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Motivation and Goals

• Chromosomes store genetic information
• Chromosome images can indicate genetic disease,

cancer, radiation damage, etc.
• 325 clinical cytogenetic US labs perform over

250,000 diagnostic studies per year involving
chromosome analysis

• Research goals:
– Locate and classify each chromosome in an image
– Locate chromosome abnormalities
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Karyotyping

• 46 human chromosomes form 24 types
– 22 different pairs
– 2 sex chromosomes, X and Y

• Grouped and ordered by length except X and Y

Banding Patterns Karyotype
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Chromosome Abnormalities

• Abnormal number
– Turner’s Syndrome (1 X, no Y chromosome)
– Down’s Syndrome (3 of type 21)

• Translocations: Chronic myelogenous leukemia
(type 9 and type 22)

• Deletions of genetic material: William’s
Syndrome (gene missing in type 7)

• Research goals:
– Locate and classify each chromosome in an image
– Locate chromosome abnormalities
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Denver Classifications

• Florescence microscopy

• Single dye, even stain

• Features
– Length (2-10µm)

– Relative centromere
position

• Disadvantage: Only 7
distinguishable types[1960] centromere
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Banding Patterns

• Single dye, banding
pattern staining[1969]

• Features
– Length
– Relative centromere

position
– Banding pattern

• All 24 types distinguishable
• Greatly improved manual chromosome analysis
• Disadvantage: Computer analysis difficult
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Multi-spectral Chromosome
Imaging

• Multiplex Fluorescence In-
Situ Hybridization (M-FISH)
[1996]

• Five color dyes (fluorophores)
• Each human chromosome type

absorbs auniquecombination
of the dyes

• 32 (25) possible combinations
of dyes distinguish 24 human
chromosome types

Healthy Male



9

M-FISH Images

• Images of each dye obtained with appropriate
optical filter

• Each pixel a five dimensional vector
• Each vector element gives contribution of a dye

at pixel
• Chromosomal origin distinguishable at single

pixel (unless overlapping)
• Unnecessary to estimate length, relative

centromere position, or banding pattern
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M-FISH Images

• 6th dye (DAPI) binds to all chromosomes

DAPI Channel
6th Dye

M-FISH Image
5 Dyes
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Traditional Chromosome
Image Analysis

• Sequential: Segmentation then classification

• Segmentation
– Background/foreground

– Connected components

– Cluster: groups of touching chromosomes

– Cluster recognition/decomposition
• Touching chromosomes

• Overlapping chromosomes

• Classification
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Boundary

M-FISH Segmentation

• Multi-spectral data has more segmentation
information than boundary data alone

• Previous M-FISH methods
1. Segment with DAPI

(grayscale) channel

2. Classify multi-spectral
information

Raw Image
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Translocations

• Exchange of material between two types
• More visible in M-FISH images
• Appear as objects with two different colors

GrayscaleM-FISH
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Problem Formulation

• Ci: the set of all pixels belonging to classi

• Ai
n: the set of pixels belonging to thenth

chromosome of classi

• Ai
n ⊆ Ci

• Segmentation-classification
– Estimating each setAi

n

– Segmentation: Proposing a set of pixels,A´

– Classification: Proposing a class,i
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Proposed Approach

• Develop a measure of quality for segmentation-
classification possibilities
– Must be a function of both segmentation and

classification

– Measure is also a likelihood

• Choose a reasonable set of segmentation-
classification possibilities

• Maximize the measure over the set of possibilities
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Maximum Likelihood
Formulation

• Proposed likelihood function for single candidate
chromosome is a combination of several functions

• Lmulti(·,·): multi-spectral likelihood function
• Lsize(·,·): size likelihood function
• w(·): weighting function
• i: class (classification)
• A :́ candidate chromosome (segmentation)
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Contribution #2
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Multi-spectral Information

• Average of individual pixel probabilities

• Bayesian pixel classifier returns probabilities for
each class[Sampat, Castleman, and Bovik, 2002]

• Ci: set of all pixels of classi

• m: pixel

• x(m): multi-spectral image data at pixelm
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Size Information

• Likelihood function is a Gaussian that peaks at
mean size of classi

• The size means and variances of the classi areµi
andσi

• Ai
n: the set of pixels belonging to thenth

chromosome of class
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Weighting Function

• Measures the certainty of the likelihoods

• w(·) is the percentage of visible, or non-
overlapped, pixels in the candidate chromosome

• Forces more certain non-overlapped chromosomes
segments to be combined first

• Precludes possibility of a segment being left out of
the middle of a chromosome
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Estimating Area of Overlap

Overlapping
Chromosomes

15 X
X

Chromosome Ends

Border Pixels
(in black)

X
X

Overlapped area
estimated (in black)
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Weighting Function Example

• Yellow areas represent two possible
segmentations for a single chromosome

• The functionw(·) gives more weight to b

a) Incorrect Segmentation b) Correct Segmentation
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Segmentation Implementation

• Use multi-spectral information to determine
segmentation possibilities

• Strategy: Oversegment and merge segments
– Use pixel classification and post-processing to

determine initial segments

– Merge segments as long as the merging increases the
proposed likelihood function
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Example

Cluster to be decomposed
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Determining Initial Segments

Pixel
Classification

Majority
Filtering

Small Segment
Reclassification
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Merge Segments

0.37

0.05

0.41

Merged
Segments

0.03 0.05

0.00

0.57

0.10

Initial Likelihood
Values

12

15

22

Classification
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Aberration Scoring

• Aberration scoring: assigning a value to the
likelihood of abnormality

• Design of likelihood function has allowed for
straightforward aberration scoring
– Segments with low likelihood can be flagged as likely

abnormalities
– Low likelihood values also identify incorrect

segmentation and classification
– Likelihood values help direct user

Contribution #3
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Comparison

• Data: Advanced Digital Imaging Research
M-FISH Chromosome Image Dataset
– 200 M-FISH images

– Wide variety of images

– Many difficult images

– Includes hand segmented ground-truth images

– Freely available on web:http://www.adires.com

• Competition: Compare against user-guided
Cytovision grayscale segmentation software[2001]
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Segmentation Results

0.2%0.8%Singles
Oversegmented

44%34%Overlaps

58%77%Touches

Cytovision
(Grayscale)

Proposed
Method
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More Results

0.4%6%Singles

69%95%Clusters

CytovisionProposed
Method

Recognized
as Clusters

15%8.1%Misclassified

Only Pixel
Classification

Proposed
Method
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Aberration Scoring with
Proposed Method

FragmentsTranslocations

100%96%34%< 0.3 likelihood

100%49%4.9%< 0.1 likelihood

0.020.100.24Likelihood σσσσ
0.020.120.44Likelihood µµµµ

AbnormalitiesNormal
Chromosomes

V29 subset of ADIR dataset
15 images with 5 translocations each

(Cytovision does not perform aberration scoring)
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Error Detection with
Proposed Method

6.4%Correct Segments

48.6%Incorrect
Classification

52.6%Incorrect
Segmentation

49.1%Abnormal

< 0.1 likelihood
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Contributions

• Derived single, unified maximum likelihood
hypothesis test framework

• Decomposed chromosome clusters using M-FISH
multi-spectral data

• Combined segmentation and classification for
increased accuracy in both

• Demonstrated effective aberration scoring
• Implemented joint segmentation-classification

algorithm in C (2-3 minutes/image on 167MHz
Unix machine)
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Future Work

• Improvements in likelihood function
– Shape

– Number

• Pixel classification

• Overcome “greedy” algorithm difficulties

• Combine geometric, grayscale, and multi-spectral
information for complete algorithm


