7.1 summarizes some desirable properties of the models of com-

putation that have been discussed in this dissertation. The proposed D4R

algorithm contributes to the ability to perform bounded scheduling of both

KPN and CPN programs. There exists a large and interesting class of pro-

grams that are executable to completion with bounded scheduling, although

some PN programs are unbounded. In Chapter 2 I argue that the set of PN

196

programs that can be used with bounded scheduling is larger than what was

presented in previous literature [38].

Chapter 5 details the CPN framework, which is a high-performance im-

plementation of the CPN model targeting multi-core and distributed POSIX

systems. The CPN framework is released as open source software [77]. Each

node in a CPN program corresponds to a POSIX thread. However, the compli-

cation of thread programming is not exposed to users of the CPN framework.

The formal CPN model underpinnings provide determinacy with concurrent

execution.

The CPN interface to queues provides firing thresholds. This allows

nodes to operate directly on queue memory, and data presented to nodes is

already in a contiguous buffer. This reduces overhead by eliminating the need

for nodes to copy and rearrange data, and simplifies the implementation of

algorithms that interface to these queues. These queues implement apparent

circular addressing by using the virtual memory manager to map the same

physical memory pages to multiple virtual addresses.

Chapter 5 also describes how nodes and queues are created within the

CPN framework. It describes how a CPN Kernel helps nodes to coordinate

with each other to build a CPN program. Nodes connect and communicate

using the same interface regardless of whether their peer is local or remote,

and nodes can be distributed across multiple compute hosts.

A CPN program can be constructed from a simple JSON [75] based co-

197

ordination language that describes a part list, netlist, and node mapping. This

allows designers to create a distributed parallel system from simple descrip-

tions and dynamically loadable libraries of nodes. Using the CPN framework,

developers can build high-performance, high-throughput, distributed systems

from deterministic, composable components.

Chapter 6 presents case studies that exercise the CPN framework and

demonstrate its capabilities and utility. Benchmarks results are presented from

two target platforms. The first is a fairly large SMP system that dual 6-core

processors with Hyper-Threading [78]. The second is a cluster of 8 computers

connected with InfiniBand [74], each with 4 processors.

The first case study is the Sieve of Eratosthenes [79], an ancient and

simple method for finding prime numbers. This prime sieve is of historical

interest to Process Networks, as it is the first example Kahn provides of PN

performing a useful computation [48]. I first implement the sieve as did Kahn:

one prime number being filtered per node, consuming one input at a time.

Multi-token firings are an obvious but important enhancement in CPN. With

a prime wheel generator, multi-token firings, and multiple prime filters per

CPN node, I sped the prime sieve several thousandfold on the large SMP

target. The prime sieve also executes on the cluster system.

The second case study is execution of randomly generated graphs, in-

cluded to demonstrate the robustness and stability of the CPN framework.

This case study pseudo-randomly and dynamically builds and modifies CPN

program graphs. Queues are randomly created, briefly used for communica-

198

tion, and then deleted. With some probability, nodes are randomly created

and randomly expire. On both platforms, this case study runs for more than

72 hours without failure.

The third case study is a circular convolution sonar beamformer and

replica correlator, an example of high-throughput signal processing system.

This system is implemented with two highly optimized beamformer kernels

that leverage OpenMP [8] and the FFTW [66] library. This beamformer has a

nominal output data rate of 672 MB/s, and requires about 23.5 GFLOPS to

compute its result. This system achieves its real-time goal of 50 ksps on both

target platforms, and achieves near-linear speedup on the SMP target.

The Computational Process Network model preserves the formal prop-

erties of Process Networks, while reducing the operations required to imple-

ment algorithms operating on overlapping continuous streams of data. The

CPN framework provides a scalable platform for rapid development of high-

throughput computationally intensive algorithms on workstations and work-

station clusters.

7.2 Future Work

The CPN model extends Kahn’s PN model, making it efficient for slid-

ing window algorithms on high-throughput multidimensional signal processing

systems, and with a zero-copy interface. As a model, CPN is fairly feature

complete. However there are a number of research topics that could be ex-

plored, and probably apply to both KPN and CPN. There are also a number

199

of improvements that could be made to the CPN framework implementation.

7.2.1 Improved D4R

As pointed out by Basten and Hoogerbrugge [2], there are examples of

artificial deadlock that can occur without a cycle in the wait-for graph (see

Figure 3.12). The current D4R algorithm is based on cycle detection, which is

a necessary condition for the classical definition of deadlock. In the presented

examples, there is a wait-for chain from an output (sink) node through at least

one process that is blocked on a write. I believe that an edge-chasing algorithm

similar to D4R could detect this condition. Much of the information needed

to detect this condition is already included in the state variables maintained

and exchanged by the D4R algorithm. However, resolution of such an artificial

deadlock must be a heuristic and could lead to unnecessary queue growth. An

improved D4R algorithm could apply to both CPN and KPN.

7.2.2 Distributed Scheduling and Node Migration

Load balancing on an SMP machine is fairly automatic. However, a

lack of load balancing in a distributed system leads to a loss of performance.

It would be possible to extend the CPN framework to permit node migration

across compute hosts in a distributed target. A distributed scheduler could

then examine the load across the distributed system and automatically migrate

nodes for load balancing. Some work has been done in this area [101] with a

focus on KPN. Node migration may be an expensive operation, so it would be

200

important to prevent inappropriate or repeating migrations.

7.2.3 Remote DMA Queues

Remote direct memory access (RDMA) is a method for transferring

information from one computer’s memory to another without involving the

operating system, and can reduce overhead for high-throughput communica-

tion. This seems to be a good fit for queues in the CPN framework, and could

lead to improved scalability for distributed targets. RDMA is available over

IP networks in the form of iWARP [102], and also available over InfiniBand.

7.2.4 Node Clustering

As discussed in Chapter 5, the CPN framework works best with coarse-

grain parallelism. If design automation tools were used to build CPN graphs,

it would be useful to permit the capture of fine-grain parallelism that could

be clustered together for reduced dynamic scheduling overhead. This area

has been explored in some depth by the Ptolemy Project [34], for example.

Clusters generated from a tool like Ptolemy could be embedded in a CPN

node, or CPN could be used as a high-level coordinator from Ptolemy.

7.2.5 Distributed Framework State

A distributed CPN system currently uses a single RemoteContext dae-

mon to maintain the description of the entire graph. Whenever a node or a

queue is created or destroyed, there must be an interaction with this daemon.

201

This simplifies the design, but could become a bottleneck and limit scalability.

At some level a CPN Context is similar to a database, so it may be possible

to leverage research in the area of distributed databases.

7.2.6 Fault Tolerance

As currently implemented, the CPN framework is fault intolerant. If

a specified compute node is missing or crashes, the whole system may be

adversely affected. This issue is ignored in Kahn’s formal model, but is an im-

portant consideration for implementation of useful system development tools.

7.2.7 Additional Targets and Applications

Although I have targeted Linux workstations in this dissertation, PN

and CPN can be applied to a large variety of targets and applications. Nearly

anything that can carry a reliable stream of data could be made into a queue,

and nearly anything that can transform data from one form to another could

be represented as a process. For applications that require a specialized imple-

mentation component (such as custom high-speed logic), it would be easy to

integrate a gateway to that component with proxy CPN nodes or queues. PNs

have been targeted to programmable logic chips [103], and it is easy to image

a CPN node that could offload massive calculations with CUDA [104].

The CPN model and framework could be used in a large variety of high-

throughput multi-channel signal and image processing applications, including

sonar, radar, seismology, video processing, and communications.

202

Bibliography

[1] W. Huang and D. Qi, “A local deadlock detection and resolution

algorithm for process networks,” in Proc. Int. Conf. on Computer

Science and Software Engineering, 2008, pp. 311–314. [Online].

Available: http://dx.doi.org/10.1109/CSSE.2008.1468

[2] T. Basten and J. Hoogerbrugge, “Efficient execution of process

networks,” in Proc. Communicating Process Architectures, Bristol,

UK, Sep. 2001, pp. 1–14. [Online]. Available: http:

//www.es.ele.tue.nl/∼tbasten/papers/eepn.pdf

[3] E. A. Lee, “The problem with threads,” EECS Department, University

of California, Berkeley, Tech. Rep. UCB/EECS-2006-1, Jan. 10 2006.

[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/

2006/EECS-2006-1.html

[4] J. Ousterhout, “Why threads are a bad idea (for most purposes),” in

USENIX 1996 Annual Technical Conf., San Diego, CA, Jan. 1996.

[Online]. Available: http://home.pacbell.net/ouster/threads.pdf

[5] S. Kleiman, J. Voll, J. Eykholt, A. Shivalingiah, D. Williams, M. Smith,

S. Barton, and G. Skinner, “Symmetric multiprocessing in Solaris 2.0,”

203

http://dx.doi.org/10.1109/CSSE.2008.1468
http://www.es.ele.tue.nl/~tbasten/papers/eepn.pdf
http://www.es.ele.tue.nl/~tbasten/papers/eepn.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.html
http://home.pacbell.net/ouster/threads.pdf

in Proc. IEEE Computer Society Int. Conf., Digest of Papers., Feb

1992, pp. 181–186.

[6] IEEE 1003.1-2001, IEEE Computer Society Portable Application

Standards Committee (PASC) Std. [Online]. Available: http:

//www.pasc.org/

[7] B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads programming. Se-

bastopol, CA, USA: O’Reilly & Associates, Inc., 1996.

[8] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. Mc-

Donald, Parallel Programming in OpenMP. Morgan Kaufmann, 2000.

[9] A. Barak and O. La’adan, “The MOSIX multicomputer operating system

for high performance cluster computing,” Journal of Future Generation

Computer Systems, vol. 13, pp. 4–5, 1998.

[10] A. Barak and A. Shiloh, “The MOSIX project website,” http://mosix.

org.

[11] “OpenSSI clusters for Linux,” http://openssi.org.

[12] M. Sharifi and K. Karimi, “DIPC: The Linux way of distributed pro-

gramming,” Linux J., 1999.

[13] “The DIPC project,” http://flash.lakeheadu.ca/∼kkarimi/dipc.html.

[14] “The LinuxPMI project,” http://linuxpmi.org.

204

http://www.pasc.org/
http://www.pasc.org/
http://mosix.org
http://mosix.org
http://openssi.org
http://flash.lakeheadu.ca/~kkarimi/dipc.html
http://linuxpmi.org

[15] B. Nitzberg and V. Lo, “Distributed shared memory: a survey of issues

and algorithms,” Computer, vol. 24, no. 8, pp. 52–60, Aug 1991.

[16] M. T. Jones, BSD Sockets Programming from a Multi-Language Perspec-

tive. Rockland, MA, USA: Charles River Media, Inc., 2003.

[17] J. Lin and C. Dyer, Data-Intensive Text Processing with MapReduce.

Morgan and Claypool Publishers, 2010.

[18] “The message passing interface (MPI) standard,” http://www.mcs.anl.

gov/research/projects/mpi/, [Online; accessed 27-January-2010].

[19] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Ger-

main, T. Herault, P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri,

and A. Selikhov, “MPICH-V: Toward a scalable fault tolerant MPI for

volatile nodes,” in Proc. ACM/IEEE Conf. on Supercomputing, Los

Alamitos, CA, USA, 2002, pp. 1–18.

[20] G. Burns, R. Daoud, and J. Vaigl, “LAM: An open cluster environment

for MPI,” in Proc. Supercomputing Symposium, 1994, pp. 379–

386. [Online]. Available: http://www.lam-mpi.org/download/files/

lam-papers.tar.gz

[21] J. M. Squyres and A. Lumsdaine, “A component architecture for LAM/

MPI,” in Proc. European PVM/MPI Users’ Group Meeting, no. 2840,

Venice, Italy, Sept. 2003, pp. 379–387.

205

http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.lam-mpi.org/download/files/lam-papers.tar.gz
http://www.lam-mpi.org/download/files/lam-papers.tar.gz

[22] J. Squyres and B. Barrett, “Open MPI community meeting,” in Proc.

ACM/IEEE Conf. on Supercomputing, New York, NY, USA, 2006, p. 5.

[23] P. S. Pacheco, Parallel programming with MPI. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 1996, p. 7.

[24] D. A. Patterson and J. L. Hennessy, Computer Organization and Design,

2nd ed. Morgan Kaufmann Publishers, 1998, p. 715.

[25] D. Lea, Concurrent Programming in Java. Second Edition: Design Prin-

ciples and Patterns. Boston, MA, USA: Addison-Wesley Longman Pub-

lishing Co., Inc., 1999.

[26] J. Corbet, “The big kernel lock strikes again,” http://lwn.net/Articles/

281938/, 2008, [Online; accessed 24-February-2010].

[27] R. H. B. Netzer, T. W. Brennan, and S. K. Damodaran-Kamal, “Debug-

ging race conditions in message-passing programs,” in Proc. SIGMET-

RICS Symposium on Parallel and Distributed Tools, New York, NY,

USA, 1996, pp. 31–40.

[28] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor for-

malism for artificial intelligence,” in Proc. Int. Joint Conf. on Artificial

Intelligence, San Francisco, CA, USA, 1973, pp. 235–245.

[29] C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM,

vol. 21, no. 8, pp. 666–677, 1978.

206

http://lwn.net/Articles/281938/
http://lwn.net/Articles/281938/

[30] A. Turjan, B. Kienhuis, and E. Deprettere, “Classifying interprocess

communication in process network representation of nested-loop pro-

grams,” ACM Trans. Embed. Comput. Syst., vol. 6, no. 2, p. 13, 2007.

[31] E. A. D. Kock, G. Essink, W. J. M. Smits, and P. V. D. Wolf, “YAPI:

Application modeling for signal processing systems,” in Proc. Design

Automation Conf. ACM Press, 2000, pp. 402–405.

[32] B. Kienhuis, E. Rijpkema, and E. Deprettere, “Compaan: deriving pro-

cess networks from Matlab for embedded signal processing architec-

tures,” in Proc. Int. Workshop on Hardware/Software Codesign, May

2000, pp. 13 –17.

[33] H. A. Andrade and S. Kovner, “Software synthesis from dataflow mod-

els for G and LabVIEW,” in Proc. IEEE Asilomar Conf. on Signals,

Systems, and Computers, 1998, pp. 1705–1709.

[34] “The Ptolemy project,” http://ptolemy.eecs.berkeley.edu/, [Online; ac-

cessed 17-March-2011].

[35] G. Kahn, “The semantics of a simple language for parallel program-

ming,” Information Processing, pp. 471–475, Aug. 1974.

[36] T. M. Parks, “Bounded scheduling of process networks,” Ph.D.

dissertation, EECS Department, University of California, Berkeley,

CA 94720-1770, Dec. 1995, Technical Report UCB/ERL-95-105.

207

http://ptolemy.eecs.berkeley.edu/

[Online]. Available: http://ptolemy.eecs.berkeley.edu/publications/

papers/95/parksThesis/

[37] E. Lee and T. Parks, “Dataflow process networks,” Proc. IEEE,

vol. 83, no. 5, pp. 773–801, May 1995. [Online]. Available:

http://ptolemy.eecs.berkeley.edu/papers/95/processNets/

[38] M. Geilen and T. Basten, “Requirements on the execution of

Kahn process networks,” in Proc. European Symposium on

Programming, 2003, pp. 319–334. [Online]. Available:

http://citeseer.ist.psu.edu/geilen03requirements.html

[39] G. E. Allen, P. Zucknick, and B. L. Evans, “A distributed deadlock

detection and resolution algorithm for process networks,” in Proc.

IEEE Int. Conf. on Acoustics, Speech, and Signal Proc., Honolulu, HI,

Apr. 2007. [Online]. Available: http://users.ece.utexas.edu/∼bevans/

papers/2007/distributedPN/distributedPNICASSP2007Paper.pdf

[40] D. P. Mitchell and M. J. Merritt, “A distributed algorithm for deadlock

detection and resolution,” in Proc. ACM Symposium on Principles of

Distributed Computing, 1984, pp. 282–284.

[41] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc.

IEEE, vol. 75, no. 9, pp. 1235–1245, Sep. 1987.

[42] ——, “Static scheduling of synchronous dataflow programs for digital

208

http://ptolemy.eecs.berkeley.edu/publications/papers/95/parksThesis/
http://ptolemy.eecs.berkeley.edu/publications/papers/95/parksThesis/
http://ptolemy.eecs.berkeley.edu/papers/95/processNets/
http://citeseer.ist.psu.edu/geilen03requirements.html
http://users.ece.utexas.edu/~bevans/papers/2007/distributedPN/distributedPNICASSP2007Paper.pdf
http://users.ece.utexas.edu/~bevans/papers/2007/distributedPN/distributedPNICASSP2007Paper.pdf

signal processing,” IEEE Trans. on Computers, vol. 36, no. 1, pp. 24–

35, Jan. 1987.

[43] S. S. Battacharyya, E. A. Lee, and P. K. Murthy, Software Synthesis from

Dataflow Graphs. Norwell, MA, USA: Kluwer Academic Publishers,

1996.

[44] S. Edwards, Languages for Digital Embedded Systems. Kluwer Academic

Publishers, 2000.

[45] J. L. Pino and K. Kalbasi, “Cosimulating synchronous DSP applications

with analog RF circuits,” in Proc. IEEE Asilomar Conf. on

Signals, Systems, and Computers, Nov. 1998, pp. 1710–1714.

[Online]. Available: http://ptolemy.eecs.berkeley.edu/publications/

papers/98/asilomar98/

[46] R. M. Karp and R. E. Miller, “Properties of a model for parallel compu-

tations: Determinacy, termination, queueing,” SIAM Journal, vol. 14,

pp. 1390–1411, Nov. 1966.

[47] L. Karam, I. AlKamal, A. Gatherer, G. Frantz, D. Anderson, and B. Evans,

“Trends in multicore DSP platforms,” Signal Processing Magazine, IEEE,

vol. 26, no. 6, pp. 38–49, Nov. 2009.

[48] G. Kahn and D. B. MacQueen, “Coroutines and networks of parallel

processes,” Information Processing, pp. 993–998, Aug. 1977.

209

http://ptolemy.eecs.berkeley.edu/publications/papers/98/asilomar98/
http://ptolemy.eecs.berkeley.edu/publications/papers/98/asilomar98/

[49] B. Stroustrup, The C++ Programming Language. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 2000.

[50] S. C. Kleene, Introduction to Metamathematics. New York, NY, USA:

D. Van Nostrand Co., 1952.

[51] A. A. Faustini, “An operational semantics for pure dataflow,” in Proc.

Colloquium on Automata, Languages and Programming. London, UK:

Springer-Verlag, 1982, pp. 212–224.

[52] S. Brookes, “On the Kahn principle and fair networks,” in Proc. Conf.

Mathematical Foundations of Programming Semantics, May 1998.

[53] W. W. Wadge, “An extensional treatment of dataflow deadlock,” Theo-

retical Computer Science, vol. 13, no. 1, pp. 3 – 15, 1981.

[54] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts;

7th Ed. Hoboken, NJ, USA: Wiley, 2004.

[55] A. D. Kshemkalyani and M. Singhal, Distributed Computing: Principles,

Algorithms, and Systems, 1st ed. Cambridge University Press, May

2008.

[56] M. Singhal, “Deadlock detection in distributed systems,” IEEE Com-

puter, vol. 22, no. 11, pp. 37–48, 1989.

[57] A. D. Kshemkalyani and M. Singhal, “A one-phase algorithm to detect

distributed deadlocks in replicated databases,” IEEE Trans. on Knowl.

and Data Eng., vol. 11, no. 6, pp. 880–895, 1999.

210

[58] K. M. Chandy, J. Misra, and L. M. Haas, “Distributed deadlock detec-

tion,” ACM Trans. Comput. Syst., vol. 1, no. 2, pp. 144–156, 1983.

[59] M. Prieto, J. Villadangos, F. Farina, and A. Cordoba, “An o(n) dis-

tributed deadlock resolution algorithm,” in Proc. Euromicro Int. Conf.

on Parallel, Distributed, and Network-Based Processing. Washington,

DC, USA: IEEE Computer Society, 2006, pp. 48–55.

[60] A. G. Olson and B. L. Evans, “Deadlock detection for distributed process

networks,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal

Proc., Philadelphia, PA, Mar. 2005, pp. 73–76.

[61] S. Lee and J. Kim, “Performance analysis of distributed deadlock de-

tection algorithms,” IEEE Trans. Knowledge and Data Engineering,

vol. 13, no. 4, pp. 623 –636, Jul. 2001.

[62] “Gregory Allen’s home page,” https://webspace.utexas.edu/gallen/.

[63] P. Druschel and L. L. Peterson, “Fbufs: a high-bandwidth cross-domain

transfer facility,” SIGOPS Oper. Syst. Rev., vol. 27, pp. 189–202, Dec.

1993.

[64] Y. A. Khalidi and M. N. Thadani, “An efficient zero-copy I/O framework

for UNIX,” Sun Microsystems, Inc., Mountain View, CA, USA, Tech.

Rep., 1995.

[65] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing.

Englewood Cliffs, NJ: Prentice Hall, 1989.

211

https://webspace.utexas.edu/gallen/

[66] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,”

Proc. IEEE, vol. 93, no. 2, pp. 216–231, 2005, special issue on “Program

Generation, Optimization, and Platform Adaptation”.

[67] P. Plauger, A. Stepanov, M. Lee, and D. R. Musser, The C++ Standard

Template Library. Prentice Hall, 2000.

[68] L. John, V. Reddy, P. Hulina, and L. Coraor, “A comparative evaluation

of software techniques to hide memory latency,” in Proc. Hawaii Int.

Conf. on System Sciences, 1995, pp. 229–238.

[69] G. E. Allen and B. L. Evans, “Real-Time sonar beamforming on work-

stations using process networks and POSIX threads,” IEEE Trans. on

Signal Processing, pp. 921–926, Mar. 2000.

[70] “GNU lesser general public license,” http://www.gnu.org/licenses/lgpl.

html, [Online; accessed 27-February-2011].

[71] “CLOC count lines of code,” http://cloc.sourceforge.net/, [Online; ac-

cessed 27-February-2011].

[72] “The pthreads-win32 project,” http://sourceware.org/pthreads-win32/,

[Online; accessed 27-February-2011].

[73] G. Allen, P. Zucknick, and B. Evans, “Zero-copy queues for native signal

processing using the virtual memory system,” in Proc. IEEE Asilomar

Conf. on Signals, Systems, and Computers, Nov. 2006, pp. 1188–1191.

212

http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://cloc.sourceforge.net/
http://sourceware.org/pthreads-win32/

[74] “Infiniband trade association,” http://www.infinibandta.org/, [Online;

accessed 27-February-2011].

[75] “JSON (JavaScript Object Notation),” http://www.json.org/, [Online;

accessed 27-February-2011].

[76] E. Ray, Learning XML. O’Reilly Media, 2001.

[77] “Gregory Allen’s CPN page,” https://webspace.utexas.edu/gallen/CPN/,

[Online; accessed 27-February-2011].

[78] Intel, “Intel hyper-threading technology,” http://www.intel.com/info/

hyperthreading/, [Online; accessed 5-March-2011].

[79] J. Conway and R. Guy, The Book of Numbers. Springer, 1995.

[80] Wikipedia, “Eratosthenes,” http://en.wikipedia.org/wiki/Eratosthenes,

[Online; accessed 5-March-2011].

[81] M. D. McIlroy, “Coroutines,” Bell Telephone Laboratories, Murray Hill,

NJ, Internal Report, May 1968.

[82] HaskellWiki, “Prime wheels,” http://www.haskell.org/haskellwiki/Prime

numbers#Prime Wheels, [Online; accessed 5-March-2011].

[83] D. Shanks, Solved and unsolved problems in number theory. New York,

USA: Chelsea Publishing Co., Inc., 1985.

[84] H. Dubner, “Factorial and primorial primes,” J. Recr. Math., vol. 19,

pp. 197–203, 1987.

213

http://www.infinibandta.org/
http://www.json.org/
https://webspace.utexas.edu/gallen/CPN/
http://en.wikipedia.org/wiki/Eratosthenes
http://www.haskell.org/haskellwiki/Prime_numbers#Prime_Wheels
http://www.haskell.org/haskellwiki/Prime_numbers#Prime_Wheels

[85] S. W. Golomb, Shift Register Sequences. Laguna Hills, CA, USA:

Aegean Park Press, 1981.

[86] J. Ellson, E. Gansner, E. Koutsofios, S. North, and G. Woodhull,

“Graphviz and dynagraph – static and dynamic graph drawing

tools,” in Graph Drawing Software, M. Junger and P. Mutzel,

Eds. Springer-Verlag, 2004, pp. 127–148. [Online]. Available:

http://www.springer.com/math/cse/book/978-3-540-00881-1

[87] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight

dynamic binary instrumentation,” in Proc. of the ACM SIGPLAN Conf.

on Programming Language Design and Implementation, 2007, pp. 89–

100.

[88] “Valgrind,” http://valgrind.org/, [Online; accessed 17-March-2011].

[89] N. Nethercote and J. Seward, “How to shadow every byte of memory

used by a program,” in Proc. of the Int. Conf. on Virtual Execution

Environments, 2007, pp. 65–74.

[90] R. J. Urick, Principles of Underwater Sound. New York, NY: McGraw-

Hill Book Company, 1975.

[91] R. G. Pridham and R. A. Mucci, “A novel approach to digital beamform-

ing,” Journal Acoustical Society of America, vol. 63, no. 2, pp. 425–434,

Feb. 1978.

214

http://www.springer.com/math/cse/book/978-3-540-00881-1
http://valgrind.org/

[92] J. F. Bridgman, G. E. Allen, and B. L. Evans, “Multi-core sonar beam-

forming with computational process networks,” in Proc. IEEE Asilomar

Conf. on Signals, Systems, and Computers, Nov. 2010, pp. 1254–1258.

[93] S.-H. Yu and J.-S. Hu, “Optimal synthesis of a fractional delay FIR filter

in a reproducing kernel Hilbert space,” IEEE Signal Processing Letters,

vol. 8, no. 6, pp. 160 –162, Jun. 2001.

[94] D. R. Farrier, T. S. Durrani, and J. M. Nightingale, “Fast beamforming

techniques for circular arrays,” The Journal of the Acoustical Society of

America, vol. 58, no. 4, pp. 920–922, 1975.

[95] T. L. Henderson, “Wide-band monopulse sonar: Processor performance

in the remote profiling application,” IEEE Journal of Oceanic Engineer-

ing, vol. 12, no. 1, pp. 182–197, 1987.

[96] A. J. C. Bik, The Software Vectorization Handbook: Applying Intel Mul-

timedia Extensions for Maximum Performance. Intel Press, 2004.

[97] G. E. Allen, B. L. Evans, and L. K. John, “Real-time high-throughput

sonar beamforming kernels using native signal processing and memory

latency hiding techniques,” in Proc. IEEE Asilomar Conf. on Signals,

Systems, and Computers, 1999, pp. 25–28.

[98] S. Tucker, R. Vienneau, J. Corner, and R. Linderman, “Swathbuckler:

HPC processing and information exploitation,” in IEEE Conf. on Radar,

April 2006, pp. 710–717.

215

[99] “HPEC challenge: Corner turn benchmark,” http://www.ll.mit.edu/

HPECchallenge/ct.html, [Online; accessed 13-March-2011].

[100] “Intel Xeon microprocessor export compliance metrics,” http://www.

intel.com/support/processors/xeon/sb/CS-020863.htm, [Online; accessed

16-March-2011].

[101] Z. Qian, M. Zeng, D. Qi, and K. Xu, “A dynamic scheduling algo-

rithm for distributed Kahn Process Networks in a cluster environment,”

IEEE Pacific-Asia Workshop on Computational Intelligence and Indus-

trial Application, vol. 2, pp. 36–42, 2008.

[102] Borkar, Cohn, Cox, Gleason, Gross, Kung, Lam, Moore, Peterson, Pieper,

Rankin, Tseng, Sutton, Urbanski, and Webb, “iWarp: an integrated so-

lution to high-speed parallel computing,” Supercomputing Conference,

vol. 1, pp. 330–339, 1988.

[103] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere,

“System design using Kahn Process Networks: The Compaan/Laura

approach,” in Proc. Conf. on Design, Automation and Test

in Europe, 2004, pp. 10 340–10 348. [Online]. Available:

http://portal.acm.org/citation.cfm?id=968878.968962

[104] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to

General-Purpose GPU Programming. Addison-Wesley Professional, 2010.

216

http://www.intel.com/support/processors/xeon/sb/CS-020863.htm
http://www.intel.com/support/processors/xeon/sb/CS-020863.htm
http://portal.acm.org/citation.cfm?id=968878.968962

Vita

Gregory Eugene Allen was born to Gordon Eugene and D’Maris Anne

Allen on October 30, 1968, in Austin, Texas. He attended Austin’s John H.

Reagan High School, and graduated salutatorian in 1987. In 1991, Greg re-

ceived his Bachelor of Science in Electrical Engineering from The University

of Texas at Austin, graduating with Highest Honors. In 1993, he returned to

The University as a part-time graduate student. In 1998, he earned his Master

of Science in Electrical Engineering. Greg has been employed with Applied

Research Laboratories (ARL) at UT’s J. J. Pickle Research Campus since

the summer of 1986, when he was hired through the High School Apprentice

Program. Since 1988 he has worked on high-frequency, high-resolution sonar

systems in the Sonar Development Division of the Advanced Technology Lab-

oratory at ARL. In addition to design engineering, Greg has been involved

in system-level testing, installation, and deployment aboard U.S. Navy sub-

marines, including a surfacing at the North Pole in 1993. Greg lives with his

wife and their 3 children in northwest Austin. Greg’s daughter Sabrina, a 2002

victim of international parental child abduction, is still missing.

Permanent address: 9612 Slate Creek Trail
Austin, Texas 78717

This dissertation was typeset with LATEX by the author.

217

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1 Computer System Architecture
	1.2 Concurrent Programming
	1.3 Pitfalls of Parallel Programming
	1.3.1 Shared Memory Model
	1.3.2 Message Passing Model
	1.3.3 Formal Models

	1.4 Kahn Process Networks
	1.4.1 Scheduling of Process Networks
	1.4.2 Synchronous Dataflow
	1.4.3 Computation Graphs

	1.5 Computational Process Networks
	1.6 Thesis Statement and Expected Contributions
	1.7 Conclusion

	Chapter 2. Kahn Process Networks
	2.1 Introduction
	2.2 Kahn Process Networks
	2.2.1 Kahn's Simple Example
	2.2.2 Mathematical Representation
	2.2.3 Proving Kahn's Assertions for a Simple Example
	2.2.4 Termination

	2.3 Bounded Scheduling of Process Networks
	2.3.1 Execution Order
	2.3.2 Boundedness
	2.3.3 Scheduling for Boundedness
	2.3.4 Complete Execution with Bounded Scheduling
	2.3.5 Fair Processes and Scheduler

	2.4 Computation Graphs
	2.5 Conclusion

	Chapter 3. Deadlock Detection
	3.1 Introduction
	3.2 Previous Work
	3.3 D4R Algorithm
	3.3.1 Algorithm Description
	3.3.2 Algorithm Proof

	3.4 D4R Implementation
	3.5 D4R Case Studies
	3.6 Conclusion

	Chapter 4. Computational Process Networks
	4.1 Introduction
	4.2 The Semantics of CPN
	4.2.1 Extending Kahn's Semantics
	4.2.2 Zero-copy Semantics
	4.2.3 The Semantics of CPN
	4.2.4 Example: FIR Filter Using Overlap-Save FFT

	4.3 Preservation of Formal KPN Properties
	4.3.1 Parks' Transformation for Boundedness
	4.3.2 Transforming CPN to KPN
	4.3.3 CPN Dequeue Semantics
	4.3.4 CPN Enqueue Semantics
	4.3.5 Multi-Channel Queues

	4.4 Performance Improvements of CPN Over KPN
	4.5 Conclusion

	Chapter 5. Implementation of CPN Framework
	5.1 Introduction
	5.1.1 Development History and Public Release
	5.1.2 Describing a CPN System

	5.2 The CPN Kernel
	5.3 CPN Nodes
	5.3.1 Creating a New Type of Node
	5.3.2 Instantiating a Node
	5.3.3 Function Nodes

	5.4 CPN Queues
	5.4.1 Threshold Queues
	5.4.2 Threshold Queue Performance
	5.4.3 Instantiating Queues
	5.4.4 Additional Queue Interfaces
	5.4.5 D4R

	5.5 Distribution on Multiple Hosts
	5.5.1 Remote Context
	5.5.2 Remote Queues

	5.6 CPN from a Coordination Language
	5.7 CPN as an Embedded Library
	5.8 Conclusion

	Chapter 6. CPN Case Studies
	6.1 Introduction
	6.2 Sieve of Eratosthenes
	6.2.1 Implementation
	6.2.2 Results

	6.3 Randomly Generated Graphs
	6.4 Sonar Beamformer and Correlator
	6.4.1 Algorithm Description
	6.4.2 Implementation
	6.4.3 Target #1 Results
	6.4.4 Target #2 Results

	6.5 Conclusion

	Chapter 7. Conclusion
	7.1 Conclusions
	7.2 Future Work
	7.2.1 Improved D4R
	7.2.2 Distributed Scheduling and Node Migration
	7.2.3 Remote DMA Queues
	7.2.4 Node Clustering
	7.2.5 Distributed Framework State
	7.2.6 Fault Tolerance
	7.2.7 Additional Targets and Applications

	Bibliography
	Vita

