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Many digital signal processing and communication algorithms are first

simulated using floating-point arithmetic and later transformed into fixed-

point arithmetic to reduce implementation complexity. This transformation

process may take more than 50% of the design time for complex designs. In

addition, wordlengths in fixed-point designs may be altered at later stages in

the design cycle. Different choices of wordlengths lead to different tradeoffs

between signal quality and implementation complexity.

In this dissertation, I propose two methods for characterizing the trade-

offs between signal quality and implementation complexity during the trans-

formation of digital system designs to fixed-point arithmetic and variables.

The first method, a gradient-based search for single-objective optimization

with sensitivity information, scales linearly with the number of variables, but

vii



can become trapped in local optima. Based on wordlength design case stud-

ies for a wireless communication demodulator, adding sensitivity information

reduces the search time by a factor of four and yields a design with 30% lower

implementation costs.

The second method, a genetic algorithm for multi-objective optimiza-

tion, provides a Pareto optimal front that evolves towards the optimal tradeoff

curve for signal quality vs. implementation complexity. This second method

can be used to fully characterize the design space.

I propose to use wordlength reduction methods of signed right shift and

truncation to reduce power consumption in a given hardware architecture. For

each method, I derive the expected values of the number of gates that switch

during multiplication of the inputs. I apply the signed right shift method and

the truncation method to a 16-bit radix-4 modified Booth multiplier and a 16-

bit Wallace multiplier. The truncation method with 8-bit operands reduces

the power consumption by 56% in the Wallace multiplier and 31% in the Booth

multiplier. The signed right shift method shows a 25% power reduction in the

Booth multiplier, but no power reduction in the Wallace multiplier.

Finally, this dissertation describes a method to automate design assis-

tance for transformation from floating-point to fixed-point data types. Floating-

point programs are converted to fixed-point programs by a code generator.

Then, the proposed wordlength search algorithms offer designers the freedom

to determine data wordlengths to optimize the tradeoffs between signal quality

and implementation complexity.
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Chapter 1

Introduction

1.1 Motivation of This Study

Digital signal processing algorithms are typically simulated in floating-

point environments for refinement and validation. After validation, the algo-

rithms can be implemented in floating-point hardware or transformed to run

on fixed-point hardware. Implementation on floating-point hardware offers

the direct use of floating-point programs without conversion. However, when

compared to implementation on floating-point hardware, implementation on

fixed-point hardware offers lower economic cost, lower power consumption,

and faster speed, but with a tradeoff in signal quality. In addition, off-line

transformation from floating-point programs to fixed-point programs must be

performed.

Fixed-point transformation requires data-type conversion from float-

ing point to fixed point. A fixed-point data type represents a limited range

of data compared to that of a floating-point data type. During fixed-point

transformation, proper ranges to prevent overflow and underflow at each vari-

able are estimated. Based on range-estimation information, wordlengths in

the fixed-point data types can be modified to reduce hardware complexity or

1



power consumption. Modification can be either manual by trial-and-error or

automated by computer methods.

Floating-point to fixed-point transformation, including data-type con-

version and wordlength optimization, which is mostly wordlength reduction, is

time-consuming and can sometimes account for up to 50% of the total design

effort [1]. Hence, many studies have been performed on fixed-point transfor-

mation methods, as shown in Table 1.1.

Many fixed-point environments have been developed to simulate fixed-

point signal processing systems. Fixed-point simulation environments support

fixed-point arithmetic and range estimation by analytical and/or statistical

approaches [1–4]. Analytical estimation extracts data flow in a system and

calculates the data ranges. Analytical estimation often produces conserva-

tive results. Statistical approaches, which monitor data ranges in variables

through simulation, need much longer running times to collect signal statistics

by simulation.

Wordlength optimization methods that determine bit widths of fixed-

point variables with tradeoffs in signal quality and hardware complexity have

been developed based on wordlength search methods [2, 10–13, 15]. Sung and

Kum use a statistical approach for range estimation with the Signal Processing

Worksystem (SPW) [5] for fixed-point simulation [2]. Fixed-point simulation

environments for C++ have been developed in [3]. This environment provides

range estimation class (fSig) and fixed-point data type and arithmetic class

(gFix ). Kum et al. [4] developed a program for converting a floating-point C

2



Table 1.1: Research on floating-point to fixed-point transformation. (SPW:
Signal Processing Worksystem, HDS: Hardware Design System, FRIDGE:
Fixed-point Programming Design Environment, MATCH: Matlab Compiler
for Heterogeneous Computing Systems, MILP: Mixed Integer Linear Program-
ming, CDM: Complexity-and-Distortion Measure)
Paper Fixed-point Conversion Wordlength Optimization

Range Environment Error Search Search
Est. Est. Method Objective

Sung [2] S SPW HDS [5] S Min+a Cost
Kim [3] S fSig/gFix - - -
Kum [4] S Autoscaler - - Shift
Keding [1] A FRIDGE - - -
Cmar [6] A/S - S - -
Yama. [7] - - A/S - -
Nayak [8] A MATCH [9] - - -
Han [10] - - S Seq./Preplan Error
Cantin [11] - - S Max - 1 Cost
Const. [12] - - A MILP/Heur. -
Shi [13] - - A/S Mosek [14] Cost
Han [15,16] - - S Seq./CDM Error/Cost
Proposed S MATLAB fi [17] S Genetic Error/Cost

* A: Analytical, S: Statistical, -: Not available

program to an integer C program with scaling optimization (AUTOSCALER)

that minimizes the number of shifts in scaling operations. Keding et al. [1] pro-

posed a fixed-point conversion tool using annotation and interpolation tech-

niques that are employed in a commercial tool, CoCentric Fixed-point De-

signer [18]. Nayak et al. [8] implemented a forward and backward propagation

algorithm that is used for the MATCH project [9] for analytical range estima-

tion.

Signal quality in systems according to wordlength is estimated by an-

3



alytical or statistical approaches. Analytical approaches, which model and

calculate propagated errors through fixed-point data types, could find solu-

tions faster than statistical approaches for simple systems. However, modeling

propagated errors in a closed form is sometimes difficult in complex systems.

Statistical approaches measure propagated errors by simulation. Statistical

approaches can be used for any system, but require long running times to

measure errors.

Any consideration of all states of all possible wordlength combinations

is generally impractical except for trivial systems. Wordlength optimization

problems can be solved by optimization algorithms with search methods. Since

statistical approaches require a long simulation time, accelerating the running

time is one of the research topics in wordlength optimization.

Sung and Kum [2] proposed a wordlength search algorithm that first

determined the minimum bound of the wordlength and then tried to deter-

mine the cost-optimal solution. Han et al. [10] proposed a sequential search

algorithm utilizing error information based on the search algorithm from [2].

Cantin et al. [11] proposed the Max-1 algorithm, which starts with the max-

imum wordlength. In addition, Cantin et al. [11] provide a useful survey

of search algorithms for wordlength determination, and compare wordlength

search algorithms. Constantinides et al. [12] and Shi [13] employed mixed in-

teger linear programming (MILP) and Mosek [14], respectively, to solve word-

length optimization problems. In [15,16], sequential search algorithms utilizing

error and cost information were proposed.

4



This dissertation, which focuses mainly on wordlength search algo-

rithms in fixed-point transformations, proposes a fast search algorithm utiliz-

ing gradient information. Genetic and evolutionary algorithms are employed

to search a Pareto optimal set in multiple-objective wordlength optimization.

The dissertation also shows how to reduce power consumption with op-

timized wordlength for hardware multipliers. Finally, the dissertation presents

a fully automated floating-point to fixed-point transformation environment

supporting the proposed algorithms.

1.2 Thesis Statement

This dissertation defends the following idea:

Wordlength search algorithms utilizing genetic and evolution-

ary algorithms can be used to automate floating-point to fixed-point

transformations, in which data wordlengths can be determined to

optimize the signal quality vs. implementation complexity tradeoffs.

Alternately, wordlength search algorithms utilizing gradient infor-

mation can provide faster ways to find data wordlengths but can

get caught in local optima.

1.3 Contributions

The research presented in this dissertation is focused on developing a

fixed-point transformation framework that includes wordlength optimization.

The primary contributions of this dissertation are the following:

5



• Development of wordlength optimization algorithms with search meth-

ods for multiple objectives as well as a single objective. I have developed

fast search algorithms for a single objective utilizing gradient informa-

tion to find data wordlength. I have also developed search algorithms

for multiple objectives employing genetic and evolutionary algorithms

to optimize the signal quality vs. implementation complexity tradeoffs.

Thus, the Pareto optimal set can be searched through this algorithm.

• Development of low-power signal processing methods for embedded hard-

ware and software. I propose wordlength reduction techniques to reduce

power consumption, and I mathematically derive an expected value of

switching activity in wordlength reduction techniques. The reduction in

dynamic power consumption on FPGAs is estimated.

• Development of an automated floating-point to fixed-point transforma-

tion environment. I propose a transformation structure for this environ-

ment and develop transformation software, including a code generator

and wordlength searchers. This software can automatically transform

any floating-point program of digital signal processing to a fixed-point

program. The software for this automatic transformation is available at

http://www.ece.utexas.edu/˜bevans/projects/wordlength/

1.4 Outline of Dissertation

The dissertation is organized as follows.

6



Chapter 2 gives an overview of previous research on wordlength opti-

mization and provides a mathematical definition of optimum wordlength. The

chapter reviews simulation-based search algorithms and genetic and evolution-

ary algorithms and uses a case study to illustrate how to search wordlengths.

The proposed wordlength search algorithms utilizing gradient informa-

tion are presented in Chapter 3. The proposed algorithms have been tested on

an Orthogonal Frequency Division Multiplexing (OFDM) demodulator design

and an Infinite Impulse Response (IIR) filter design. Case studies providing

performance results of the proposed algorithms are discussed in terms of run-

ning time and hardware complexity. The results of multi-objective genetic and

evolutionary algorithms are compared.

Shorter wordlengths in data can reduce power consumption in digi-

tal signal processing systems even though the hardware architecture is fixed.

Chapter 4 presents two proposed methods for reducing power consumption by

decreasing switching activity and derives mathematically the expected switch-

ing values at inputs. Chapter 4 also demonstrates and compares dynamic

power reduction in FPGAs employing the methods.

Chapter 5 describes a proposed environment for a completely automat-

ing floating-point to fixed-point transformation. The wordlength optimization

structure of the environment is presented. Chapter 5 illustrates the automat-

ing transformation with a case study.

Chapter 6 concludes the dissertation by highlighting the major contri-
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Table 1.2: Notation used in this dissertation
Notation Meaning
αc complexity weighting factor
αd distortion weighting factor
c cost function
cn(w) normalized complexity function
d sum of distance; L1 norm
dw distance between minimum and optimum wordlength
dn(w) normalized distortion function
f objective function
∇ gradient of function
p performance function
s integer step size
w = [w1, ..., wn] wordlength vector
w Wordlength
w upper bound in w
w lower bound in w
wk wordlength in kth iteration
ξ integer update direction
Creq complexity constant
Dreq required distortion
In n-dimensional integer space
Preq required performance

butions from the research and discussing directions for future work.

1.5 Notation

The notation used in this dissertation is listed in Table 1.2.

1.6 Acronyms

ADC : analog-to-digital converter
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BER : bit error rate

CM : complexity measure

CDM : complexity-and-distortion measure

CDMA : code division multiplex access

CMOS : complementary metal oxide semiconductor

CS : complete search

DSP : digital signal processing

DM : distortion measure

ES : exhaustive search

FER : frame error rate

FFT : fast Fourier transform

FPGA : field programmable gate array

FRIDGE : fixed-point programming design environment

FWL : fraction wordlength

GEA : genetic and evolutionary algorithm

HDS : hardware design system

IC : integrated circuit

IIR : infinite impulse response

IWL : integer wordlength

LPF : lowpass filter

LS : least significant

MAC : multiply and accumulate

MATCH : Matlab compiler for heterogeneous computing systems
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MILP : mixed integer linear programming

MOEA : multi-objective evolutionary algorithm

MS : most significant

MSE : mean square error

OFDM : orthogonal frequency division multiplexing

PS : preplanned search

SNR : signal-to-noise ratio

SPW : signal processing worksystem

SRS : signed right shift

SS : sequential search

TI : Texas Instruments

WL : wordlength

10



Chapter 2

Background

2.1 Fixed-Point Data Format

When designers model at a high level, floating-point numbers are useful

for modeling arithmetic operations. Floating-point numbers can handle a very

large range of values, and they are easily scaled. In hardware, floating-point

data types are typically converted or built as fixed-point data types to reduce

the amount of hardware needed to implement the functionality. To model

the behavior of fixed-point arithmetic hardware, designers need bit-accurate

fixed-point data types.

Fixed-point data consists of an integer part and a fractional part. The

number of bits assigned to the integer representation is called the integer

wordlength (IWL), and the number of bits assigned to the fraction is the

fractional wordlength (FWL) [19]. Fixed-point wordlength (WL) corresponds

to the following equation:

WL = IWL + FWL (2.1)

The wordlength must be greater than 0. Given IWL and FWL, fixed-point

data represent a value in the range R with the quantization step ∆ as follows:
(

−2IWL ≤ R < 2IWL for signed
0 ≤ R < 2IWL for unsigned

(2.2)
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and

∆ = 2−FWL. (2.3)

IWL and FWL are determined to prevent unwanted overflow and un-

derflow. IWL can be determined by the following relation:

IWL ≥ ⌈log2 R⌉. (2.4)

Here, ⌈x⌉ is the smallest integer that is greater than or equal to x. The range

R can be estimated by monitoring the maximum and minimum value or mean

and the standard deviation of a signal [3, 20]. FWL can be determined by

wordlength optimization or trade-offs in the design parameters during fixed-

point conversion.

2.2 Related Work

During the floating-point-to-fixed-point conversion process, fixed-point

wordlengths composed of the IWL and the FWL are determined by different

approaches, as shown in Table 2.1. Some published approaches for floating-

point-to-fixed-point conversion use an analytical approach for range and error

estimation [8, 12, 13, 21, 22], and others use a statistical approach [3, 6, 13, 23].

An analytical approach has a range and error model for integer wordlength

and fractional wordlength design. Some use a worst-case error model for range

estimation [8, 21], and some use forward and backward propagation for IWL

design [22]. The advantages of analytical techniques are that they do not

12



Table 2.1: Fixed-point conversion approaches for integer wordlength (IWL)
and for fractional wordlength (FWL) determination.

(a) Analytical Approach

Range Model for IWL Error Model for FWL

Wadekar 1998 [21] Constantinides 2003 [12]

Stephenson 2000 [22] Shi 2004 [13]

Nayak 2001 [8]

(b) Statistical Approach

Range Statistic for IWL Error Statistic for FWL

Cmar 1999 [6] Cmar 1999 [6]

Kim 1998 [3] Kum 2001 [23]

Shi 2004 [13]

require simulation stimulus and can be faster. However, they tend to produce

more conservative wordlength results.

Statistical approaches have been used for IWL and FWL determination.

Some use range monitoring for IWL estimation [3, 6], and some use error

monitoring for FWL [6, 13, 23]. The work in [13] also uses an error model

that has coefficients obtained through simulation. The advantage of statistical

techniques is that they do not require a range or error model. However, they

often need long simulation times and tend to be less accurate in determining

wordlengths.

After obtaining models or statistics of range and error by analytical

or statistical approaches, respectively, search algorithms can find an optimal

wordlength. Some published methods search for optimal wordlength with-

13



out sensitivity information [2, 24], whereas others do use sensitivity informa-

tion [11,24,25], as shown in Table 2.2. “Exhaustive Search” [2] and “Branch-

and-Bound” procedure [24] can find an optimum wordlength without any sen-

sitivity information. However, non-sensitivity methods have an unrealistic

search space as the number of wordlengths increases.

Some use sensitivity information to search for an optimum wordlength.

The “Local Search” [24] and the “Evolutive Search” in [11] use cost-sensitivity

information. The advantage of cost-sensitivity methods is that they can find

an optimum wordlength in terms of cost. The “Sequential Search” and the

“Preplanned Search” in [25] and the“Max-1 Search” in [11] use error-sensitivity

information. The advantage of employing error-sensitivity methods is that

they find the optimal wordlength in terms of error faster than cost-sensitivity

methods. However, neither type of sensitivity method always reaches a globally

optimal wordlength.

Cantin et al. provide a useful survey of search algorithms for word-

length determination. In this work, search algorithms are compared, and the

Preplanned Search shows the smallest number of iterations to find a solution.

However, the heuristic procedures do not necessarily capture the optimum so-

lution to the wordlength determination problem, because of nonconvexity in

the constraint space [12]. Thus, consideration is given to the distance between

a globally optimal wordlength and a locally optimal wordlength.
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Table 2.2: Optimum Wordlength Search Methods

Cost Sensitivity Error Sensitivity Non-Sensitivity

Local Search [24] Sequential Search [25] Exhaustive Search [2]

Evolutive Search [26] Max-1 Search [11] Branch and Bound [24]

Preplanned Search [25]

Complexity-and-Distortion Measure Search - proposed

2.3 Optimum Wordlength

2.3.1 Formulation of Optimum Wordlength

The wordlength is an integer value, and a set of n wordlengths in

a system is defined to be a wordlength vector, that is, w ∈ I
n such as

{w1, w2, · · · , wn}. I assume that the objective function f is defined by the

sum of every wordlength implementation cost function c as

f(w) =
n

∑

k=1

ck(wk) (2.5)

where ck has real value so that ck : I → R. The quantized performance

function p indicates propagated precision or quantized error and is constrained

as follows:

p(w) ≥ Preq (2.6)

where p has real value so that p : I → R and Preq is a constant for a required

performance. I also consider the lower bound wordlength w and upper bound

wordlength w as constraints for each wordlength variable:

wk ≤ wk ≤ wk for ∀k = 1, · · · , n (2.7)
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The complete wordlength optimization problem can then be stated as
{

min
w∈In

f(w)

subject to p(w) ≥ Preq,w ≤ w ≤ w
(2.8)

The goal of the wordlength optimization is hence to search for the optimizer

w∗ that minimizes the objective function f(w) in (2.8).

2.3.2 Finding Optimum Wordlength

One of the algorithms for searching the “optimum” wordlength starts

with an initial feasible solution w(0) and performs an update via

w(h+1) = w(h) + s ξ(h) (2.9)

Here, h is an iteration index, s is the integer step size, and ξ is an integer

update direction. A sound initial guess, a well-chosen step size, and a well-

chosen update direction can reduce the number of iterations to find optimum

wordlengths.

Optimum wordlengths can be found by solving equations when the

performance function p is expressed in analytical form. If there is no analytical

form to express the performance, then simulation-based search methods can

be used to search for optimum wordlengths by measuring the performance

function. Typical approaches involve assigning wordlength vector w(0) to a

lower bound, an upper bound, or a vector between the lower and upper bounds.

Step size can be fixed or adapted. The update direction is adapted according

to the search algorithms in Section 2.4.
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During iteration, the stopping criteria are dependent on the search

algorithm. The algorithm that starts from the lower bound stops when the

performance P reaches the required performance Preq. The algorithm that

starts from the upper bound stops when P falls below Preq. Other algorithms

stop when the performance P or cost c converges within a neighborhood.

2.4 Review of Simulation-Based Search Methods

Optimum wordlengths can be found by solving equations when the

performance function P is expressed in analytical form. If there is no analytical

form to express the performance, then simulation-based search methods can

be used to search for optimum wordlengths by measuring the performance at

the system output.

2.4.1 Complete Search

A complete search (CS) tests every possible combination of wordlengths

between the lower bound and upper bound and measures the performance of

each combination by simulation. Then optimum wordlengths can be selected

from the simulation results.

For example, assuming that the number of independent variables to

find optimum word-length is two, and the lower bound and upper bound are

{2, 2} and {8, 7}, respectively, the possible wordlength combinations are shown

in Fig. 2.1. The number of trial tests or trials is 42. The optimum wordlength

can be selected from the given simulation results after simulation is completed.
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Figure 2.1: The possible wordlength combinations from searching the entire
space in a complete search (w = {2, 2};w = {8, 7}; trials= 42).

The total number of tests in N wordlength variables is

EN
CS =

N
∏

k=1

(wk − wk + 1). (2.10)

A complete search is guaranteed to find a global optimum point, but compu-

tational time and the number of tests increase exponentially as the number of

wordlength variables increases.

2.4.2 Exhaustive Search

Sung and Kum [2] search for the first feasible solution. They search for

a wordlength with the minimum wordlength as the initial guess and increment

the wordlength by one until the propagated error meets the minimum error.

For example, assuming that we are trying to find the optimum wordlength for

two variables, the minimum wordlengths are {2, 2}, and all wordlength costs
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are similar, the search path is shown in Fig. 2.2. An optimized point {5, 5}

is given for a comparison between search methods. The minimum number of

trials is 24.

I have generalized the total number of experiments of the Exhaustive

Search in N dimensions with the sum of the distance. The sum of the distance,

d, is defined as

d = dw1 + dw2 + · · · + dwN . (2.11)

where dwi is the distance between the minimum wordlength and the optimum

wordlength in the ith dimension. The expected number of experiments of the

Exhaustive Search is calculated by using the summation of combination-with-

replacement in [27] as

EN
ES(d) =

d−1
∑

r=0

CR(N, r)

= CR(N + 1, d − 1)

=

(

N + d − 1
d − 1

)

=
(N + d − 1)!

{(N + d − 1) − (d − 1)}!(d − 1)!

=
(d + N − 1) · · · (d + 2)(d + 1)d

N !
. (2.12)

The trials may be bounded as

EN
ES(d) ≤ EN,d

ES < EN
ES(d + 1). (2.13)

The number of experiments is always less than that of the Complete Search if

at least two feasible solutions exist. However, the Exhaustive Search method

does not always guarantee that it will find the global optimum.
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Figure 2.2: The direction of Exhaustive Search (w = {2, 2} ; optimum point
= {5, 5}; distance, d, in (2.11) is 6; trials = 24 ).

2.4.3 Sequential Search

The basic notion of the Sequential Search is that each trial eliminates

a portion of the region being searched [25]. This procedure is also called a

“Min+1 Search” in [11] or “Local Search” in [24]. The Sequential Search

method decides where the most promising areas are located, and continues in

the most favorable region after each set of experiments [28]. The Sequential

Search algorithm can be summarized by the following four steps:

1. For the independent variables, select a set of values that satisfies the

desired system performance during the one-variable simulations.

2. Evaluate the system performance.

3. Choose feasible locations at which system performance is evaluated.
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4. If the system performance of one point is better than at others, then

move to the better point, and repeat the search, until the point has been

located within the desired accuracy.

A base point is the minimum wordlength as an initial wordlength w(0)

in (2.9). In Step 3, the direction of search, ξ in (2.9) is chosen in accordance

with the maximum derivative of their performance

ξj =















{1, 0, 0, · · · , 0} if mj = ∇ p

w1

{0, 1, 0, · · · , 0} if mj = ∇ p

w2

· · ·
{0, 0, 1, · · · , 0} if mj = ∇ p

wN

(2.14)

and

mj = max(∇
p

w1

,∇
p

w2

, · · · ,∇
p

wN

) (2.15)

where ∇ is the gradient operator.

In Fig.2.3, starting from the wordlength base point {2, 2}, I measure

the performance of {2, 3} and {3, 2} from the direction of the sequential search

in Step 3. If the performance of {3, 2} is better than that of {2, 3}, then a

new wordlength vector moves into {3, 2}. Simulations are repeated until the

desired performance is obtained.

I have generalized the trials of the sequential search in N dimensions

as

EN
SS = N · (dw1 + dw2 + · · · + dwN). (2.16)

In this example, the number of trials in (2.16) is 12, as illustrated in Fig.2.3.

The number of trials is reduced by using sensitivity information; however, an

optimum wordlength can be a local optima.
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Figure 2.3: The direction of the sequential search (w = {2, 2}; optimum point
= {5, 5}; distance d in (2.11) is 6; trials = 12)

A local search [24] uses sensitivity information with the above proce-

dure, but it uses cost sensitivity instead of performance sensitivity.

2.4.4 Preplanned Search

A preplanned search [25] is one in which all the experiments are com-

pletely scheduled in advance. The directions are obtained from the sensitivity

of performance of an independent variable. The optimum point is found by

employing the steepest descent among local neighboring points.

The preplanned search algorithm in N dimensions is summarized by

the following steps:

1. For the independent variables, select a set of values for the independent

variables that satisfies the desired performance during the one-variable

simulations.

22



2. Make a performance sensitivity list from the one-variable simulations.

3. Make a test schedule with the sensitivity list to follow the higher sensi-

tivity points from the base point.

4. Evaluate the performance at those points.

5. Move to the points, until the point has been located within the desired

accuracy.

In step 3, the direction of preplanned search is chosen in accordance

with the maximum derivative of an independent performance

ξj =















{1, 0, 0, · · · , 0} if mj = ∇ p1

w1

{0, 1, 0, · · · , 0} if mj = ∇ p2

w2

· · ·
{0, 0, 1, · · · , 0} if mj = ∇ pN

wN

(2.17)

where

mj = max(∇
p1

w1

,∇
p2

w2

, · · · ,∇
pN

wN

) (2.18)

In Fig. 2.4, starting from the base point {2,2}, the preplanned search

makes a list of the directions of the steepest ascent by comparing the gradients

of the independent performances in one dimension from the one-variable sim-

ulations. If the gradient, which is calculated from the one-variable simulations

at a w1 of 2 bits, is larger than that at a w2 for 2 bits, then the next feasible

location is {3,2}. Then, if the gradient at a w1 of 3 is smaller than that at

a w2 of 2, the next feasible location is {3,3}. The simulation path would be

{2,2}, {3,2}, {3,3}, etc. After scheduling the feasible points, the performance
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Figure 2.4: The direction of the preplanned search (w = {2, 2}; optimum point
= {5, 5}; distance d in (2.11) is 6; trials = 6)

of these points are evaluated until the value of the performance meets the

desired accuracy.

I generalized the trials of the preplanned search in N dimensions as

EN
PS = dw1 + dw2 + · · · + dwN . (2.19)

In this example, the number of trials in (2.19) is 6, as illustrated in Fig. 2.4.

The number of trials is the least among the search methods reported so far.

However, finding the global optimum wordlength is not guaranteed.

2.4.5 Case Study

Typical demodulators are implemented with an analog block in front

of an analog-to-digital converter (ADC) block, as shown in Fig. 2.5(a). As the

speed of the ADC increases in communication systems [29], the analog parts

are replaced with digital parts. As shown in Fig. 2.5(b), I replaced the analog
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Figure 2.5: Analog and digital demodulators in CDMA receiver and perfor-
mance measurement position.

demodulator with a digital demodulator.

The demodulator converts modulated signals into baseband signals. In

the digital demodulator block of Fig. 2.6, the sampled data values output by

the ADC are multiplied by a carrier signal to shift the spectrum down to the

baseband. The out-of-band signal is removed by the lowpass filter (LPF). The

variables in the digital demodulator are given below [10,30]:

• Bi: input wordlength

• Bc: carrier wordlength

• Bm: multiplier output wordlength

• Bf : filter output wordlength
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Figure 2.6: A digital demodulator block.

• Bfc: filter coefficient wordlength.

Because direct measurement of frame error rate (FER), which is a gen-

eral measurement to evaluate CDMA systems requires at least 105 frames

during the simulation [31], the output SNR is used for performance measure-

ment instead of FER. The required output SNR in this system is over 0.8 dB,

whereas FER is under 0.03 [10].

For the initial point, the minimum wordlength is selected by the inde-

pendent one-variable simulations in which one variable changes while other

variables maintain high precision. To satisfy the output SNR of 0.8 dB,

the minimum wordlength of {Bi, Bc, Bm, Bf , Bfc} is {4, 3, 4, 5, 7}, which is

acquired from the one-variable simulations shown as Fig. 2.7. For a sim-

plified example, I assume that the cost-per-bit is one. In the exhaustive

search, the next points are searched: {5, 3, 4, 5, 7}, {4, 4, 4, 5, 7}, {4, 3, 5, 5, 7},

{4, 3, 4, 6, 7}, {4, 3, 4, 5, 8}, {5, 4, 4, 5, 7}, etc. The search is continued until

the communications performance meets the specified desired requirement. In

the sequential search, the next point is one of the following: {5, 3, 4, 5, 7},

{4, 4, 4, 5, 7}, {4, 3, 5, 5, 7}, {4, 3, 4, 6, 7}, and {4, 3, 4, 5, 8}. The next point

would have the largest communication performance among them. From Table
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Figure 2.7: Result of the independent one-variable simulations on a CDMA
demodulator.

2.3, {4, 3, 4, 6, 7} is the next location because it has the largest communica-

tion performance. The simulation moves the current point to the new point

and continues to search until the performance exceeds the specified desired

requirement, which is an output SNR of 0.8dB in this case. The final point

is {5, 3, 6, 6, 7}, as shown in Table 2.3. From (2.11), the distance between the

base and the optimum point is 4. From (2.16), the number of trials for the

sequential search to find an optimum wordlength is 20.

In the preplanned search, the search path is estimated from the sen-

sitivity of each one-variable simulation shown in Fig. 2.7. Starting from the

minimum wordlength or base point, {4, 3, 4, 5, 7}, the first expected point is

{4, 3, 4, 6, 7} because, from Fig. 2.7, Bf has the greatest derivative among each

wordlength at the base point.
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The sequence of the preplanned search points is {4, 3, 4, 5, 7}, {4, 3, 4, 6, 7},

{4, 3, 4, 6, 8}, {4, 3, 5, 6, 8}, {4, 4, 5, 6, 8}, etc. Simulations move the current

point to the next point until the performance exceeds the specified desired re-

quirement. From (2.11), the optimum point is {5, 4, 5, 6, 8} and distance is 5.

From (2.19), the number of trials of the preplanned search to find an optimum

wordlength is 5.

2.4.6 Comparison

The four search methods are compared according to the trials from

(2.10), (2.12), (2.16), and (2.19), as shown in Table 2.4. For each method,

the number of trials is calculated in addition to the one-variable simulation,

which all of the search methods use. The complete search needs 283920 trials

to find the optimum wordlength from (2.10) with wk = {16, 16, 16, 16, 16}

and wk = {4, 3, 4, 5, 7}, assuming that the maximum wordlength is 16 bits.

If the computer simulation to calculate the frame error rate per trial in the

CDMA system takes about 10 minutes, the complete search to find an optimum

wordlength would require 5 years, which is an unrealistic design time.

By using (2.12), the exhaustive search needs 56 trials, by using (2.12),

which is fewer than the complete search. The exhaustive search is, however,

inefficient in finding the optimum wordlength when the wordlength variables

for optimization are numerous and the distance between the base and optimum

point is longer.

The sequential search and preplanned search requires 20 and 5 tri-
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Table 2.3: Sequence of the sequential search for CDMA demodulator (Traffic
Channel Rate Set 1 in Additive White Gaussian Noise, Input SNR = −17.3
dB, Eb/Nt= 3.8, Rate= 9600 bps, Desired performance: Output SNR> 0.8dB,
FER< 0.03)

Step {Bi, Bc, Bm, Bf , Bfc} Output SNR FER Result

1, 2 {4, 3, 4, 5, 7} 0.711 0.038 Fail

3 {5, 3, 4, 5, 7} 0.735 - -

3 {4, 4, 4, 5, 7} 0.694 - -

3 {4, 3, 5, 5, 7} 0.712 - -

3 {4, 3, 4, 6, 7} 0.759 - Max

3 {4, 3, 4, 5, 8} 0.704 - -

4 {4, 3, 4, 6, 7} 0.759 0.035 Fail

3 {5, 3, 4, 6, 7} 0.763 - -

3 {4, 4, 4, 6, 7} 0.722 - -

3 {4, 3, 5, 6, 7} 0.773 - Max

3 {4, 3, 4, 7, 7} 0.751 - -

3 {4, 3, 4, 6, 8} 0.749 - -

4 {4, 3, 5, 6, 7} 0.773 0.034 Fail
...

...
...

...
...

3 {6, 3, 5, 6, 7} 0.798 - -

3 {5, 4, 5, 6, 7} 0.802 - -

3 {5, 3, 6, 6, 7} 0.805 - Max

3 {5, 3, 5, 7, 7} 0.803 - -

3 {5, 3, 5, 6, 8} 0.798 - -

4 {5, 3, 6, 6, 7} 0.805 0.029 Pass
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Table 2.4: Comparison of complete, exhaustive, sequential and preplanned
search ( N = 5, wk = {16, 16, 16, 16, 16}, wk = {4, 3, 4, 5, 7}, and the term d
is defined in (2.11)).

Search Distance (d) Equation for Number of Experiments from Trials

(2.10), (2.12), (2.16), (2.19)

Complete -
∏N

k=1(wk − wk + 1) 283920

Exhaustive 4 (d + 4)(d + 3) · · · (d)/5! 56

Sequential 4 5 · d 20

Preplanned 5 d 5

als, respectively, which are fewer than for the other search methods. Among

the search methods, the preplanned search has the smallest number of ex-

periments, but its distance according to (2.11) is greater than that for the

sequential search. By implication, therefore, the wordlength of the sequential

search method is closer to a global optimum with respect to hardware cost.

Techniques based on the gradient projection method encounter a loss

of direction problem when they employ the sequential search and preplanned

search. This problem can be solved by adapting the step size.

The sequential search and the preplanned search reduce the trials by

rates of 64% and 91%, respectively, when compared to the exhaustive search

for wordlength optimization in the CDMA demodulator design. However,

the preplanned search seldom converges to the same optimum point, and the

distance is longer than that of the other search methods.
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2.5 Genetic Algorithms

In 1975, Holland introduced an optimization procedure that mimics

the process observed in natural evolution [32] and is known as the genetic

algorithm, or GA [33–35]. This technique of optimization is similar to its

associated algorithms such as simulated annealing [36], evolutionary strategies

[37], and evolutionary programming [38, 39], which are classified as guided

random techniques. Because of its simple implementation procedure, the GA

can be used as an optimization tool for designing AI-hybrid systems for real-

world applications [40–45].

Genetic and evolutionary algorithms [35] provide optimization tech-

niques that mimic the three major components of natural evolution and selec-

tive breeding: selection, exchange of genetic material during reproduction (or

mating), and random mutations as shown in Fig. 2.8 [46].

By their definition, genetic algorithms lend themselves to discussion

in terms of a biological paradigm. For example, an instance of a system is

referred to as an individual. An individual contains a genotypic description,

which is the list of attributes (or decision variables) to be optimized. A group

of individuals make up a population. Selection is mimicked by comparing

the performances of individuals in a population and determining which indi-

viduals get to mate. An individual with more desirable features for fitness

is given a higher probability of mating. Mating is performed by combining

some attributes from one parent and the remaining attributes from the other

parent. The attributes of the resulting individual can then be mutated using
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Figure 2.8: Genetic and Evolutionary Algorithms [46]

any method desired, including normal and uniform distributions. Mutation

provides a natural resistance to the optimization process converging on a local

minimum or maximum and allows the introduction of new genetic material

into the gene pool.

2.5.1 Multi-Objective Evolutionary Optimization

Most problems in nature have several objectives (normally conflicting

with each other) that need to be achieved at the same time. These problems,

called “multi-objective” optimization problems, were originally studied in the

context of economics [47]. Because of the conflicting nature of their objec-

tives, multi-objective optimization problems do not normally have a single

solution, and, in fact, they even require the definition of a new notion of “op-

timum.” The most commonly adopted notion of optimality in multi-objective
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optimization is that originally proposed by Edgeworth [48] and later general-

ized by Pareto [49]. Such a notion is called Edgeworth-Pareto optimality or,

more commonly, Pareto optimality.

Definition 2.5.1 (Definition of Pareto Optimality). A vector of decision

variables x∗ ∈ F is Pareto optimal if there does not exist another x ∈ F such

that fi(x) ≤ fi(x
∗) for all i = 1, . . . , k and fj(x) < fj(x

∗) for at least one j.

Here, F denotes the feasible region of the problem (i.e., where the constraints

are satisfied).

In words, this definition says that x∗ is Pareto optimal if there exists no

feasible vector of decision variables x ∈ F that would decrease some criterion

without causing a simultaneous increase in at least one other criterion. Un-

fortunately, this concept almost always gives not a single solution, but rather

a set of solutions, called the Pareto optimal set. The vectors x∗ corresponding

to the solutions included in the Pareto optimal set are called non-dominated.

The plot of the objective functions whose non-dominated vectors are in the

Pareto optimal set is called the Pareto front, as shown in Fig. 2.9.

2.5.2 Pareto Rank

A fitness value of a chromosome is required in GA operations. However,

it is difficult to combine the objectives both in linear and/or nonlinear fashion

to reflect the fitness of the chromosome. Therefore, a Pareto multi-objective

ranking approach [50] is adopted. Consider an individual xi at generation t

33



: Dominated

O
bj

ec
tiv

e 
2

Objective 1

Pareto Front
: Non−Dominated

Figure 2.9: Pareto front in two objectives

that is dominated by p
(t)
i individuals in the current population. Its current

position in the individuals’ rank can be given by

rank(xi, t) = 1 + p
(t)
i (2.20)

All non-dominated individuals are assigned Rank 1. Fitness is assigned to

each chromosome according to its rank in the population.

2.5.3 Wordlength Optimization with Multi-Objective Evolutionary
Algorithms

When implementing a digital filter in hardware, filter coefficients have

to be represented with finite wordlength. Several methods have been pro-

posed to effectively design finite impulse response (FIR) filters with linear

programming [51–53]. Xu and Daley [54] show that GA is superior to integer
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programming techniques in filter design.

Being powerful optimization tools, the genetic and evolutionary algo-

rithms have explored a large number of applications [55] in signal processing,

such as adaptive IIR filtering [56], nonlinear model selection, time-delay esti-

mation, active noise control, and speech processing.

Genetic algorithms have been used in filter design [54,57–61]. The ini-

tial use of a genetic algorithm for filter design was reported in [57]. Genetic

algorithms have been used to design multiplierless filters [62–64] or filters rep-

resented with cannoical signed-digits (CSD) [65–68].

Genetic algorithms have been applied to wordlength design in digital

signal processing. Wordlengths in digital signal processing are analogous to

genes, and each set of wordlengths is analogous to a chromosome. The GA

is used to determine wordlength in filter coefficients [61] and to optimize the

wordlength of input data and coefficients in a FFT processor [69] with a single

objective.

Some papers have employed multiple objectives for wordlength opti-

mization. Leban and Tasic [60] used mean square error, delay, and area as

objectives. Signal-to-noise ratio and power are used as objectives by Sulaiman

and Arslan [70]. These works employed a weighted sum as a fitness function.

As in the case of the weighted sums methods, the relative importance of objec-

tives should be specified using weights (quantitatively). Furthermore, a simple

weighted-sum technique only finds a single solution of the many possible opti-
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mal solutions in the objective space. Thus, the single solution does not provide

the ability to understand the various trade-offs that are possible in objective

space [46].

In this dissertation, Pareto ranking approaches [46] are used for multiple

objective evolutionary algorithms to optimize wordlength, and the results are

shown in Section 3.5.

2.6 Summary

This chapter briefly explains fixed-point wordlength optimization and

several search algorithms. Table 2.5 summarizes the advantages and disad-

vantages of the algorithms mentioned in this chapter. As shown in Table 2.5

the complete method and the genetic method have more advantages compared

to the other methods. However, the complete search method is impractical.

The sequential and the preplanned methods show less iteration than the other

methods. However, these methods cannot handle multiple objectives. The

next chapter proposes a modified sequential search algorithm that can handle

multiple objectives.
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Table 2.5: Advantages/disadvantages of wordlength search algorithms in this
chapter

Advantages Disadvantages
1. Global optima 1. Local optima
2. Pareto ranking 2. Weights in objectives
3. Handle multi-objectives 3. Single objective
4. Amenable to parallelism 4. Limited parallelism
5. Low algorithm complexity 5. High algorithm complexity
6. Fewer iterations 6. More iterations

7. Impractical

Methods 1 2 3 4 5 6 1 2 3 4 5 6 7
Advantages Disadvantages

Complete Y Y Y Y Y Y
Exhaustive Y Y Y Y Y
Sequential Y Y Y Y Y
Preplanned Y Y Y Y Y

Genetic/weighted Y Y Y Y Y
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Chapter 3

Wordlength Optimization for Hardware

Implementation

3.1 Introduction

As described in Section 2.4, there are many search algorithms used in

wordlength optimization. Gradient-based search algorithms utilize gradient

information of wordlength to find better solutions. The gradient information

can be obtained from sensitivity measurements of complexity or distortion

according to the wordlength set. In this chapter, I propose a complexity-

and-distortion measurement method that utilizes all sensitivity information

simultaneously. Case studies in wordlength design in OFDM demodulators

and IIR filters demonstrate the proposed algorithms. Simulation results from

multi-objective genetic algorithms are also shown and compared.

3.2 Sensitivity Measurements

The sensitivity information or gradient information used to update di-

rections in (2.9) can help reduce the search space dramatically. The sensitivity

information can be obtained by measuring hardware complexity and distortion

or propagated quantized precision loss. The complexity measure is used for
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the hardware cost function in [24]. The distortion measure in [25] utilizes the

sensitivity information of a propagated quantization error. The complexity-

and-distortion measure in [15] combines the two measures to update the search

direction.

3.2.1 Complexity Measure (CM)

The complexity measure method considers the hardware complexity

function as the cost function in (2.5) and uses the sensitivity information of

the complexity as the direction to search for the optimum wordlengths. The

local search in [24] uses the complexity measure.

The complexity measure method updates wordlengths from the direc-

tion of the lowest sensitive complexity until a system meets a required perfor-

mance, such as Preq in (2.6). The complexity measure method searches the

wordlengths that minimize hardware complexity; however, it demands a large

number of iterations since it does not use any distortion sensitivity informa-

tion that can speed up the search for the optimum wordlengths. For example,

in a system composed of adders and multipliers, the complexity sensitivity of

a multiplier is larger than that of an adder. The complexity measure method

increases the wordlength in the adder with the priority during an increase pro-

cedure even if the wordlength in the multiplier affects the propagated quantized

performance more. It would waste computer simulation time if the complexity

sensitivity of an adder is much smaller than that of a multiplier.
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3.2.2 Distortion Measure (DM)

The distortion measure method considers the distortion function as the

objective function in (2.5) and uses the sensitivity information of the distortion

for the direction to search for the optimum wordlengths. The sequential search

method uses the distortion measure. This method assumes that every cost or

complexity function will be the same or equal to 1 and selects wordlengths

with the update direction according to the distortion sensitivity information.

The complexity objective function is replaced with the distortion ob-

jective function d(w) as

fd(w) = d(w) (3.1)

and the complexity minimization problem is changed into a distortion mini-

mizing problem by
{

min
w∈In

fd(w)

subject to d(w) ≤ Dreq, c(w) ≤ Creq, w ≤ w ≤ w
(3.2)

where Dreq is the required distortion, and Creq is a complexity constant.

The sensitivity information is also calculated by the gradient of the

distortion function. For the steepest descent direction, the update direction is

ξDM = −∇fd(w) (3.3)

For the distortion, Fiore and Lee [71] computed an error variance, and Han et

al. [25] measured an output SNR.

The distortion measure method reduces the number of iterations for

searching the optimum wordlengths, because the search direction depends on
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the gradient information of the distortion. This method rapidly finds the op-

timum wordlength satisfying the required performance within fewer iterations

than the complexity measure method. However, the method does not guaran-

tee the optimum wordlengths in terms of the complexity.

3.2.3 Complexity-and-Distortion Measure (CDM)

The complexity-and-distortion measure combines the complexity mea-

sure with the distortion measure by using a weighting factor. In the objective

function, both complexity and distortion are considered simultaneously. The

complexity and the distortion function can be normalized by complexity and

distortion values at base wordlength, respectively. The two objectives can be

added with complexity and distortion weighting factors, αc, and αd, respec-

tively.

Thus, the new objective function is

fcd(w) = αc · cn(w) + αd · dn(w) (3.4)

where cn(w) and dn(w) are the normalized complexity function and distortion

function, respectively. The relation between the weighting factors is

αc + αd = 1 (3.5)

where

0 ≤ αc ≤ 1, 0 ≤ αd ≤ 1. (3.6)
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Using (3.4), the objective function gives a new optimization problem:

{

min
w∈In

fcd(w)

subject to d(w) ≤ Dreq, c(w) ≤ Creq, w ≤ w ≤ w
(3.7)

where Dreq and Creq are the required distortion and a complexity constant,

respectively. This optimization problem is to find wordlengths that minimize

complexity and distortion simultaneously according to the weighting factors.

Setting the complexity and distortion weighting factor, αc and αd, from

0 to 1, the complexity-and-distortion method searches for an optimum word-

length with tradeoffs between the complexity measure method and distortion

measure method. The complexity-and-distortion measure becomes the com-

plexity measure or the distortion measure when αd = 0 or αc = 0, respectively.

The complexity-and-distortion measure method can reduce the num-

ber of iterations for searching the optimum wordlengths, because the distor-

tion sensitivity information is utilized. This method can more rapidly find

the optimum wordlength that satisfies the required performance because it

requires fewer iterations than the complexity measure method. However, the

wordlengths are not guaranteed to be optimal in terms of the complexity.

3.3 Case Study

3.3.1 Orthogonal Frequency Division Multiplexing Demodulator
Design

Digital communication systems have digital blocks such as demodula-

tors that need wordlength optimization. The searching algorithms in Section
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Figure 3.1: Wordlength model for a fixed-broadband wireless access demodu-
lator.

2.4 were applied to the wordlength optimization of a CDMA demodulator

design in Section 2.4.5. From the CDMA case study, the sequential search

appears to be one of the promising methods for finding an optimum word-

length. In this section, the complexity measure, distortion measure, and

complexity-and-distortion measure in Section 3.2 are applied in the sequen-

tial search framework to determine wordlengths for a fixed-broadband wireless

demodulator.

Fixed-broadband wireless access technology is intended for high-speed

voice, video, and data services, which are presently dominated by cable and

digital subscriber line technologies [72]. One of the designs for orthogonal

frequency division multiplexing (OFDM) demodulators for fixed-broadband

wireless access is shown in Fig. 3.1. For the wireless channel, I use Stanford

University Interim models [73] [74].

The main blocks in the demodulator for finite wordlength determination

are the fast Fourier transform (FFT), equalizer, and estimator. For wordlength
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variables, I choose the wordlengths that have the most significant effect on

complexity and distortion in the system. For the OFDM demodulator, I select

wordlength variables w0, w1, w2, and w3 for the FFT input, equalizer right

input, channel estimator input, and equalizer upper input, respectively, as

shown in Fig. 3.1.

I assume that the internal wordlengths of the given blocks have already

been decided. In simulation, only the inputs to each block are constrained to

be in fixed-point type, whereas the blocks themselves are simulated in floating-

point type.

For the hardware complexity, the number of multiplications is measured

assuming that processing units are not reused. The number of multiplications

in a K-point FFT block is

CostFFT =
K

2
log2 K. (3.8)

where K is the number of taps. The cost of the 256-point FFT in the

fixed broadband wireless access is estimated to be 1024. The simplified com-

plexity vector c of the wordlength per bit is assumed to be approximately

{1024, 1, 128, 2} from [2] [75].

I also assume the complexity increases linearly as wordlength increases

to simplify demonstration. For the distortion measurement, the bit error rate

(BER) is measured. The minimum wordlength searched by changing one word-

length variable while other variables have high precision (i.e., 16 bits) is used
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Figure 3.2: Wordlength effect for the demodulator in Fig. 3.1, with Stanford
University Interim wireless channel model Number 3, SNR of 20 dB, FFT
length of 256, and least squares comb type channel estimator without error
control coding.

for the initial wordlength [2] [25]. The simulation for the minimum wordlength

is shown in Fig. 3.2.

Assuming the minimum performance of BER is 5× 10−3, from the Fig.

3.2 the minimum wordlength is {5, 4, 4, 4}. Starting from the minimum word-

length, wordlengths are increased according to the sensitivity information of

different measures in Section 3.2. I measure the number of iterations until they

find their own optimum wordlength satisfying the required performance, such

as BER ≤ 2×10−3, without a channel decoder. For the optimum wordlength, I

follow the hybrid procedure [11] that combines a wordlength increase followed

by a wordlength decrease. The simulation results are presented in Section 3.4.
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Table 3.1: Simulation results of several search methods starting from the mini-
mum wordlength for the demodulator arcs in Fig. 3.1. N = 4, wk = {5, 4, 4, 4},
wk = {16, 16, 16, 16}. CDM is complexity-and-distortion measure. αc is
weighting factor.

Search αc Number Wordlengths for Complexity
Method of Trials Variables Estimate

Sequential Search [25] 0 16 {10,9,4,10} 10781
CDM 0.5 15 {7,10,4,6} 7702

Local Search [24] 1 69 {7,7,4,6} 7699

3.3.2 Infinite Impulse Response Filter

The OFDM demodulation case requires a large number of long simu-

lations, which becomes especially time-consuming when each simulation takes

hours of BER estimation. For a more general case, the infinite impulse re-

sponse (IIR) filter that has 7 wordlengths is simulated as shown in Fig. 3.3.

The pole/zero plot for the IIR filter used in this case study is shown in Fig. 3.4.

There are various methods for deriving the error function and cost function.

For simplifying the simulation, the mean square error (MSE) is measured for

the error function, and a linear cost function of wordlength is assumed. The

required performance of the IIR filter is assumed to be an MSE of 0.1. The

results are presented in Section 3.4.

3.4 Results of Sensitivity Measurements

The wordlength optimization problem is a discrete optimization prob-

lem with a nonconvex constraint space [76]. This nonconvexity makes search

for a global optimum solution more difficult [77]. Table 3.1 and Table 3.2 show
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Table 3.2: Simulation results in IIR filter of several search methods. N =
7, wk = {1, 1, 1, 1, 1, 1, 1}, wk = {16, 16, 16, 16, 16, 16, 16}. CDM is the
complexity-and-distortion measure. αc is weighting factor. (Max-1 search
starts from wk. Sequential search starts from wk)

Search αc Number Wordlengths for Complexity

Method of Trials Variables Estimate

Max-1 Search [11] 0 94 {4,5,4,5,2,2,4} 378

Sequential Search [25] 0 56 {4,5,4,5,2,2,4} 378

CDM 0.25 44 {4,5,4,4,2,2,5} 366

CDM 0.5 33 {6,5,5,4,1,2,4} 363

CDM 0.75 71 {6,4,4,4,2,16,13} 561

Local Search [24] 1 126 {9,5,16,4,1,16,16} 723

that there are several local optimum wordlengths that satisfy error specifica-

tion and minimize hardware complexity in the case studies. In this section,

wordlength optimization methods used in the case studies are compared in

terms of number of iterations and hardware complexity, and future work is

discussed.

3.4.1 Number of Iterations

The number of iterations to search an optimum wordlength in the

OFDM demodulator design is shown in Fig. 3.5. The initial wordlength

does not satisfy the desired performance. After a number of trials by up-

dating the wordlength as in (2.9), the error at the system output decreases.

The sequential search and the CDM search reach a feasible area after 15 tri-

als. However, the local search takes 38 trials. After arriving at the feasible
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Figure 3.5: Number of iterations for optimum wordlength with various search
algorithms in OFDM demodulator wordlength design.

area, an optimum wordlength is searched again. In this case, the wordlengths,

which are searched by the sequential search or the CDM search, already arrive

at an optimum wordlength. However, the local search needs more iteration

to find an optimum wordlength. The total number of trials to find an opti-

mum wordlength in each method for the OFDM case is shown in Table 3.1.

The sequential search and the CDM method can find an optimum solution in

one-fourth of the time that the local search method takes.

In the IIR filter design, the number of iterations to search an optimum

wordlength is shown in Fig. 3.6. This figure demonstrates the number of

trials in infeasible area and feasible area. After the search methods reach a

feasible region where the MSE of the IIR filter is under 0.1, the search methods

continue searching for an optimum wordlength. The sequential search and
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various search algorithms.

the local search need a total of 56 and 126 iterations, respectively, including

iterations in feasible and infeasible areas, as shown in Table 3.2. The max-1

search starting from the feasible area needs 96 iterations. The CDM methods

with weighting factors of 0.25, 0.5, and 0.75 are used for comparison. When αc

is less than 0.5, the CDM methods have the properties of the sequential search.

When αc is greater than 0.5, the CDM methods search in the same manner as

the local search does. In Fig. 3.6, the CDM methods with weighting factors

of 0.25 and 0.75 show shapes similar to those of the sequential search and the

local search, respectively. In the IIR filter case, the CDM method with an

αc of 0.5 can find an optimum solution in one-fourth the time that the local

search method takes.

In general, if error sensitivity information for searching an optimum
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wordlength is used, the number of iterations can be reduced. The sequential

search and the CDM method with an αc less than 1 use the error sensitivity

information. Thus, two methods converge quickly into an optimum wordlength

that satisfies the required error performance.

3.4.2 Hardware Complexity

Table 3.1 and Table 3.2 show the hardware complexity according to

the searched optimum wordlengths in various methods. The results show that

the sequential search method, which only uses error sensitivity information for

the update direction, finds an optimum wordlength that has higher complex-

ity than those found by the CDM method and the local search in the OFDM

demodulation case study. However, an optimum wordlength searched by the

local search method, which uses hardware complexity information, has higher

complexity in the IIR filter case study. If the design space is convex and has

only one optimum solution, then various search methods can find the optimum

solution. However, wordlength optimization problem has many local optimum

solutions because of the nonconvex space. As the number of wordlength vari-

ables increases and as the system becomes more complicated, the probability

of becoming stalled in a local optimum solution increases. In the IIR filter

case with seven elements in the wordlength vector, the wordlengths searched

by the local search method are far from globally optimal.

In the IIR filter case study, the CDM search with a weighting factor

of 0.5 finds an optimum wordlength that has the lowest hardware complexity.
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Table 3.3: Simulation results in noise cancellation with Wiener filter [78] of
several search methods. N = 5, wk = {1, 1, 1, 1, 1}, wk = {16, 16, 16, 16, 16}.
CDM is complexity-and-distortion measure. αc is weighting factor.

Search αc Number Wordlengths for Complexity

Method of Trials Variables Estimate

Sequential Search [25] 0 21 {4,5,5,3,2} 1331

CDM 0.25 23 {4,4,5,4,2} 1200

CDM 0.5 24 {5,4,4,5,4} 1074

CDM 0.75 167 {4,4,4,5,4} 1073

Local Search [24] 1 170 {5,4,4,15,3} 1082

The CDM search with a weighting factor of 0.75 tends to be the local search.

The hardware complexity from the CDM method with a weighting factor of

0.75 is between that of the CDM with a weighting factor of 0.5 and the local

search. Similarly, the complexity from the CDM method with a weighting

factor of 0.25 is between that of the sequential search and the CDM with a

weighting factor of 0.5.

For more examples, additional optimum wordlength search results from

a noise cancellation with the Wiener filter [78] are shown in Table 3.3.

3.4.3 Discussion

The CDM method, which uses error and complexity sensitivity for op-

timum wordlength search, has the advantages of the sequential search and the

local search. This method reduces the number of iterations because of the

error sensitivity that helps to reach a feasible boundary quickly. At the same
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time, this method finds a near-optimum wordlength that has lower hardware

complexity because of the sensitivity of hardware complexity. The proposed

method is robust for the search of an optimum wordlength in a non-convex

space because this method is not easily captured by local optimum solutions.

The complexity-and-distortion measure method has the flexibility to

search for an optimum wordlength by setting a weighting factor. The designer

can select the weighting factor αc as in (3.5). The αc of 0.5 means that the

CDM method uses equally the sensitivity information of the error and of the

complexity. The αc of 0.5 in CDM is reasonable for optimum wordlength

search algorithms.

For an extension of this work, various methods can be combined for

wordlength optimization. Wordlength grouping [2] can be used to reduce a

wordlength vector. An error model or error monitoring instead of error mea-

suring can be used to reduce the simulation time. An actual cost model [13]

can be used to obtain accurate results. For the search method, different meth-

ods, such as a binary search, can be combined. The pre-planned search, which

is the fastest error sensitivity search method according to comparisons in [11],

can employ CDM methods to reach a near-optimum wordlength more quickly.

3.5 Results of Genetic and Evolutionary Algorithms

Simulation results utilizing multiple objective genetic and evolutionary

algorithms on wordlength design in an IIR filter are shown in Fig. 3.7 and

Fig. 3.8. The total hardware area, one of the objectives, is evaluated by the
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area model of the arithmetic unit in [12]. The error between the floating-point

output and fixed-point output are measured by simulations.

The results in the IIR filter with seven wordlength variables are shown

in Fig. 3.7. Since the genetic algorithm mimics the evolutionary process of

plants and animals, each generation shows different results. Fig. 3.7 shows

nondominated and dominated (inferior) solutions at each generation. The plot

of the objective functions whose non-dominated vectors are in the Pareto op-

timal set is called the Pareto front. After many generations, the Pareto front

tends to move toward the left and downward. The number of dominated solu-

tions decreases as the number of generations increases. The 500th generation

has only non-dominated solutions.

Designers have a choice of wordlength solutions according to the Pareto

front. The Pareto front gives the tradeoff curve in hardware area and finite

precision output error. A smaller area requires a larger error, and a larger

area needs a smaller error. Thus, the obtained Pareto front gives designers

flexibility in a system design.

Note that the Pareto front in a descendant is not always better than

that in ancestor. The solution for an error of 10−2 at the 250th generation

required 90 lookup tables (LUTs). However, the solution for the same error

at the 500th generation needs at least 100 LUTs. Thus, the 250th generation

has a better solution for the error of 10−2 than the 500th generation. The

offspring could be worse than their ancestors because the genetic and evolu-

tionary algorithm utilizes a random process throughout selection, mating, and

54



20 40 60 80 100
10

−2

10
−1

10
0

Area (LUTs)

E
rr

or
 (

R
M

S
)

 

 
non−dom (35/90)

dom (55/90)

20 40 60 80 100
10

−2

10
−1

10
0

Area (LUTs)

E
rr

or
 (

R
M

S
)

 

 
non−dom (67/90)

dom (23/90)

(a) 50th generation (b) 100th generation

20 40 60 80 100
10

−2

10
−1

10
0

Area (LUTs)

E
rr

or
 (

R
M

S
)

 

 

non−dom (76/90)

dom (14/90)

20 40 60 80 100
10

−2

10
−1

10
0

Area (LUTs)

E
rr

or
 (

R
M

S
)

 

 
non−dom (90/90)

(c) 250th generation (d) 500th generation

Figure 3.7: Results of multiple objective genetic and evolutionary algorithms
in the IIR filter case study with seven wordlength variables (Population for
one generation is 90)
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mutation.

The genetic and evolutionary algorithm is computationally intensive.

It requires many simulations for errors in each population as well as the genetic

operations of selection, mating, and mutation for each generation. Considering

only the number of simulations for errors, the 500th generation requires 45000

(= 500 generations ∗ 90 populations) simulations.

A reduced number of variables can reduce the number of simulations.

Fig. 3.8 shows results in the IIR filter study with three wordlength variables.

The wordlength at the output of the multipliers are selected for three variables.

The results show the same trends as with seven wordlength variables. However,

all solutions at the 250th generation are non-dominated. Thus, 22500 (=

250 generations ∗ 90 populations) are sufficient for three variables in this case

study.

The Pareto fronts in Fig 3.7 and Fig 3.8 are calculated based on the

current generation. Offspring sometime show worse Pareto fronts than their

predecessors. For example, the Pareto front at the 250th generation in Fig. 3.8

looks partly worse than that at the 100th generation. Storing and comparing

non-dominated solutions in all generations can generate a better Pareto front.

3.6 Comparison

The gradient-based search algorithms and genetic algorithms are com-

pared. Results from gradient-based search algorithms with the FPGA area
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Figure 3.8: Result of multiple objective genetic and evolutionary algorithms
in the IIR filter case study with three wordlength variables (Population for
one generation is 90)
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Figure 3.9: Overlap genetic evolutionary algorithm results in 50th generation
with gradient-based search results for the IIR filter case study with seven
wordlength variables (Required RMS for gradient-based search ≤ {0.12, 0.1,
0.08}

models are superposed on the results from a genetic algorithm in Fig. 3.9 and

Fig. 3.10. Three desired RMS values of 0.08, 0.1, and 0.12 are given, since the

gradient-based search algorithms generate one solution each. DM, CDM, and

CM are used as gradient-based search algorithms. Automated transformation

tools from floating-point to fixed-point, which are explained in Section 5, are

used for the gradient-based search algorithm and the genetic algorithm as a

search engine. One wordlength variable at each output is generally assigned

for the automated transformation in the IIR filter. For example, in Fig. 3.3,

the delay output has one wordlength variable instead of two wordlength vari-

ables, and the one wordlength variable is added to the output of the IIR filter.

Seven wordlength variables are used in simulations of the fixed-point IIR filter.
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Figure 3.10: Overlap genetic evolutionary algorithm results in 500th genera-
tion with gradient-based search results for the IIR filter case study with seven
wordlength variables (Required RMS for gradient-based search ≤ {0.12, 0.1,
0.08}

The solutions from the gradient-based search algorithms are similar to

the Pareto front in the genetic algorithm at the 50th generation. The RMS

error of 0.1 needs approximately 50 LUTs in both methods. However, at the

500th generation the genetic algorithm finds better solutions than the gradient-

based search algorithms, as shown in Fig. 3.10. This difference demonstrates

that the gradient-based search methods are trapped by local optima. However,

the genetic algorithm can avoid local optima.

With the respect to computational complexity, gradient-based search

algorithms need smaller numbers of computation compared to the genetic al-

gorithm. The gradient-based search algorithms require 145 simulations for

CDM and 417 for CM, whereas the genetic algorithm needs 4,500 simulations
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Figure 3.11: Result of random search algorithm in the IIR filter study with
seven wordlength variables (45,000 samples)

to obtain a similar result and 45,000 simulations for the 500th generation.

Furthermore, the genetic algorithm requires computations to execute genetic

operations at every generation.

A random search algorithm, which randomly selects samples or candi-

dates, can find solutions. For comparision with the random search algorithm,

wordlength samples of 45,000 are randomly selected. The Fig. 3.11 shows the

result of random search. The Pareto front of the genetic algorithm as shown

in Fig. 3.7 (d) is better than that of the random search algorithm as shown in

Fig. 3.11. This simulation result shows that the genetic algorithm outperforms

the random search algorithm with the same number of samples.

Parallel processing can decrease the running time. The genetic algo-

rithm is amenable to parallel and distributed simulations. The genetic algo-

rithm can be parallelized up to the number of populations since individuals
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can be evaluated independently. However, gradient-based search algorithms

are limited in their use of parallelism because gradient-based search algorithms

evaluate the next neighbors and move a current point to one of the neighbors.

Thus, the gradient-based search algorithm can be parallelized only up to the

number of neighbors or wordlength variables.

3.7 Summary

Wordlength optimizing methods with sensitivity measures are gener-

alized by equations and compared. The proposed complexity-and-distortion

measure equation can express the local search or sequential search by changing

the weighting factors. The weighting factor can reduce the number of itera-

tions and the hardware complexity compared to those of the local search and

the sequential search, respectively. In our case studies, the complexity-and-

distortion method is simulated and compared. The proposed method can find

the optimum solution in one-fourth of the time that the local search takes.

In addition, the optimum wordlength searched by the proposed method has

30% less hardware implementation costs than the sequential search in wireless

demodulators.

Multi-objective genetic and evolutionary algorithms provide a Pareto

front with which designers can decide on an optimum wordlength set with

tradeoffs in signal distortion and hardware complexity. When the genetic al-

gorithms are compared with the search algorithms, the wordlength from the

gradient-based search algorithms are local optima. However, genetic algo-
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rithms have long running time.

In conclusion, wordlength search algorithms utilizing genetic and evo-

lutionary algorithms can optimize the tradeoff between signal quality and im-

plementation complexity. Alternatively, wordlength search algorithms utiliz-

ing gradient information can provide faster ways to find data wordlengths, but

they get caught in local optima.
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Chapter 4

Wordlength Reduction for Lowering Power

Consumption

4.1 Introduction

Computing systems demand the minimization of power dissipation, be-

cause of limited battery power in portable computing and the difficulty of cool-

ing during high-speed signal processing. Many methods have been developed

to reduce power consumption. Lowering the supply voltage and minimizing

the hardware are used for low-power hardware [79]. Changing the instruction

order and reducing the number of operations are used for low-power soft-

ware [80]. A major focus of low-power design is to reduce switching activity to

the minimal level required to perform the computation, since, to a first order,

the power consumption of CMOS circuits is proportional to the number of

gate transitions [81].

Multipliers are usually a major source of power consumption in typical

DSP applications. Multiprecision multipliers have been developed for low-

power consumption [82, 83]. In multiprecision multipliers, multiplications are

performed by 8-bit, 16-bit, or 24-bit circuits, according to the input operand

size. Power reductions of up to 66% are achieved in [82] and 58% in [83]. How-

63



ever, arbitrary operand sizes such as 10 bits are not accommodated efficiently

in these approaches. A wordlength reduction technique has been proposed

in [84] to select any word size. The wordlength reduction technique shows a

72% reduction of average gate transitions. An extension of the wordlength

reduction technique is presented in this chapter.

Overviews of wordlength reduction techniques and power reduction

methods are presented in Sections 4.2 and 4.3, respectively. Expectation val-

ues of bit switching in inputs are derived in Section 4.4. A radix-4 modified

Booth multiplier and a Wallace multiplier, which are used in simulations, are

explained Section 4.5. Power consumption in these multipliers is estimated for

FPGA implementations in Section 4.6. Also, the power consumption of mul-

tipliers where the operands are of different sizes is estimated and compared.

4.2 Wordlength Reduction

Multiprecision multipliers have a few choices of operand precision due

to hardware limitations [82, 83]. The multiprecision multiplier does not ac-

commodate arbitrary precision, because of its fixed hardware structure. For

example, with 10-bit operands, a multiprecision multiplier, which supports

8-bit and 16-bit multiplication, has to use 16-bit multiplication with 6 unnec-

essary bits. Data wordlength reduction techniques can reduce the unnecessary

switching activity.

There are two kinds of data wordlength reduction. One is reduction

via right-shifting, and the other is reduction via left-shifting, that is, with
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truncation. The right-shifting method moves data from the most significant

(MS) side to least significant (LS) side with sign extension. The sign extension

bits are all 1s when the operand is negative and all 0s when the operand is

positive. The truncation method removes data from the LS side. An example

of an 8-bit reduction from 16-bit multiplication is shown in Figure 4.1. The

original 16-bit multiplication is shown in Figure 4.1(a). The reduction by an

8-bit right-shift moves 8 bits data in the MS side to the LS side with sign

extension as shown in Figure 4.1(b). The signed right shifted value becomes

1111 1111 1101 1100, because the original value, 1101 1100 1010 1001, is

negative. The reduction by 8-bit truncation removes the 8-bit data in the LS

side by masking the input data with 1111 1111 0000 0000, with the result

shown in Figure 4.1(c).

4.3 Power Consumption

4.3.1 Power Analysis

There are three major sources of power dissipation in digital CMOS

circuits that are summarized in the following equation [81]:

Pavg = Pswitching + Pshort−circut + Pleakage. (4.1)

The first term represents the switching component of power, the second term

derives from the direct-path short-circuit current conducting directly from the

supply to the ground, and the leakage power is primarily determined by the

fabrication technology.
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(c) Reduction by signed right shift

0001 0010 0011 0100

1101 1100 1010 1001

(a) Original multiplication

1101 1100 0000 0000

(b) Reduction by truncation

0000 0000 0001 0010

1111 1111 1101 1100

0001 0010 0000 0000

Figure 4.1: Example of 8-bit data wordlength reduction
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The switching component of average power is

Pswitching = αCLV 2
ddfclk (4.2)

where α is the switching activity parameter, CL is the load capacitance, Vdd

is the operating voltage, and fclk is the operating frequency. The switching

power can be reduced through operation reduction, choice of number repre-

sentation, exploitation of signal correlations, logic design, and physical design.

The switching activity can also be reduced by optimizing the ordering of op-

erations and by minimizing the number of operations.

The term αCL can also be viewed as the effective switching capacitance

of the transistor nodes from charging and discharging. Therefore, minimizing

switching activities can effectively reduce power dissipation without impacting

the operational performance of the circuit [85].

Directly measuring the power consumption is difficult. The average

number of transitions is usually used as an estimate of the requirement.

4.3.2 Software Power Minimization

Tiwari et al. [86] attempted to systematically model the software power

cost, because of the increasing demand for a software power analysis tool.

They formulated an instruction-level power model for the microprocessor after

measuring the power of the instruction sets. This approach made it possible

to compare programs in terms of their energy consumption.

Lee et al. [80] developed power analysis and minimization techniques
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for embedded DSP software. They found that in typical DSP applications,

the multiplier in the multiply-and-accumulate (MAC) unit is usually a ma-

jor source of power consumption. A micro-architectural power model for the

multiplier was developed and analyzed for further power minimization. They

observed a wide power variation of MAC instructions mainly according to the

two values being multiplied in the MAC unit.

They also used the operand-swapping technique for a Booth multiplier

[87], which does not treat the two inputs symmetrically. Their experiment

showed that swapping the operations in Register A and B can reduce the

power for MAC instructions. They also used instruction packing, instruction

scheduling, and memory bank assignment to reduce energy consumption.

4.3.3 Minimizing Wordlength for Low Power

Chandrakasan et al. [88] showed that the wordlength affects all key pa-

rameters of a design, including speed, area, and power. Choi and Burleson [24]

presented a general search-based methodology for wordlength optimization and

used a switching power model for power dissipation. Considering a voltage-

dropping factor and the area of the computing elements according to the word-

lengths, they analyzed the switching power consumption, assuming that the

power dissipation was proportional to the area of computing element.

Erdogan and Arslan [89] showed low-power multiplication schemes for

finite impulse response (FIR) filters on DSP processors. They used a data bus

and a coefficient bus separately for the filtering operation. They measured the
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switching activity of 8-, 16-, and 32-bit array multipliers for filter orders of 32,

64, and 128. They achieved up to a 63% reduction in switching activity by

ordering of coefficient and using a pre-calculated value memory.

Chen et al. [85] presented low-power two’s complement multipliers by

minimizing the switching activities of partial products using the Radix-4 mod-

ified Booth algorithm [90]. They used the fact that the switching activities

of the unused functional blocks are minimized when the input bits of unused

functional blocks remain unaltered. They increased the probability that the

partial products become zero by swapping input data.

Wordlength can also be changed by reconfiguring the multiplier. Kim

and Papaefthymiou [91] proposed a reconfigurable pipelined multiplier archi-

tecture by adapting its structure to computational requirements over time.

It can efficiently cope with variable data-rate multimedia applications such

as video processing. The multiplier structures can dynamically reconfigure

to lower their power consumption based on zero-valued inputs and input-rate

variations.

4.3.4 Power Reduction via Wordlength Reduction

Minimizing switching activity can effectively reduce power dissipation

without impacting circuit performance [85]. Wordlength reduction methods in

Section 4.2 can minimize switching activity at the expense of data precision,

as in [84]. The minimized switching activity reduces power consumption as

shown in (4.2).
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The wordlength reduction methods can be applied to low-power instruction-

based processors or FPGA/reconfigurable hardware. The truncation method

is implemented by adding mask modules, which consist of N-bit AND gates,

in front of the multiplier inputs. The signed right-shift method uses shift reg-

isters and sign extension units. Therefore, the truncation method needs less

extra hardware than the signed right-shift method for its implementation.

4.4 Expectation of Switching

Power consumption in CMOS digital circuits is proportional to switch-

ing activity in logic gates. Logic gates in multipliers are switched after input

multiplicand data are changed from the previous data. The total number of

gates that switch is used to calculate switching power consumption. It is diffi-

cult to predict the overall number of gates that switch in a multiplier because

of the glitch effect, which unexpectedly increases the switching activity.

Multiplicand inputs propagate the switching activity into inner logic

gates in a combinational multiplier. The expected value of input switching is

a meaningful factor to predict the number of gates that switch in a multiplier.

In this section, the expected value of the number of gates is estimated that

switch in L-bit inputs and M -bit reduction by truncation or signed right-shift

methods.
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Figure 4.2: Bit operation in effective bits, M . S is a signed bit

4.4.1 L-Bit Input

Let X be a random variable of the number of total bits switched in

wordlength L, as in Fig. 4.2. Each bit in the data has equal probability of bit

switching such as zero to one or one to zero, when new input data are given

in previous data locations. The probability of the switching of each bit is 1
2
.

The switching probability in X has binomial distribution:

PX(x) =

(

L

x

)

(
1

2
)x(

1

2
)L−x (4.3)

The expected value of X is

E(X) =
L

∑

x=0

x · PX(x) (4.4)

The expected value of a binomial distribution with probability p and the num-

ber of trials l is l ·p. The expected value of switching in L bits can be simplified
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to

E(X) = L · p (4.5)

=
L

2
. (4.6)

Thus, expected value of switching in L bits is half of L bits.

4.4.2 N-Bit Truncated Data in L-Bit Input

The effective bit width can be reduced by truncation. When truncated

data are consecutively used as input data, only the remaining bits have a

probability of switching, as shown in Fig. 4.2(b). N -bit truncated data in

L-bit width input have L − N effective width to be switched, whereas N bits

have always zero values. The expectation of N -bit truncated data in L-bit

inputs is

Etr(X) =
L − N

2
(4.7)

=
M

2
(4.8)

where M is the number of bits that are not truncated. These equations show

that the expectation value of switching in truncated data is half of the remain-

ing data width.

4.4.3 Signed Right Shift

The effective bit width can be reduced by right shifting. The signed

right shift moves data to right side with the sign bit filled into the vacated
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bit positions. N -bit signed right-shifted data in L-bit input add N additional

sign bits, as shown in Fig. 4.2 (c). The expected value of switching in N -bit

signed right-shifted data can be obtained using a conditional expectation [92]

with a random variable, Y, of a sign bit switching as follows:

Ers(X) = E(E(X|Y )) (4.9)

=
1

∑

s=0

P (Y = s)E(X|Y = s) (4.10)

=
1

2
E(X|Y = 0) +

1

2
E(X|Y = 1) (4.11)

Where: s is the sign bit. The first term in the right side in (4.11) gives the

expected value when the sign bit is not changed. Thus, only M−1 bits change.

From Eqs. (4.3), (4.4), and (4.6), the first term of conditional expectation

value (4.11) becomes

E(X|Y = 0) =
M−1
∑

x=0

x ·

(

M − 1

x

)

(
1

2
)x(

1

2
)M−1−x (4.12)

=
M − 1

2
(4.13)

where M = L − N .

The second term in the right side in (4.11) is the conditional expectation

when the sign bit is switched. The N -bit signed right-shifted data have N + 1

sign bits as shown in Fig. 4.2 (c). The conditional expectation of the switched

sign bit, E(X|Y = 1), is

M−1
∑

x=0

(x + N + 1)

(

M − 1

x

)

(
1

2
)x(

1

2
)M−1−x (4.14)
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The x in the summation in (4.14) can be separated as

M − 1

2
+

M−1
∑

x=0

(N + 1)

(

M − 1

x

)

(
1

2
)x(

1

2
)M−1−x (4.15)

=
M − 1

2
+

M−1
∑

x=0

(N + 1)

(

M − 1

x

)

(
1

2
)M−1 (4.16)

In general, the sum of all the combinations of K distinct items gives

K
∑

x=0

(

K

x

)

= 2K (4.17)

Using (4.17) and (4.16) yields the conditional expectation value as follows:

E(X|Y = 1) =
M − 1

2
+ (N + 1)(

1

2
)M−12M−1 (4.18)

=
M

2
+ N +

1

2
(4.19)

From (4.13) and (4.19), the expectation of switching data in (4.11) can be

simplified to

Ers(X) =
1

2
(
M − 1

2
) +

1

2
(
N

2
+ N +

1

2
) (4.20)

=
M + N

2
(4.21)

=
L

2
(4.22)

The expected value of the number of bits switched in N -bit signed right-shifted

data in L-bit input is half of L regardless of the signed right shift. Therefore,

the expected value of switching in signed right-shifted input is the same as

for an unshifted input. The expected values are summarized in Table 4.1 and

shown in Fig. 4.3.
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Table 4.1: Expectation of switching in L bit input

Inputs Expectation of switching

Full length used L/2
N bit truncation M/2

N bit signed right shift L/2

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

Bits (M)

E
xp

ec
ta

tio
n

Full length used
M bit truncation
M bit signed right shift

Figure 4.3: Expectation of number of switching bits in inputs
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4.5 Multiplier

The hardware multiplier on most programmable DSPs uses either a

Wallace multiplier or a Radix-4 modified Booth multiplier [90]. For example,

the TI TMS320C64 uses the Wallace algorithm, and the TI TMS320C62 uses

the Radix-4 modified Booth algorithm.

4.5.1 Wallace Multiplier

In a tree-based multiplier, partial products are added using full adders

or half adders. In 1964, Wallace showed a tree structure, which is an efficient

method to add partial products [93]. A Dadda dot diagram of a 4-bit Wallace

multiplier is shown in Figure 4.4. Rows are grouped into sets of three during

each reduction stage. Within each three-row set, (3,2) counters reduce columns

with three bits to two bits and (2,2) counters reduce columns with only two

bits. Rows that are not part of a three-row set are transferred to the next

stage without modification [94].

4.5.2 Radix-4 Modified Booth Multiplier

Booth recoding is a commonly used technique to recode one of the

operands in binary multiplication. Fig. 4.5 shows a radix-4 modified Booth

multiplier of a × x. A two’s complement multiplier, x, is recoded as a radix-4

number, z, that dictates the multiples -2a, -a, 0, a, and 2a to be added to the

cumulative partial product. The radix-4 Booth’s recoding is shown in Table

4.2.
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Half adder

Full adder

Figure 4.4: Dadda dot diagram for a 4-bit Wallace multiplier
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Figure 4.5: A Radix-4 multiplier based on Booth’s recoding. The a and x are
multiplicands. P is product of multiplication. Three bits in X are recoded to
z.

4.6 Simulation Results

A 16-bit Wallace multiplier and a 16-bit Radix-4 modified Booth multi-

plier are used for power estimation with data wordlength reduction. The mul-

tipliers are synthesized for Xilinx, XC3S200-5FT256 FPGA [95]. The XPower

tool estimates the power consumption of this FPGA with different operand

sizes. The dynamic power is estimated across VCCINT, which is a power-

supply pin of the dedicated internal core with a 1.2 V supply. The operational

frequency of the multipliers is set to 1 MHz.

Power estimates for a 16-bit Wallace multiplier are shown in Figure

4.6. An average power of 0.45 mW is consumed with 16-bit data operands

in the Wallace multiplier. As the operand size is reduced, the truncation
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Table 4.2: Radix-4 Booth’s recoding. The a and x are multiplicands. Three
bits of x are recoded into z.

xi+1 xi xi−1 z action

0 0 0 0 0
0 0 1 1 a
0 1 0 1 a
0 1 1 2 2a
1 0 0 -2 -2a
1 0 1 -1 -a
1 1 0 -1 -a
1 1 1 0 0

method decreases the power consumption. The average power reduction in

8-bit wordlength reduction by the truncation method is 56%. The right-shift

method shows little or no power reduction due to the sign extension. The

extended sign bits are added to the input whenever a right shift occurs. These

bits affect the switching activity. Therefore, the signed right-shift method is

not recommended for low-power Wallace multipliers.

Power estimates for a 16-bit radix-4 modified Booth multiplier are

shown in Figure 4.7. A power of 0.52 mW is consumed with 16-bit operands

in the Booth multiplier. As the data wordlength is reduced by either the

truncation method or the signed right-shift method, the average power con-

sumption decreases. The average power consumption for multipliers with 8-bit

operands implemented by the signed right-shift and the truncation methods
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Figure 4.6: Dynamic power consumption in 16-bit × 16-bit Wallace multiplier
(1MHz)

are decreased by 25% and 31%, respectively.

The power consumption for the Wallace multiplier as shown in Figure

4.6 shows a trend that matches the expectations from Figure 4.3. The amount

of switching is not changed in signed right-shift input, but it is changed in

truncated input as the effective input wordlength changes. However, in the

Booth multiplier, the power consumption of the signed right-shift input as

shown in Figure 4.7 is changed as the input effective wordlength changes.

The average power consumption is also estimated when operands have

unequal sizes. One of the operands is reduced with the truncation method,

while the other operand is fixed at 16 bits. The first and the second element

in the parentheses in Figure 4.6 and Figure 4.7 represent two multiplicands in
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Figure 4.7: Dynamic power consumption in 16-bit × 16-bit Radix-4 modified
Booth multiplier (1MHz)

multiplication. When operands are swapped, such as (A by X) to (X by A),

the power consumption shows different results. For the Wallace multiplier,

there is a small difference, but the Booth multiplier has a large difference

because of its asymmetric structure. The first and the second operand in the

Booth multiplier represent a recoded input, X, and a non-recoded input, A,

respectively, as shown in Fig. 4.5. The result shows that when the non-recoded

level of input precision is reduced, the average power decreases by 13% more

than when the recoded input is reduced for an 8-bit wordlength reduction.

The reason is that the non-recoded input, which is routed to multiplexers and

to adder/subtracter logic, affects more power consumption than the recoded

input. Therefore, in the Booth multiplier, data wordlength reduction in the

non-recoded operand achieves more power reduction than that in the recoded
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operand.

4.7 Summary

Two kinds of input data wordlength reduction methods in multipliers

have been examined and analyzed for low power consumption. A truncation

method with 8 bits reduces power consumption by 56% in a 16-bit Wallace

multiplier and 31% in a 16-bit radix-4 modified Booth multiplier. A signed

right shift method exhibits no power reduction in the Wallace multiplier and

25% reduction in the Booth multiplier. When the operands have different

sizes, the multipliers also show power reduction. In particular, the non-recoded

operand in the Booth multiplier is 13% more sensitive in power consumption

than the recoded multiplicand. This difference can be exploited in a low-power

digital filter design with low-precision coefficients.
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Chapter 5

Automating Transformation to Fixed Point in

Software

5.1 Introduction

Realization of digital signal processing algorithms with the fixed-point

data type provides many benefits, such as savings in power and area. Typically,

however, the algorithms are developed with the floating-point data type and

later transformed to the fixed-point data type with tradeoffs in signal precision

and complexity. Since the transformation process is time consuming and error

prone, many methods have been proposed and developed to automate the

fixed-point transformation [3, 4, 11,13,15,25].

Fixed-point transformation consists of fixed-point conversion and word-

length optimization. Fixed-point conversion is a process of converting floating-

point programs to fixed-point programs. During the conversion, floating-point

data type is changed into the fixed-point data type, and floating-point arith-

metic operations are modified to fixed-point arithmetic operations.

Digital signal processors, in which wordlengths have already been given,

require fixed-point conversion followed by scaling to prevent the overflow and

underflow of signals. Wordlength optimization is required only when the given
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wordlength is too short to satisfy the desired performance or to reduce power

consumption, as explained in Chapter 4.

For the customized IC or FPGA, wordlengths of digital systems can be

chosen to any number of widths with tradeoffs in objectives. Shorter width

usually achieves savings in area and power, while signal distortion is higher.

Wordlength can be optimized by optimization algorithms [2,11–13,15,25] and

those algorithms can also automate the optimization process.

Most of the algorithms minimize hardware area by satisfying error spec-

ifications. Sometimes, designers make tradeoffs between error specifications

and hardware area instead of fixing one objective. This dissertation proposes

multi-objective wordlength optimization, which optimizes more than one ob-

jective at the same time. Furthermore, an environment for automating fixed-

point transformation is proposed and demonstrated with a case study.

5.2 Related Work

5.2.1 Fixed-Point Simulation Environment

Many methods have been developed to model fixed-point systems. TI

developed a fixed-point data type in the C++ class to develop fixed-point DSP

algorithms [96]. In [3,97], a fixed-point simulation environment is implemented

for C and C++ at Seoul National University. By modifying variable declara-

tions of the floating-point code and overloading operators in the gFix class,

the floating-point data type is converted to the fixed-point data type. A range

estimation utility, which estimates statistical data range, is also developed.
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In [1], annotation and interpolation techniques to convert the floating-

point data type to fixed-point data type with an analytical range estimation are

employed. A commercial tool, the CoCentric Fixed-point Designer, proposed

by Synopsys, is based mainly on the technology developed in the FRIDGE

project [18].

There are many commercial tools for fixed-point simulation environ-

ments. The Hardware Design System (HDS) developed by CoWare [5] provides

library, which enables the definition of the design at the hardware implementa-

tion level. The Fixed-Point Toolbox in MATLAB and the Fixed-Point Block-

set in Simulink [17, 98] were developed by MathWorks. AccelChip [99, 100]

released an automatic fixed-point simulation environment.

In addition, code conversion tools for DSP have been developed [101,

102]. In [101], for instance, an integer code generator based on the FRIDGE

environment is developed.

5.2.2 Wordlength Optimization

Sung and Kum [2] developed a simulation-based wordlength optimiza-

tion algorithm. Optimum wordlengths are searched from a minimum word-

length state by increasing wordlengths with priority on a hardware block hav-

ing the lowest hardware cost.

In [12], an area model and a noise model are proposed. For an objective

in optimization, area-based objective functions and error models are used. A

mixed integer linear programming (MILP) model and heuristic search methods
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are employed to solve the wordlength optimization problems.

Shi and Brodersen [13] use simulation-based methods to evaluate vari-

ous sensitivities. Simulation results are used to develop a model of the system

that is used in the optimization. The Mosek optimizer, which handles single

objective optimization, is used as a search engine.

In this dissertation, I propose an environment for automated floating-

point-to-fixed-point transformation that includes a fixed-point conversion and

wordlength optimization.

5.3 Automating Transformation from Floating Point to
Fixed Point

As shown in Fig. 5.1, the transformation from floating point to fixed

point has three phases: code generation, range estimation, and wordlength op-

timization. A code generator converts floating-point programs to fixed-point

programs that handle fixed-point data types and arithmetic. The code gen-

erator also creates other auxiliary programs for an automatic transformation

environment. A range estimator finds range information in the fixed-point

system to prevent overflow and underflow. Wordlength optimization finds

the optimum wordlength according to objectives such as signal distortion and

hardware complexity.
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Figure 5.1: Three phases in automating transformation from floating point to
fixed point

5.3.1 Code Generation

The first process in the automating transformation to fixed point is

code generation. A given floating-point program shown in Fig 5.2 (a), is

converted to a fixed-point program, which can handle variable wordlengths,

by a code generator after analyzing the given floating-point program. The

variable wordlength can be realized by a parameterized input, as shown in

Fig. 5.2 (b).

The fi is one of the functions in the Fixed-Point Toolbox in MATLAB

to define a fixed-point data type [17]. Each fixed-point variable is defined

via an input parameter and number type instead of constants. This input

parameter is controlled by wordlength optimization programs.

The code generator also creates several programs for a fixed-point trans-

formation environment, as shown in Fig. 5.3. The top program generated by

a code generator plays a role as headquarters in the transformation to fixed-
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Function c = adder(a, b)

c = 0;

c = a + b;

(a) Floating point program for adder

Function [c] = adder_fx(a, b, numtype, mathtype)

c = 0;

a = fi (a, numtype.a, mathtype.a);

b = fi (b, numtype.b, mathtype.b);

c = fi (c, numtype.c, mathtype.c);

c(:) = a + b;

(b) Converted fixed-point program for adder (only the core code is shown)

Figure 5.2: Conversion to fixed point by a code generator

point. It establishes an environment for a range estimation and optimum

wordlength search according to configurations that can be modified by de-

signers. The top program mainly executes range estimations and wordlength

optimizations.

The optimum wordlength depends on the input signal properties. The

input signal is passed by the top code, search engine, and objective code. The

top code calls a search engine, which explores the wordlength space to find the

optimum wordlength. The genetic algorithm can be used as a search engine

for multi-objective optimization.

The objective code collects objective values according to wordlength

states and input signal. One of objectives can be a signal error, which is the

difference between the floating-point output and fixed-point output. Complex-

ity, power consumption, or timing information can be used as a objective.
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Figure 5.3: Automated transformation environment

5.3.2 Range Estimation

Range information is used to determine integer wordlength in order to

prevent overflow and underflow. A signal range can be estimated by two meth-

ods. One is a simulation-based method and the other is an analytical method.

A simulation-based method monitors the signal range of variables and finds a

maximum value and a minimum value. An analytical method calculates signal

ranges by using a range-propagation property through operations. Simulation

is not necessary in the analytical method. However, the calculated result from

an analytical method is conservative, and wordlength could grow infinitely in

feedback systems. A simulation-based method is useful for complicated sys-

tems, including loops; however, it needs time for the simulation. Both methods

can be used selectively. The simulation-based method can be used in feedback

parts, and the analytical method can be used in other parts.
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5.3.3 Optimum Wordlength Search

Optimum wordlength can be found with wordlength optimization algo-

rithms that have search algorithms, such as a complete search, or sequential

search, as described in Chapter 2. One of the more powerful search engines is

the genetic and evolutionary search engine. The genetic search engine handles

multi-objectives and finds a Pareto front, although the computation complex-

ity of this algorithm is very high.

The search engine generates wordlength candidates, which the evalu-

ation function then evaluates. The information of the objective values could

be used to generate the next candidates. For the evaluation, the error value

or difference value between the floating-point programs and fixed-point pro-

grams can be obtained by an analytical or statistical approach. The analytical

approach models the error and estimates the error at each system output. In

the statistical approach, simulation is used to estimate the error.

Cost value can be obtained by modeling the fixed-point systems. Mod-

eling the exact implementation scheme used would be specific to the vendor.

Area models in [12,103] are used for complexity estimation.

5.4 Case Study

A multiplier and accumulator (MAC) is commonly used in digital signal

processing such as filtering. Floating-point programs can be converted to fixed-

point programs by a code generator. One of the options in conversion is that
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Function acc = mac(in);

acc = 0; % fx

coef = 0.1; % fx

for i= 1:length(in)

t1 = in(i); % fx

t2 = t1 * coef; % fx

acc = acc + t2;

end

Figure 5.4: Example of MAC floating-point program

all variables and arithmetic units are converted to fixed-point representations.

The other option is that the designated variables, which are indicated by a

symbol, are converted. For this case study, the second option is developed.

Fig. 5.4 shows an example of the MAC program in floating point MATLAB.

The fx in the comments is a known symbol directing a code generator to

change floating-point variables into fixed-point variables.

The converted fixed-point code is shown in Fig.5.5. First, the function

name is changed by appending fx, and two input parameters, numtype and

fimathtype, and one output parameter are inserted in the first line. The vari-

able, numtype, has wordlength information regarding variables. The variable

fimathtype has a fixed-point arithmetic property. The output parameter is

used for range information.

An initialization code is also inserted. The designated variables can

be initialized according to the transformation phase. In the range estima-
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tion phase, wordlengths are assigned to a high precision. In the other phase,

given wordlengths are assigned to each variable in fixed-point data type. For

example, the variable acc is assigned to fixed-point data type according to

information in the numtype.acc variable during the other phase. At the end

of the converted code, the fxlog function returns the range of each variable.

In the assignment, fixed-point variables have parentheses with the value

1. In MATLAB, this method can be used to transfer the value of the right-side

part to the left-side part without changing the data type.

A code generator also creates a cost function, a objective function, and

a top function. During parsing, the arithmetic relationship in the fixed-point

data type is stored to the file cost. MAC arithmetic information is shown in

Fig. 5.6. This file is called to obtain cost information in objective functions.

The cost of the multiplier and the adder is predefined at each function.

A multi-objective function generated by the code generator is shown

in Fig. 5.7. There are two objectives in this code: signal distortion and

cost. This objective function calls a floating-point code and a fixed-point code

with wordlength for signal distortion information. The cost function is called

by this function to obtain cost information. The objective values according

to the input wordlength state are returned to the objective function, which

is called a search engine. Any search algorithm can be used as a search en-

gine; however, multi-objective optimization requires an engine that can handle

multi-objectives.
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function [acc, logrep] = mac_fx(in, numtype, fimathtype)

fipref(’LoggingMode’,’On’);

if nargin < 2, numtype = gen_numerictype_init; end

if nargin < 3, fimathtype = gen_fimathtype_init; end

acc = [];

coef = [];

t1 = [];

t2 = [];

if ~isstruct(numtype)

% For range estimation

acc = fi(acc, numtype, fimathtype );

coef = fi(coef, numtype, fimathtype );

t1 = fi(t1, numtype, fimathtype );

t2 = fi(t2, numtype, fimathtype );

else

acc = fi(acc, numtype.acc, fimathtype);

coef = fi(coef, numtype.coef, fimathtype);

t1 = fi(t1, numtype.t1, fimathtype);

t2 = fi(t2, numtype.t2, fimathtype);

end

acc(1) = 0 ; % fx

coef(1) = 0.1 ; % fx

for i= 1:length(in)

t1(1) = in(i) ; % fx

t2(1) = t1 * coef; % fx

acc(1) = acc + t2; %

end

logrep = fxlog(acc,coef,t1,t2);

Figure 5.5: Automatically converted fixed-point code for MAC
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function cost = mac_cost(numtype)

% Automatically generated by fxconv.m

% cost_xxx(In1, In2, Out)

cost = 0;

cost = cost + cost_mul(numtype.t1.WordLength, ...

numtype.coef.WordLength, numtype.t2.WordLength);

cost = cost + cost_add(numtype.acc.WordLength, ...

numtype.t2.WordLength, numtype.acc.WordLength);

Figure 5.6: Generated MAC cost function

A multi-objective genetic algorithm can handle multi-objective prob-

lems. A genetic and evolutionary algorithm toolbox (GEATbx) [104] is em-

ployed as a search engine in the case study. This search engine calls a given

objective function to search the Pareto optimal set.

The top-level file calls the search engine and calculates the Pareto front.

The top file for MAC is shown in Fig. 5.8. This file is also created by a code

generator. Maximum and minimum wordlengths are copied from a general

configuration file, which is called config.m. The configuration for the search

engine is also copied from a genetic algorithm configuration file, which is called

configgea.m.

There are three phases in the top file. The first phase is range esti-

mation, which finds the proper range information at each fixed-point variable.

The second phase is the searching phase, in which optimum wordlengths are

searched. The third phase is analysis, in which the Pareto front is drawn and

stored.

94



function ObjVal = mac_obj(Chrom, logrep, in)

% This file was automatically generated by gen_obj

% Length of Chrom

[Nind, Nvar] = size(Chrom);

for i = 1:Nind

vec_wl = Chrom(i,:);

% Get numeric type according to range information and default

wl_vec

numtype = gen_numerictype(logrep, vec_wl);

% Set fimath type

fimathtype = gen_fimathtype;

% excute with given wordlength

out_fx = feval(’mac_fx’, in, numtype, fimathtype);

out_fl = feval(’mac’, in);

% Object value

rms = (mean((double(out_fx)-out_fl).^2)).^0.5;

cost = feval(’mac_cost’, numtype);

ObjVal(i,:) = [rms cost];

end

Figure 5.7: Generated MAC objective function
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function [acc, pareto_fr] = mac_top(in);

MAX_WL = 15;

MIN_WL = 1;

[acc, logrep] = feval(’mac_fx’, in);

len_vec = length(logrep);

vec_min_wl = ones(1,len_vec) * MIN_WL;

vec_max_wl = ones(1,len_vec) * MAX_WL;

GeaOpt = tbx3int;

GeaOpt = geaoptset(GeaOpt, ’Selection.RankingMultiobj’,15);

GeaOpt = geaoptset(GeaOpt, ’Selection.Pressure’, 1.3, ...

’Selection.RankingMethod’, 1);

GeaOpt = geaoptset(GeaOpt, ’Termination.MaxGenerations’, 25, ...

’Termination.Method’, 1);

objfun = ’mac_obj’;

VLUB = [vec_min_wl; vec_max_wl];

[xnew, GeaOpt] = geamain2(objfun, GeaOpt, VLUB, [], logrep, in);

ObjV = feval(objfun, xnew, logrep, in);

RankOpt = [GeaOpt.Selection.Pressure; GeaOpt.Selection.RankingMethod; ...

GeaOpt.Selection.RankingMultiobj]’;

[FitnV, RankMOV] = ranking(ObjV, RankOpt, 1,

GeaOpt.System.ObjFunGoals);

plotmop(xnew, ObjV, RankMOV, ’Best individuals at end of optimization’);

NonDomInd = xnew(RankMOV==0,:);

NonDomIndObj = ObjV(RankMOV==0,:);

NonDom = [NonDomIndObj NonDomInd];

pareto_fr = sortrows(NonDom)

save mac_result pareto_fr xnew ObjV RankMOV;

Figure 5.8: Generated MAC top file
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> filename = ’mac.m’;

% Generate Fixed-point file & Cost function

> fxconv(filename);

% Generate Object file

> gen_obj(filename);

% Generate block top file

> gen_top(filename);

Figure 5.9: Main batch file for code generation

The above mentioned files can be generated by the commands, which

can be used by a batch file, as shown in Fig. 5.9.

The generated top file can be executed with any input data as

> in = rand(1,10)

> mac_top(in)

Then, the Pareto front is searched and drawn, as in Fig. 3.8 and Fig. 3.7 in

Section 3.5.

5.5 Summary

This chapter presents techniques for the automating transformation

from floating point to fixed point in software. This software provides an en-

vironment to transform floating-point programs to fixed-point programs for

digital signal processing algorithms. Fixed-point conversion and wordlength
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optimization are executed in this environment. A genetic algorithm is em-

ployed to handle multi-objective optimization. The automating transforma-

tion software is available at

http://www.ece.utexas.edu/˜bevans/projects/wordlength/
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Chapter 6

Conclusion

6.1 Summary

This dissertation has examined efficient methods for transformation

from floating point to fixed point for implementing digital signal processing

algorithms in fixed-point hardware, which offers lower cost and lower power

consumption.

Several search methods to find the optimum wordlength in the trans-

formation are compared. Table 6.1, which summarizes the advantages and

disadvantages of the search algorithms, shows that the complete method and

genetic methods have more advantages than the other methods. However,

the complete search method is impractical and the sequential and preplanned

methods require less iteration than the other methods. However, those meth-

ods are not able to handle multiple objectives. The CDM search can handle

multiple objectives with a weighted sum method. Overall, however, the ge-

netic algorithms with the Pareto ranking approach have more advantages than

the other methods.

Wordlength search algorithms utilizing genetic and evolutionary algo-

rithms can optimize the signal quality vs. implementation complexity trade-
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Table 6.1: Advantages/disadvantages of wordlength search algorithms
Advantages Disadvantages
1. Global optimum 1. Local optimum
2. Pareto ranking 2. Weights in objectives
3. Handle multi-objectives 3. Single objective
4. Amenable to parallelism 4. Limited parallelism
5. Low algorithm complexity 5. High algorithm complexity
6. Fewer iterations 6. More iterations

7. Impractical

Methods 1 2 3 4 5 6 1 2 3 4 5 6 7
Advantages Disadvantages

Complete Y Y Y Y Y Y
Exhaustive Y Y Y Y Y
Sequential Y Y Y Y Y
Preplanned Y Y Y Y Y

Genetic(Weighted) Y Y Y Y Y
Proposed methods

CDM Y Y Y Y Y Y
Genetic(Pareto) Y Y Y Y Y
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offs. Alternatively, wordlength search algorithms utilizing gradient informa-

tion can provide faster ways to find data wordlengths, but they become stalled

in local optima.

Based on wordlength design case studies for a wireless communication

demodulator, the speed improvement from adding sensitivity information is

by a factor of four. In the same case studies, the local optimum wordlength

searched by the proposed method also yields 30% lower implementation costs.

Wordlength reduction methods of signed right shift and truncation

show a reduction in power consumption. The expected values of the number

of gates that switch during multiplication of the inputs for the two methods

are mathematically derived. The two methods are applied to a 16-bit radix-4

modified Booth multiplier and a 16-bit Wallace multiplier. The truncation

method with 8-bit operands reduces the power consumption by 56% in the

Wallace multiplier and 31% in the Booth multiplier. The signed right-shift

method shows 25% power reduction in the Booth multiplier, but no power

reduction in the Wallace multiplier.

A fully automated method for transforming floating point to fixed point

in software is developed. This software provides an environment for trans-

forming floating-point programs into fixed-point programs in digital signal

processing algorithms. Automated conversion to fixed-point and wordlength

optimization are executed in the proposed environment. This environment

can employ genetic algorithms to handle multi-objective optimization. The

automating transformation software from floating point to fixed point is avail-

101



able at

http://www.ece.utexas.edu/˜bevans/projects/wordlength/

6.2 Future Work

There are many ways in which the work presented in this dissertation

could be expanded to develop new search methods and low-power consumption

techniques. In this section some of the possibilities will be expanded upon.

6.2.1 Advanced Wordlength Search Algorithms

Hybrid wordlength optimization: The search methods used throughout

this dissertation have their own strong points and weak points. The various

search methods could be used together to compensate for their disadvantages.

The genetic algorithm requires considerable running time, but it is not trapped

in local optima. Gradient-based search algorithms take less running time,

but they do become trapped in local optima. One way to combine the two

approaches follows. The first step is use a gradient-based method until it

converges to a solution. The second step is to use the trajectory of feasible

solutions obtained by the gradient-based search (either with or without the

initialization phase solutions included) as the initial generation for the genetic

algorithm. The third and final step is to run the genetic algorithm with a

high mutation rate to create a genetically diverse population. The insight

in taking this approach comes from Fig. 3.9, in which the gradient-based

search methods find a solution comparable to genetic algorithms but with two
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orders of magnitude fewer system simulations. Another way to combine the

two approaches is to run a few generations of the genetic algorithm, and then

run the gradient-based search in parallel on each solution obtained from the

genetic algorithm. This is probably the less promising of the two ways to

combine the methods.

Dynamic wordlength bounds: During wordlength searching process, the

bounds of wordlength are fixed to a lower bound and an upper bound. In

arithmetic operations, the output bound can be changed according to the in-

put wordlength bound. The upper bound of the wordlength at the multiplier

output is the sum of the upper bounds at the multiplier inputs. Thus, the

bound at input or output can be dynamically changed according to the word-

length bound at input or output. This approach could reduce the running

time due to the reduced search space.

Variable reduction: The running time in the wordlength search algorithms

is proportional to the number of variables. Given that all variables in a

floating-point program are to be converted to fixed-point variables, the opti-

mum wordlength of each variable is searched. Trivial variables can be removed

from the list of wordlength optimization for greater speed. One variable is

sufficient in the delay block, which has input and output variables. The word-

length output of the adder can be removed from the list since the maximum

wordlength at output is at most one more than the input wordlength.
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Adaptive step size: The step size of update directions in gradient-based

search algorithms is an integer value. In this dissertation, the value 1 is used

for the integer step size. If the step size is larger than 1, wordlength set could

reach a neighbor of the optimum. After that, the step size of value 1 can be

used for refinement. This approach can reduce running time.

6.2.2 Further Analysis on Search Algorithms

Analysis in GA with different genetic parameters: Genetic algorithms

mimic the process of plant and animal evolution. There are many options to

realizing a genetic algorithm. The gene can be encoded as a real, integer,

or binary number. Since wordlength is expressed in an integer number, in

this dissertation, an integer encoding method is employed. Thus, any number

within bounds is selected during generation. If the binary encoding method is

used, the genetic operation could be refined and results would be different. A

comparison of the different options in GA would provide valuable information.

It is worthy of comparing different options in GA.

Weighted sum approach in GA: Multi-objective optimizations have more

than one objective. Weighted sum approaches assign weights on each objec-

tive to derive a single objective. Pareto ranking approaches assign rank on

each candidate by calculating the Pareto rank. In this dissertation, the Pareto

ranking approach is employed because Rohling [46] shows many disadvantages

in the weighted-sum approach. Research is needed to demonstrate the per-
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formance degradation of the weighted-sum approach compared to the Pareto

ranking approach in wordlength optimization.

Comparison with other algorithms: Simulated annealing (SA) and ge-

netic algorithms (GA) are two stochastic methods currently in wide used for

difficult optmization problems. The GA is used in dissertation to optimize

wordlength because of its simple implementation procedure. Some papers

show that a GA can outperform a SA for design in some applications [105,106].

However, it would be useful for future research to consider simulated annealing

algorithm in wordlength optimization area.

6.2.3 Low Power Consumption

Low power consumption at the system level: Power consumption can

be reduced by decreasing wordlength in the system, although hardware ar-

chitectures are given. Chapter 4 shows the wordlength reduction techniques

and estimates the power savings on multiplier units. Wordlength reduction

can also reduce power consumption within other components such as memory.

Powell and Chau show a model for estimating power dissipation in a class of

DSP VLSI chips according to wordlength [107]. Thus, it may be useful for fu-

ture research to explicitly consider power reduction with wordlength reduction

at the system level.

Low-power in floating-point hardware: In some applications, the opti-

mum wordlength in floating point can reduce power consumption by 66% [108].
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This dissertation shows that power consumption in multipliers can be reduced

by using wordlength reduction techniques. The multiplier would be a ma-

jor power-consuming unit; however, units for addition and normalization in

floating-point hardware could also consume considerable power. Thus, the

analysis or estimation of power reduction in floating-point hardware could

result in low-power consumption by wordlength reduction techniques.

Distribution of power consumption Average power consumption is es-

timated by using a Xilinx Xpower tool in this dissertation. Small multiplica-

tions on large Wallce and Booth multipliers could have different distribution

of power consumption. Distribution information of power consumption could

be helpful for algorithm developments to reduce power consumption.

6.2.4 Electronic Design Automation Software

Enhanced code generator: A simple parser that interprets one arithmetic

operation at each line has been developed to implement the code generator in

this dissertation. Multiple operations do not work on current parsers. Thus,

a given floating-point program should have at most one arithmetic operation

for each line. Code generator could be enhanced by adding a decomposition

of multiple arithmetic operations.

A parser can search a given commented symbol preceded with floating-

point variables in floating-point programs and convert the variables to a fixed-

point data type. Search engines search the optimum wordlength of the con-
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verted fixed-point variables; however, designers sometime want to set con-

straints, such as specific wordlength, and rounding methods. The code gener-

ator used in this dissertation could not handle fixed-point constraints in vari-

ables. Enhancements are necessary for generator to handle such constraints.

Range estimation: Range can be estimated by analytical or statistical ap-

proaches. An analytical approach offers faster results by analyzing relationship

of operations in the dataflow. However, the estimated range results from an

analytical approach are conservative. Furthermore, the estimated range in

a feedback loop could grow infinitely. The statistical approach offers robust

range estimation at the expense of long simulation times. Thus, the two ap-

proaches could be combined. The statistical approach could be used in a

feedback loop part, and an analytical approach could be used in other parts.

Dataflow approach: In this dissertation, simulation-based approaches are

used. Range information has been monitored at each variable, and propagated

quantization errors are measured at the output of systems. However, the range

information and the propagated error can be obtained by analyzing dataflow

graphs of systems. This approach could reduce time and reduce wordlength

variables.

6.2.5 Optimum DSP Algorithms

This dissertation takes an algorithm/system as is and quantifies the

wordlength of variables in terms of signal quality vs. implementation com-
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plexity. Thus, the algorithm/system is not changed. The algorithm/system

can also be optimized in terms of signal quality vs. implementation com-

plexity. Rearranging the algorithm/system in filters results in a better finite

wordlength effect [79, 109]. The SPIRAL project optimizes the digital signal

processing algorithm and automates software and hardware development [110].

SPIRAL is a generator of libraries for fast software implementation of signal

processing transforms. These libraries are adapted to the computing platform

and can be re-optimized as the hardware is upgraded or replaced [111]. The

next level of abstraction is to develop a system that simplifies, rearranges, and

expands the algorithm/system in search of a better tradeoff between signal

quality and implementation complexity.

6.2.6 Area Model

The area model of field programmable gate array (FPGA) [12] is used

in this dissertation. Adder, gain, and delay units are modeled in terms of

wordlength. Other units such as transcendental function computation can be

modeled by using series of arithmetic units. Transcendental signal generations

such as sine and cosine waveforms can be modeled by using difference equations

or lookup tables.

In conclusion, while this dissertation has made inroads into automating

transformation to fixed-point, there is a wide variety of search methods and

low power-consumption alternatives open to further study.
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