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A downlink wireless system features a centralized basestation communicating to

a number of users physically scattered around the basestation. The purpose of re-

source allocation at the basestation is to intelligently allocate the limited resources,

e.g. total transmit power and available frequency bandwidth, among users to meet

users’ service requirements. Channel-aware adaptive resource allocation has been

shown to achieve higher system performance than static resource allocation, and is

becoming more critical in current and future wireless communication systems as the

user data rate requirements increase. Adaptive resource allocation in a multichan-

nel downlink system is more challenging because of the additional degree of freedom

for resources, but offers the potential to provide higher user data rates. Multiple

channels can be created in the frequency domain using multiple carrier frequen-

cies, a.k.a. multicarrier modulation (MCM), or in the spatial domain with multiple

transmit and receive antennas, a.k.a. multiple-input multiple-output (MIMO) sys-

tems. This dissertation aims to study the system performance, e.g. total throughput

and/or fairness, in multiuser multicarrier and multiuser MIMO systems with adap-

vii



tive resource allocation, as well as low complexity algorithms that are suitable for

cost-effective real-time implementations in practical systems.

The first contribution of this dissertation is a general framework for adap-

tive resource allocation in multiuser multicarrier systems that maximizes the total

throughput subject to fairness constraints to enforce arbitrary proportional data

rates among users. Whereas the global optimality is computationally intensive to

obtain, a low complexity algorithm that decouples the subchannel and power allo-

cation is proposed.

The second contribution concerns precoding using block diagonalization (BD)

for single-carrier downlink multiuser MIMO systems. The contribution is twofold.

First, it is shown that BD, as a practically realizable precoding technique, can

achieve a significant part of the sum capacity achieved by dirty paper coding (DPC),

which is optimal. Practical coding schemes that approach the DPC sum capacity,

however, are still largely unknown. Second, an upper bound on the ergodic sum

capacity gain of DPC over BD in Rayleigh fading channels is derived.

The third contribution concerns low-complexity BD precoding algorithms.

Due to the zero inter-user interference requirement imposed by BD, the maximum

number of simultaneously supportable users is limited. The brute-force search for

the optimal user set, however, is computationally prohibitive for systems with a

large number of users. The dissertation proposes two suboptimal user selection

algorithms for BD that have linear complexity in the number of users, yet achieve

total throughput close to the optimal.

A common characteristic of the resource allocations for multiuser multicar-

rier and multiuser MIMO systems is that the limited resources shall be allocated

among multiple users as well as multiple parallel subchannels. As MCM and MIMO

have been widely adopted in various standards, the research in this dissertation

contributes to a better understanding of the system performance, and bridges the

theory to practical implementations with the proposed low complexity algorithms.
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Chapter 1

Introduction

1.1 A Brief History of Cellular Systems

Powered by enabling technologies, such as advanced digital signal processing and

very large scale integrated circuits, wireless communication has been experiencing

an explosive growth in the last decades. Cellular systems are one of the most

successful wireless applications, having billions of subscribers. It owes its birth to

Bell Laboratories, where the cellular concept was conceived in the 1970s [52]. Due

to the fact that radio signal strength weakens with distance, the limited frequency

bandwidth can be spatially reused, rendering the possibility of wide coverage over

a large population.

The first generation of cellular systems in the United States was advanced

mobile phone systems (AMPS), which was deployed in 1980s. AMPS adopted analog

FM technology with frequency division multiple access (FDMA). A similar analog

cellular system, named The European Total Access Communication System (E-

TACS), was deployed in Europe. Soon the first generation of cellular systems reached

its capacity and was phased out by the second generation in the early 1990s. The

2G systems adopted digital technologies and provided much higher communication
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capacity at an even lower cost. Due to the debate on the spectrum access tech-

nologies, three major 2G standards were born, namely IS-136, IS-95 in the United

States and Global System for Mobile (GSM) in Europe. The 2G standards have

high data rate versions, e.g. General Packet Radio Service (GPRS) and Enhanced

Data rates for GSM Evolution (EDGE) for GSM, IS-136 high speed (IS-136HS)

for IS-136, and IS-95 high data rate (IS-95 HDR) for IS-95 [26]. These improved

2G cellular systems are generally referred to as 2.5G systems. The third and cur-

rent generation of cellular systems includes wideband code division multiple access

(WCDMA) and CDMA2000. The WCDMA frequency division duplex (FDD) and

time division duplex (TDD) standards have been adopted in Europe and China,

respectively, while CDMA2000 has been deployed in Korean and America. With

different spreading factors and modulation methods, WCDMA and CDMA2000 can

support transmission rate up to several mega-bits per second. The next generation

of wireless cellular systems is envisioned to be multicarrier-based for its efficient

bandwidth usage [20] [65] [83].

1.2 Spectrum Sharing Technologies

������ ������ ������ �����	


���
���������

�
��
�
�
�
�
�
�



��
�

������

Figure 1.1: TDMA and FDMA
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Wireless communication systems are essentially multiuser communication

systems. The limited spectrum resources are shared among multiple users for suc-

cessful communication. The typical spectrum sharing technologies include time

division multiple access (TDMA), frequency division multiple access (FDMA), code

division multiple access (CDMA), and spatial division multiple access (SDMA).
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Figure 1.2: CDMA and SDMA

TDMA divides the transmit time into a serial number of time slots. One user

is allowed to transmit in a time slot over the entire bandwidth. Similarly, FDMA

creates multiple subbands in the frequency domain. A user may be able to occupy a

subband throughout the whole transmission period. Fig. 1.1 shows the basic idea of

TDMA and FDMA. TDMA and FDMA were widely employed in earlier generations

of cellular systems.

CDMA, instead of separating users in either the time or frequency domain,

distinguishes users in the code domain. Each active user is allocated a specific

sequence, with which multiple users can enjoy the same bandwidth at the same

time without causing significant interference to each other. SDMA utilizes multiple

3



transmit and receive antennas to separate users in the spatial domain, also allowing

users to access the same bandwidth simultaneously. The basic idea of CDMA and

SDMA is shown in Fig. 1.2.

It is important to notice that those multiple access technologies are usually

used in combination. For example, WCDMA TDD employs CDMA with TDMA,

where the transmission time is divided into a number of time slots and within each

time slot, multiple users employ CDMA to access the whole bandwidth. Further,

FDMA is used in almost all cellular systems.

1.3 Resource Allocation in Wireless Communication Sys-

tems

In a downlink wireless system, a centralized basestation needs to communicate to

multiple users, with limited resources, e.g. total transmit power and available fre-

quency bandwidth. Given the freedom of separating users in the time, frequency,

code, or spatial domain, how the basestation allocates the resources among users is

critical to system performance. Earlier generations of wireless systems adopted sta-

tic resource allocations such as time or frequency division multiple access, where the

basestation takes turns to serve one user in a designated time slot or frequency band,

irrespective of the user channels. The wireless channel is, however, time-varying and

frequency selective. The channels experienced by different users are largely inde-

pendent because of users’ different locations. The basestation should allocate the

limited resources among users by taking the user channel conditions into consider-

ation and enhance the system performance. Further, adaptive resource allocation

in a multichannel downlink system is more challenging because of the additional

degree of freedom for resources. Multiple channels can be created in frequency do-

main using multiple carrier frequencies, a.k.a. multicarrier modulation (MCM) or in

spatial domain with multiple transmit and receive antennas, a.k.a. multiple-input

4



multiple-output (MIMO) systems. MCM and MIMO are two promising technolo-

gies that have been adopted in various standards. Adaptive resource allocation in

multiuser multichannel wireless systems has drawn significant attention recently.

1.3.1 Multicarrier Modulation

���������

	


�
�
�
�
�

�
�
�
���
�
�
�

�
�
�
�
�
�
�
�

����
�����
��������
	�������

Figure 1.3: Multicarrier Modulation

Multicarrier modulation efficiently utilizes the bandwidth to enable high

speed transmission for wireless [24] [65] and wireline [8] communication systems.

As the data rate requirements get higher and higher, the transmission bandwidth

increases significantly. Consequently, the wireless channel exhibits multipath prop-

erty in the time domain, or equivalently selectivity [61] in the frequency domain.

Successful transmission over a frequency selective channel is more challenging than

a narrowband frequency flat channel, as inter-symbol interference degrades the sys-

tem performance. Advanced signal processing techniques, such as equalization [30]

[85], have been proposed to combat the channel dispersion. Multicarrier modulation

divides the whole bandwidth into a number of parallel subchannels. As long as the
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number of subchannels is sufficiently large, the frequency response in each subchan-

nel is close to be flat, as shown in Fig. 1.3. Hence equalization per subchannel is

much easier to perform.
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Figure 1.4: OFDM Transceiver Block Diagram

An OFDM transceiver block diagram is shown in Fig. 1.4. The serial input

information bits are converted into a number of parallel streams. After quadra-

ture amplitude modulation (QAM), the QAM symbols are fed into an inverse fast

Fourier transform (IFFT) block. Parallel to serial conversion is performed subse-

quently to form an OFDM symbol in the time domain. The last ν IFFT samples are

copied to the front of an OFDM symbol as a cyclic prefix (CP). As long as the CP

length is greater than the wireless channel dispersion, only 1-tap frequency domain

equalization per subchannel is required to retrieve the transmitted data, because

the multi-path channel appears to be circular with CP. The rest of receiver blocks

essentially invert the operations at the transmitter.

Since OFDM creates multiple parallel subchannels, an OFDM based mul-

tiple access technology, namely multiuser OFDM or orthogonal frequency division

multiple access (OFDMA), has been proposed [47] [64] [96]. In a multiuser OFDM

system, multiple users may be scheduled for transmission on different subchannels

6
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Figure 1.5: Multiuer OFDM Block Diagram

within an OFDM symbol. Further, due to users’ different locations and their in-

dependent channel fading statistics, the subchannels can be allocated to the users

who have good subchannel gains. By exploiting the multiuser diversity, channel-

aware adaptive resource allocation outperforms the static resource allocation such

as TDMA or FDMA in terms of system throughput. Fig. 1.5 shows a multiuser

OFDM system.

Adaptive resource allocation in multiuser OFDM systems can be usually

formulated as an optimization problem, e.g. minimizing the total transmit power

with user data rate requirements [46] [96] or maximizing the total throughput with

a transmit power constraint [36] [48] [56] [72] [108]. The formulated optimization

problems are often very difficult to solve and low complexity algorithms have been

proposed. Recently, an optimal spectrum management (OSM) algorithm was pro-

posed in [10] in the context of Digital Subscriber Line (DSL) systems. DSL also em-

ploys a type of multicarrier modulation named Discrete Multi-Tone (DMT), which

is the wireline version of OFDM. Optimal spectrum management aims to maximize

a weighted sum capacity by optimally allocation the subchannel and power among

users. While the objective, i.e. the weighted sum capacity, is not concave or convex,

7



the algorithm in [10] converts the primal problem into its dual, which is much easier

to solve. The algorithm in [10] was further improved into low complexity algorithms

in [51] and [105].

Despite the huge amount of work on adaptive resource allocation in multiuser

OFDM systems, there still lacks a general optimization framework with which the

total throughput and fairness among user (in terms of data rate) can be balanced.

For example, although the total throughput can be maximized as in [36] [48], the

algorithms may allocate most of the resources to one user while leaving others little.

With the weighted sum capacity [10], the fairness issue can be addressed to a certain

extent by varying the weights in the objective function, but it is difficult to design

the weights so that the fairness can be specifically controlled. A fair multiuser

channel allocation algorithm based on Nash bargaining solutions and coalitions has

been proposed in [31]. The user data rates, however, cannot be guaranteed to

be proportional to each other with the algorithm in [31]. To that end, in this

dissertation, I propose an optimization problem to maximize the total throughput

while maintaining proportional user data rates exactly. Hence, the fairness among

users can be easily determined and designed by a set of parameters.

1.3.2 Multiple Antenna Systems

Multiple-input-multiple-output (MIMO) antenna communication systems have been

an intensive research area in the last decade. Equipped with multiple antennas at

the transmitter and receiver, MIMO systems fully utilize the spatial dimension to

improve the transmission reliability and/or the system throughput.

A point-to-point narrowband MIMO system is shown in Fig. 1.6. In contrast

to conventional single antenna systems, the wireless MIMO channel between the

communication pair can be represented as a matrix. In a rich-scattering environment

without line-of-sight, each element in the MIMO channel matrix can be modeled as

a complex Gaussian random variable, resulting from the Central Limit Theorem.

8
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Figure 1.6: A Point to Point MIMO System

This MIMO channel model, the Rayleigh MIMO fading channel, is widely adopted in

the literature for system performance evaluations. Other physical and non-physical

models can be found in [102].

Due to the time-varying nature of the wireless channel, the signal reception

is likely to be very poor when the channel is in deep fading. A common means to

combat channel fading is to employ diversity in the communication link. The idea

of using multiple receiver antennas to exploit the spatial diversity was proposed

decades ago [35]. With optimal combining of the received signals from multiple

antennas, the transmission reliability can be significantly improved. Further, with

the additional degree of freedom in the spatial domain, multi-antenna systems can

even suppress co-channel interference [63] [94]. Later, researchers found that if

multiple antennas are both equipped at the transmit and receiver, then a number

of parallel channels can be established to increase the spectral efficiency [22] [84]

[95]. It was proven in [84] that for point-to-point Rayleigh fading channels, the

9



MIMO channel capacity scales linearly with the minimum number of transmit and

receive antennas in high SNR regime. The results in [84] theoretically show the

potential of MIMO systems in spectral efficiency enhancement. With experimental

results, the researchers in Bell Laboratories showed that the V-BLAST (Vertical

Bell Laboratories Layered Space-Time) architecture [21] [25] can provide a spectral

efficiency of tens of bits per second per Hertz. In summary, MIMO technologies

provide the diversity and multiplexing opportunities to improve the communication

reliability and spectral efficiency [69]. A theoretical study on the tradeoff between

diversity and multiplexing of MIMO systems was presented in [110], and a practical

algorithm on the switching between diversity and multiplexing was proposed in [42].

Figure 1.7: A Downlink Multiuser MIMO System

In a downlink multiuser MIMO system, as shown in Fig. 1.7, a basestation

is communicating simultaneously to multiple users. Both the basestation and the

users are equipped with multiple antennas. The basestation needs to allocate the

limited transmit power among users such that an objective function, e.g. the sum
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capacity, can be achieved. From the information theory point of view, the downlink

multiuser MIMO system is named as the MIMO broadcast channel (BC). Although

the capacity results for point-to-point MIMO systems are well understood, only re-

cently has the capacity region of the multiuser MIMO Gaussian broadcast channels

been discovered. The MIMO BC capacity region is very difficult to obtain since the

channels are usually non-degraded. It was conjectured that the MIMO BC capacity

region is achieved with dirty paper coding (DPC) [17] and subsequently proven in

[93]. Several researchers [9] [88] [89] [103] have established the duality relationship

between the MIMO BC capacity region and the MIMO Multiple Access Channel

(MAC) capacity region. The sum capacity, which is defined as the maximum aggre-

gation of all users’ data rates, can be obtained by iterative water-filling algorithms

[40] [106].

Although the sum capacity of a Gaussian MIMO BC channel is achievable

with DPC, a practical coding scheme that approaches the DPC sum capacity is still

unavailable. Recently, significant efforts have been made, e.g. [2] [82] [107], in de-

signing implementable algorithms to achieve the DPC sum capacity. The proposed

algorithms, however, are typically too complicated for cost-effective implementa-

tions. An alternative linear precoding technique for downlink multiuser MIMO

systems, generally named Block Diagonalization (BD), was proposed in [14] [59]

[80] [99] . With BD, each user’s data is multiplied by a linear precoding matrix

before transmission. The precoding matrix for every user lies in the null space of all

other users’ channels. Consequently, if the channel matrices of all users are perfectly

known at the transmitter, then there is no interference at every receiver, rendering

a simple receiver structure. Hence, BD is a potentially realizable precoding method

for a MIMO broadcast channel.

Since the user signal covariance matrices of BD are generally not optimal

for the sum capacity, it deserves a thorough study on how good BD is relative to

the optimal DPC sum capacity. In this dissertation, I analytically compare BD
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to DPC, for a given set of channels and in Rayleigh fading channels. Further,

due to the zero inter-user interference requirement imposed by BD, the maximum

number of simultaneously supportable users is limited. I propose two low complexity

user selection algorithms with BD to avoid the computationally expensive complete

search for the optimal user set.

1.4 Nomenclature

AMPS Advanced Mobile Phone Systems

AWGN Additive White Gaussian Noise

BC Broadcast Channel

BD Block Diagonalization

BER Bit Error Rate

CDMA Code Division Multiple Access

CP Cyclic Prefix

CSI Channel State Information

DMT Discrete Multi-Tone

DPC Dirty Paper Coding

DSL Digital Subscriber Line

EDGE Enhanced Data rates for GSM Evolution

E-TACS European Total Access Communication System

FDD Frequency Division Duplex

FDMA Frequency Division Multiple Access

GPRS General Packet Radio Service

GSM Global System for Mobile

GSO Gram-Schmidt Orthogonalization

HDR High Data Rate

IFFT Inverse Fast Fourier Transform
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LAN Local Area Network

MA Margin Adaptive

MAC Multiple Access Channel

MCM Multicarrier Modulation

MIMO Multiple-input multiple-output

MISO Multiple-input single-output

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

OSM Optimal Spectrum Management

QAM Quadrature Amplitude Modulation

RA Rate Adaptive

RHS Right Hand Side

RxAS Receive Antenna Selection

SDMA Spatial Division Multiple Access

SNR Signal-to-noise Ratio

SVD Singular Value Decomposition

TDD Time Division Duplex

TDMA Time Division Multiple Access

V-BLAST Vertical Bell Laboratories Layered Space-Time

WCDMA Wideband Code Division Multiple Access

ZF Zero Forcing

1.5 Assumptions in the Dissertation

• Perfect channel station information of all users available at the basestation

User channel state information is crucial for exploiting multiuser diversity in

multiuser wireless communication systems. In this dissertation, I assume users
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perfectly estimate and feedback their channel information to the basestation.

The amount of feedback information increases the system overhead, especially

for multi-antenna systems as each user’s channel is represented by a matrix.

Limited feedback technique [13] [50] or channel prediction [71] [97] can be used

to reduced the amount of feedback overhead. The throughput of multiuser

systems with imperfect channel state information is still an intensive on-going

research area [38].

• Continuous Shannon channel capacity formula as user throughput measure

The Shannon capacity, which is a continuous function, is used as the user

throughput in this dissertation. In practical systems, user data rates assume

discrete values due to different modulation and coding schemes. The contin-

uous Shannon capacity formula, however, simplifies the analysis of adaptive

resource allocation and provides an upper bound on the achievable through-

put. A signal-to-noise ratio gap can be included in the Shannon capacity

formula to model the signal-to-noise ratio degradation [15] [16]. This gap is

widely used in digital subscriber line standards, e.g. [3] [4].

• Single cell environment

In this dissertation, only resource allocation in a single cell is considered.

Hence, other-cell interference is not modeled. For users at the cell edges,

other-cell interference is not negligible as it greatly impacts the user channel-

to-interference-plus-noise ratio. To schedule users in cell edges or in soft han-

dover, either basestation coordination or static frequency planning is required.

Several researchers have already discussed resource allocation in multi-cell en-

vironment or with inter-user interference, e.g. [104] [108]. Generally, resource

allocation in a multi-cell scenario is much more complicated than single cell.

The resource allocation algorithms discussed in this dissertation can be ap-

plied to users for whom other-cell interference does not dominate the amount
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of additive white Gaussian noise.

• Flat power spectrum density mask

The total transmit power available in a basestation is usually limited by a

power spectrum density mask. Due to the limited frequency bandwidth, mul-

tiple standards may co-exist in the same frequency range. To reduce the inter-

ference to other systems, the transmit power of every communication system

is usually limited by a power spectrum density mask defined in the standards.

In this dissertation, we assume a flat power spectrum density mask to simplify

the analysis. A non-flat power spectrum density mask can be incorporated

into problem formulations by adding different power constraints on different

subchannels.

• Infinitely backlogged user queues

The goal of resource allocation discussed in this dissertation is to maximize

the throughput given various constraints. The user queues are assumed to be

infinitely backlogged. In other words, when one user is scheduled for trans-

mission, he/she always has some information data to transmit. Although the

amount of user data is limited in practice, there is always a subset of users

who require an opportunity to communicate. Hence, the resource allocation

algorithms presented in this dissertation can be applied to those active users.

1.6 Contributions and Organization of the Dissertation

Chapter 2 presents the first contribution of this dissertation: an optimization frame-

work for adaptive resource allocation in multiuser OFDM systems. I impose a set of

proportional fairness constraints to assure that each user can achieve a required data

rate, as in a system with quality of service guarantees. With the proposed frame-

work, the sum capacity can be distributed fairly and flexibly among users. Since the
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optimal solution to the constrained fairness problem is extremely computationally

complex to obtain, I propose a low-complexity suboptimal algorithm that separates

subchannel allocation and power allocation. In the proposed algorithm, subchannel

allocation is first performed by assuming an equal power distribution. An optimal

power allocation algorithm then maximizes the sum capacity while maintaining pro-

portional fairness. The proposed algorithm is shown to achieve about 95% of the

optimal capacity in a two-user system, while reducing the complexity from expo-

nential to linear in the number of subchannels.

The second contribution, presented in Chapter 3, is on the sum capacity

of Block Diagonalization with and without receive antenna selection in downlink

multiuser MIMO systems. I analytically compare BD to dirty paper coding (DPC),

which is optimal for the sum capacity. For a set of given channels, it is shown that

1) if the user channels are orthogonal to each other, then BD achieves the same sum

capacity as DPC; 2) if the user channels lie in the same subspace, then the gain of

DPC over BD can be up-bounded by the minimum of the number of transmit and

receive antennas. I also study the ergodic sum capacity of BD with and without

receive antenna selection in a Rayleigh fading channel. Simulations show that BD

can achieve a significant part of the total throughput of DPC. An upper bound on

the ergodic sum capacity gain of DPC over BD is proposed for easy estimation of the

gap between the sum capacity of DPC and BD without receive antenna selection.

The third contribution of this dissertation includes two low complexity user

selection algorithms for BD in downlink multiuser MIMO systems, which are pre-

sented in Chapter 4. Due to the zero inter-user interference requirement, the number

of simultaneously supportable users with BD is limited. In a downlink MIMO system

with a large number of users, the basestation may select a subset of users to serve in

order to maximize the total throughput. The brute-force search for the optimal user

set, however, is computationally prohibitive. Both of the two proposed algorithms

aim to select a subset of users such that the total throughput is nearly maximized.
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The first user selection algorithm greedily maximizes the total throughput, whereas

the criterion of the second algorithm is based on the channel energy. I show that

both algorithms have linear complexity in the number of users and achieve around

95% of the total throughput of the complete search method in simulations.

In Chapter 5, I summarize the contributions of this dissertation. Future

research topics are also discussed in Chapter 5.
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Chapter 2

Adaptive Resource Allocation in

Multiuser OFDM Systems with

Proportional Rate Constraints

2.1 Introduction

Orthogonal frequency division multiplexing (OFDM) is a promising technique for

the next generation of wireless communication systems [62] [65]. OFDM divides the

available bandwidth into N orthogonal subchannels. By adding a cyclic prefix (CP)

to each OFDM symbol, the channel appears to be circular if the CP length is longer

than the channel length. Each subchannel thus can be modeled as a time-varying

gain plus additive white Gaussian noise (AWGN). Besides the improved immunity

to fast fading [8] brought by the multicarrier property of OFDM systems, multiple

access is also possible because the subchannels are orthogonal to each other.

Multiuser OFDM adds multiple access to OFDM by allowing a number of

users to share an OFDM symbol. Two classes of resource allocation schemes exist:

fixed resource allocation [47] and dynamic resource allocation [36] [45] [64] [96].
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Fixed resource allocation schemes, such as time division multiple access (TDMA)

and frequency division multiple access (FDMA), assign an independent dimension,

e.g. time slot or subchannel, to each user. A fixed resource allocation scheme is not

optimal since the scheme is fixed regardless of the current channel condition. On

the other hand, dynamic resource allocation allocates a dimension adaptively to the

users based on their channel gains. Due to the time-varying nature of the wireless

channel, dynamic resource allocation makes full use of multiuser diversity to achieve

higher performance.

Two classes of optimization techniques have been proposed in the dynamic

multiuser OFDM literature: margin adaptive (MA) [96] and rate adaptive (RA) [36],

[64]. The margin adaptive objective is to achieve the minimum overall transmit

power given the constraints on the users’ data rate or bit error rate (BER). The

rate adaptive objective is to maximize each user’s error-free capacity with a total

transmit power constraint. These optimization problems are nonlinear and hence

computationally intensive to solve. In [45], the nonlinear optimization problems

were transformed into a linear optimization problem with integer variables. The

optimal solution can be achieved by integer programming. However, even with

integer programming, the complexity increases exponentially with the number of

constraints and variables.

Two rate adaptive optimization problems have been proposed by researchers.

Recently, Jang and Lee proposed the rate maximization problem [36]. In [36], they

proved that the sum capacity is maximized when each subchannel is assigned to

the user with the best subchannel gain and power is then distributed by the water-

filling algorithm. However, fairness is not considered in [36]. When the path loss

differences among users are large, it is possible that the users with higher average

channel gains will be allocated most of the resources, i.e. subchannels and power,

for a significant portion of time. The users with lower average channel gains may be

unable to receive any data, since most of the time the subchannels will be assigned
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to users with higher channel gains. In [64], Rhee and Cioffi studied the max-min

problem, where by maximizing the worst user’s capacity, it is assured that all users

achieve a similar data rate. However, the max-min optimization problem can only

provide maximum fairness among the users. In most wireless systems of interest,

different users require different data rates, which may be accommodated by allowing

users to subscribe to different levels of service.

In [90], Viswanath, Tse, and Laroia discussed long-term proportional fairness

resource allocation with “dumb” antennas. They pointed out that in multiuser

systems, channel fading can be exploited as a source of randomness, i.e. multiuser

diversity. However, in some scenarios, due to the limited scatters in the environment

and slow channel variation, the dynamic range of channel fluctuation in the time

scale of interest may be small.

Proportionally fair resource allocation has been well-studied in the network-

ing literature, e.g. [43] [44] [55] [66] [81] [86] [111]. In networking literature, the

resource allocation is usually formulated as an optimization problem to maximize

a certain utility function given the constraints on resources [44]. A vector of rates

is said to be proportionally fair if it is feasible and the aggregate of proportional

changes between it and any other vector of feasible rates is non-positive [44].

In this chapter, I formulate a new optimization problem that balances the

tradeoff between capacity and fairness. The objective function is still the sum ca-

pacity, but proportional user data rates are assured by imposing a set of nonlinear

constraints into the optimization problem. In contrast to the definition of propor-

tional fairness in [44], which compares the aggregate of proportional changes of two

vectors of feasible rates, I incorporate a set of system parameters in the problem

formulation such that the ratio of the user data rates strictly follows the set of sys-

tem parameters after resource allocation. Hence the proportionality in this chapter

compares the user data rates to the set of system parameters instead of another

feasible set of user data rates as in the networking area. The set of system parame-
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ters can be determined in various ways, e.g. users’ service applications. Hence, by

varying the set of proportional parameters, different service privileges and pricing

can be achieved. Further, while large channel fluctuations are intentionally cre-

ated with “dumb” antennas for long-term proportional fairness resource allocation

in [90], the proposed algorithm in this chapter maintains proportional rates among

users for each channel realization, which ensures the rates of different users to be

proportional in any time scale of interest.

2.2 System Model
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Algorithm
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Figure 2.1: Multiuser OFDM System Block Diagram

A multiuser OFDM system is shown in Fig. 2.1. In the basestation, all chan-

nel information is sent to the subchannel and power allocation algorithm through

feedback channels from all mobile users. The resource allocation scheme made by

the algorithm is forwarded to the OFDM transmitter. The transmitter then selects
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different numbers of bits from different users to form an OFDM symbol. The re-

source allocation scheme is updated as fast as the channel information is collected.

In this chapter, perfect instantaneous channel information is assumed to be available

at the basestation and only the broadcast scenario is studied. It is also assumed

that the subchannel and bit allocation information is sent to each user by a separate

channel.

Throughout this chapter, it is assumed a total of K users in the system

sharing N subchannels, with total transmit power constraint Ptotal. The objective

is to optimize the subchannel and power allocation in order to achieve the highest

sum error-free capacity under the total power constraint. The equally weighted

sum capacity is adopted as the objective function, but the idea of proportional

fairness is introduced into the system by adding a set of nonlinear constraints. The

benefit of the proportional fairness is that the capacity ratios among users can

be explicitly controlled to meet each user’s target data rate, given sufficient total

available transmit power.

Mathematically, the optimization problem considered in this chapter is for-

mulated as

max
pk,n,ρk,n

K∑

k=1

N∑

n=1

ρk,n

N
log2

(
1 +

pk,nh2
k,n

N0
B
N

)
(2.1)

subject to
K∑

k=1

N∑
n=1

pk,n ≤ Ptotal

pk,n ≥ 0 for all k, n

ρk,n = {0, 1} for all k, n
K∑

k=1

ρk,n = 1 for all n

R1 : R2 : ... : RK = γ1 : γ2 : ... : γK

where K is the total number of users; N is the total number of subchannels; N0 is

the power spectral density of additive white Gaussian noise; B and Ptotal are the

total available bandwidth and power, respectively; pk,n is the power allocated for

22



user k in the subchannel n; hk,n is the channel gain for user k in subchannel n; ρk,n

can only be the value of either 1 or 0, indicating whether subchannel n is used by

user k or not. The fourth constraint shows that each subchannel can only be used

by one user. The capacity for user k, denoted as Rk, is defined as

Rk =
N∑

n=1

ρk,n

N
log2

(
1 +

pk,nh2
k,n

N0
B
N

)
. (2.2)

Finally, {γi}K
i=1 is a set of predetermined values which are used to ensure propor-

tional fairness among users.

The fairness index is defined as

F =

(
K∑

k=1

γk

)2

K
K∑

k=1

γ2
k

(2.3)

with the maximum value of 1 to be the greatest fairness case in which all users

would achieve the same data rate. When all γi terms are equal, the objective

function in (2.1) is similar to the objective function of the max-min problem [64],

since maximizing the sum capacity while making all Rk terms equal is equivalent to

maximizing the worst user’s capacity. Hence, [64] is a special case of the proposed

constrained-fairness problem.

2.3 Optimal Subchannel Allocation and Power Distrib-

ution

The optimization problem in(2.1) is generally very hard to solve. It involves both

continuous variables pk,n and binary variables ρk,n. Such an optimization problem

is called a mixed binary integer programming problem. Furthermore, the nonlinear

constraints in (2.1) increase the difficulty in finding the optimal solution because

the feasible set is not convex.
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In a system with K users and N subchannels, there are KN possible sub-

channel allocations, since it is assumed that no subchannel can be used by more than

one user. For a certain subchannel allocation, an optimal power distribution can be

used to maximize the sum capacity, while maintaining proportional fairness. The

optimal power distribution method is derived in the next section. The maximum

capacity over all KN subchannel allocation schemes is the global maximum and the

corresponding subchannel allocation and power distribution is the optimal resource

allocation scheme. However, it is prohibitive to find the global optimizer in terms

of computational complexity. A suboptimal algorithm is derived in this chapter to

reduce the complexity significantly while still delivering performance close to the

global optimum.

An alternative approach [36] [64] [96] to make the optimization problem in

(2.1) easier to solve is to relax the constraint that subchannels can only be used by

one user. Thus ρk,n is reinterpreted as the sharing factor of user k to subchannel n,

which can be any value on the half-open interval of (0, 1]. The optimization in (2.1)

can be transformed into

min
pk,n,ρk,n

−
K∑

k=1

N∑

n=1

ρk,n

N
log2

(
1 +

pk,nh2
k,n

ρk,nN0
B
N

)
(2.4)

subject to
K∑

k=1

N∑
n=1

pk,n ≤ Ptotal

pk,n ≥ 0 for all k, n

ρk,n ∈ (0, 1] for all k, n
K∑

k=1

ρk,n = 1 for all n

R1 : R2 : ... : RK = γ1 : γ2 : ... : γK .

That is, the original maximization problem is transformed into a minimization prob-

lem. In the third constraint in (2.4), ρk,n is not allowed to be zero since the objective

function is not defined for ρk,n = 0. However, when ρk,n is arbitrarily close to 0,
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ρk,n

N log2

(
1 +

pk,nh2
k,n

ρk,nN0
B
N

)
also approaches 0. Thus, the nature of the objective func-

tion remains unchanged by excluding the case ρk,n = 0.

A desirable property of the objective function in (2.4) is that it is convex on

the set defined by the first two constraints. The convexity is shown in Appendix

A. However, the nonlinear equality constraints make the feasible set non-convex.

In general, such optimization problems require linearization of the nonlinear con-

straints. The linearization procedure may lead the solution slightly off the feasible

set defined by the nonlinear constraints. There is always a tradeoff between satis-

faction of the constraints and improvement of the objective. Furthermore, it is still

computationally complex to find the optimal solution. For these reasons, I propose

a suboptimal technique in the next section.

2.4 Suboptimal Subchannel Allocation and Power Dis-

tribution

Ideally, subchannels and power should be allocated jointly to achieve the optimal

solution in (2.1). However, this poses a prohibitive computational burden at the

basestation in order to reach the optimal allocation. Furthermore, the basestation

has to rapidly compute the optimal subchannel and power allocation as the wireless

channel changes. Hence low-complexity suboptimal algorithms are preferred for

cost-effective and delay-sensitive implementations. Separating the subchannel and

power allocation is a way to reduce the complexity because the number of variables in

the objective function is almost reduced by half. Section 2.4.1 discusses a subchannel

allocation scheme. Section 2.4.2 presents the optimal power distribution given a

certain subchannel allocation.
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2.4.1 Suboptimal Subchannel Allocation

In this section, a suboptimal subchannel algorithm based on [64] is proposed. In the

suboptimal subchannel allocation algorithm, equal power distribution is assumed

across all subchannels. The channel-to-noise ratio for user k in subchannel n is

defined as Hk,n =
h2

k,n

N0
B
N

and Ωk is the set of subchannels assigned to user k. The

algorithm can be described as

1. Initialization

set Rk = 0, Ωk = ø for k = 1, 2, ..., K and A = {1, 2, ..., N}

2. For k = 1 to K

(a) find n satisfying | Hk,n |≥| Hk,j | for all j ∈ A

(b) let Ωk = Ωk ∪ {n}, A = A− {n} and update Rk according to (2.2)

3. While A 6= ø

(a) find k satisfying Rk/γk ≤ Ri/γi for all i, 1 ≤ i ≤ K

(b) for the found k, find n satisfying | Hk,n |≥| Hk,j | for all j ∈ A

(c) for the found k and n, let Ωk = Ωk ∪ {n}, A = A − {n} and update Rk

according to (2.2)

The principle of the suboptimal subchannel algorithm is for each user to

use the subchannels with high channel-to-noise ratio as much as possible. At each

iteration, the user with the lowest proportional capacity has the option to pick which

subchannel to use. The subchannel allocation algorithm is suboptimal because equal

power distribution in all subchannels is assumed. After subchannel allocation, only

coarse proportional fairness is achieved. The goal of maximizing the sum capacity

while maintaining proportional fairness is achieved by the power allocation in the

next section.
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2.4.2 Optimal Power Distribution for a Fixed Subchannel Alloca-

tion

To a certain determined subchannel allocation, the optimization problem is formu-

lated as

max
pk,n

K∑

k=1

∑

n∈Ωk

1
N

log2

(
1 +

pk,nh2
k,n

N0
B
N

)
(2.5)

subject to
K∑

k=1

∑
n∈Ωk

pk,n ≤ Ptotal

pk,n ≥ 0 for all k, n

Ωk are disjoint for all k

Ω1 ∪ Ω2 ∪ ... ∪ ΩK ⊆ {1, 2, ..., N}
R1 : R2 : ... : RK = γ1 : γ2 : ... : γK

where Ωk is the set of subchannels for user k, and Ωk and Ωl are mutually exclusive

when k 6=l.

The optimization problem in (2.5) is equivalent to finding the maximum of

the following cost function

L =
K∑

k=1

∑

n∈Ωk

1
N

log2 (1 + pk,nHk,n) + λ1




K∑

k=1

∑

n∈Ωk

pk,n − Ptotal




+
K∑

k=2

λk


 ∑

n∈Ω1

1
N

log2 (1 + p1,nH1,n)− γ1

γk

∑

n∈Ωk

1
N

log2 (1 + pk,nHk,n)


(2.6)

where {λi}K
i=1 are the Lagrangian multipliers. After differentiating (2.6) with respect

to pk,n and setting each derivative to 0, it can be obtained that

∂L

∂p1,n
=

1
N ln 2

H1,n

1 + H1,np1,n
+ λ1 +

K∑

k=2

λk
1

N ln 2
H1,n

1 + H1,np1,n
= 0 (2.7)

∂L

∂pk,n
=

1
N ln 2

Hk,n

1 + Hk,npk,n
+ λ1 − λk

γ1

γk

1
N ln 2

Hk,n

1 + Hk,npk,n
= 0 (2.8)

for k = 2, 3, ...,K and n ∈ Ωk.
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Power Distribution for a Single User

In this section, the optimal power distribution strategy for a single user k is derived.

From either (2.7) or (2.8), it can obtained that

Hk,m

1 + Hk,mpk,m
=

Hk,n

1 + Hk,npk,n
(2.9)

for m,n ∈ Ωk and k = 1, 2, ..., K. Without loss of generality, I assume that Hk,1 ≤
Hk,2 ≤ ... ≤ Hk,Nk

for k = 1, 2, ..., K and Nk is number of subchannels in Ωk. Thus,

(2.9) can be rewritten as

pk,n = pk,1 +
Hk,n −Hk,1

Hk,nHk,1
(2.10)

for n = 1, 2, ..., Nk and k = 1, 2, ...,K. Equation (2.10) shows that the power

distribution for a single user k on subchannel n. More power will be put into the

subchannels with higher channel-to-noise ratio. This is the water-filling algorithm

[18] in frequency domain.

By defining Pk,tot as the total power allocated for user k and using (2.10),

Pk,tot can be expressed as

Pk,tot =
Nk∑

n=1

pk,n = Nkpk,1 +
Nk∑

n=2

Hk,n −Hk,1

Hk,nHk,1
(2.11)

for k = 1, 2, ...,K.

Power Distribution among Users

Once the set {Pk,tot}K
k=1 is known, power allocation can be determined by (2.10)

and (2.11). The total power constraint and capacity ratio constraints in (2.5) are

used to obtain {Pk,tot}K
k=1. With (2.9) and (2.11), the capacity ratio constraints can

be expressed as

1
γ1
· N1

N

(
log2

(
1 + H1,1

P1,tot − V1

N1

)
+ log2 W1

)

=
1
γk
· Nk

N

(
log2

(
1 + Hk,1

Pk,tot − Vk

Nk

)
+ log2 Wk

)
(2.12)

28



for k = 2, 3, ...,K, where Vk and Wk are defined as

Vk =
Nk∑

n=2

Hk,n −Hk,1

Hk,nHk,1
(2.13)

and

Wk =

(
Nk∏

n=2

Hk,n

Hk,1

) 1
Nk

(2.14)

for k = 1, 2, ...,K.

Adding the total power constraints

K∑

k=1

Pk,tot = Ptotal (2.15)

there are K variables {Pk,tot}K
k=1 in the set of K equations in (2.12) and (2.15).

Solving the set of functions provides the optimal power allocation scheme. The

equations are, in general, nonlinear. Iterative methods, such as the Newton-Raphson

or Quasi-Newton methods [5], can be used to obtain the solution, with a certain

amount of computational effort. In the Newton-Raphson method, the computational

complexity primarily comes from finding the update direction. In Appendix B, the

computational complexity of each iteration is shown to be O(K). Under certain

conditions, the optimal or near-optimal solution to the set of nonlinear equations

can be found in one iteration. Two special cases are analyzed below.

• Linear Case

If N1 : N2 : ... : NK = γ1 : γ2 : ... : γK , then the set of equations, i.e. (2.12)

and (2.15), can be transformed into a set of linear equations with the following

expression



1 1 . . . 1

1 a2,2 . . . 0
...

...
. . .

...

1 0 . . . aK,K







P1,tot

P2,tot

...

PK,tot




=




Ptotal

b2

...

bK




(2.16)
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where

ak,k = −N1

Nk

Hk,1Wk

H1,1W1
(2.17)

bk =
N1

H1,1W1
(Wk −W1 +

H1,1V1W1

N1
− Hk,1VkWk

Nk
) (2.18)

for k = 2, 3, ..., K. The matrix of {ai,i}K
i=2 in (2.16) has nonzero elements only

on the first row, the first column and the main diagonal. By substitution, the

solution to (2.16) can be obtained with a computational complexity of O(K).

• High Channel-to-Noise Ratio Case

In adaptive modulation, the linear condition rarely happens and the set of

equations remains nonlinear, which requires considerably more computation

to solve. However, if the channel-to-noise ratio is high, approximations can be

made to simplify the problem.

First consider (2.13), in which Vk could be relatively small compared to Pk,tot

if the channel-to-noise ratios are high. Furthermore, if adaptive subchannel

allocation is used, the best subchannels will be chosen and they have relatively

small channel gain differences among them. Thus, the first approximation is

Vk = 0.

Second, assuming that the basestation could provide a large amount of power

and the channel-to-noise ratio is high, the term Hk,1Pk,tot/Nk is much larger

than 1.

With the above two approximations, (2.12) can be rearranged and simplified

to be (
H1,1W1

N1

)N1
γ1

(P1,tot)
N1
γ1 =

(
Hk,1Wk

Nk

)Nk
γk

(Pk,tot)
Nk
γk (2.19)

where k = 2, 3, ...,K.

Substituting (2.19) into (2.15), a single equation with the variable P1,tot can
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be derived as
K∑

k=1

ck(P1,tot)dk − Ptotal = 0 (2.20)

where

ck =





1 if k = 1�
H1,1W1

N1

�N1γk
Nkγ1

Hk,1Wk
Nk

if k = 2, 3, ..., K
(2.21)

and

dk =





1 if k = 1
N1γk
Nkγ1

if k = 2, 3, ..., K.
(2.22)

Numerical algorithms, such as Newton’s root-finding method [1] or the false

position method [1], can be applied to find the zero of (2.20).

2.4.3 Existence of Power Allocation Scheme

Solution to Single User Power Allocation

For a certain user k, there is no power allocation if Vk > Pk,tot. This situation

could happen when a subchannel is allocated to a user who does not have a high

channel gain in that subchannel. The greedy water-filling algorithm would rather

stop using this subchannel. In case this situation happens, the set of Ωk, as well

as the corresponding values of Nk, Vk and Wk, need to be updated and the power

allocation algorithm presented in 2.4.2 should be executed again, as shown in Fig.

2.2.

Solution to Multiuser Power Allocation

In case that the channel-to-noise ratio is high, there is one and only one solution

to (2.20) since every item in the summation monotonically increases and (2.20)

achieves different signs at P1,tot = 0 and P1,tot = Ptotal. A numerical algorithm can

be used to find the solution to (2.20). The complexity of finding the solution will
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Figure 2.2: Proposed Resource Allocation Algorithm

primarily rely on the choice of the numerical algorithm and the precision required

in the results. After P1,tot is found, {Pk,tot}K
k=2 can be calculated using (2.19). Then

the overall power allocation scheme can be determined by (2.10) and (2.11).

In general, it can be proved that there must be an optimal subchannel and

power allocation scheme that satisfies the proportional fairness constraints and the

total power constraint. Furthermore, the optimal scheme must utilize all available

power. Several facts lead to the above conclusion. First, to a certain user, the capac-

ity of the user is maximized if water-filling algorithm is adopted. Furthermore, the

capacity function is continuous with respect to the total available power to that user.

In other words, Rk(Pk,tot) is continuous with Pk,tot. Second, if the optimal allocation

scheme does not use all available transmit power, there is always a way to redistrib-

ute the unused power among users while maintaining the capacity ratio constraints,

since Rk(Pk,tot) is continuous with Pk,tot for all k. Thus, the sum capacity is further

increased. The Newton-Raphson method descried in Appendix B finds Pk,tot, with-
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out considering the constraints on Pk,tot, i.e. Pk,tot > Vk for k = 1, 2, ..., K. If the

Newton-Raphson method returns a non-feasible Pk,tot, the set Ωk and the associated

Nk, Vk, and Wk would need to be updated. The Newton-Raphson method should

be performed until all Pk,tot > Vk.

2.4.4 Complexity Analysis

The best subchannel allocation scheme can be found by exhaustive search; i.e., for

each subchannel allocation, one would run the optimal power allocation algorithm in

Fig. 2.2, which has the computational complexity of O(K). The subchannel alloca-

tion that gives the highest sum capacity is the optimum. In a K-user N -subchannel

system, it is prohibitive to find the global optimum since there are KN possible

subchannel allocations. The complexity of the proposed algorithm consists of two

parts: subchannel allocation with the complexity of O(KN) and power allocation

of O(K). Hence the complexity of the proposed method is approximately on the

order of KN times less than that of the optimal, because the power allocation is

only executed once. The proposed method is described by Fig. 2.2.

2.5 Numerical Results

In this section, simulation results are presented to show the performance of the

proposed resource allocation algorithm. The tradeoff between sum capacity and the

fairness constraints is also illustrated.

In all simulations presented in this section, the wireless channel is modeled

as a frequency-selective channel consisting of six independent Rayleigh multipaths.

Each multipath component is modeled by Clarke’s flat fading model [61]. It is

assumed that the power delay profile is exponentially decaying with e−2l, where l

is the multipath index. Hence, the relative power of the six multipath components

are [0, −8.69, −17.37, −26.06, −34.74, −43.43] dB. The total available bandwidth
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and transmit power are 1 MHz and 1 W, respectively.

2.5.1 A System with Two Users and Ten Subchannels
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Figure 2.3: Optimal vs. suboptimal adaptive resource allocation in a two-user ten-
subchannel system.

Fig. 2.3 shows the sum capacity of a two-user ten-subchannel system vs.

γ1/γ2, from which the fairness index as defined in (2.3) can be calculated. The

AWGN power spectrum density is −70 dBW/Hz. Both the suboptimal results and

the optimal results are plotted. A small number of users and subchannels are used

in order to reduce the time to find the optimal solution. The sum capacities shown

in Fig. 2.3 are averaged over 200 channel realizations. Fig. 2.3 shows that the sum

capacity is not very sensitive to the fairness constraint ratio γ1/γ2 when there is no

path loss difference between the two users. However, when there exists path loss

difference, e.g. 10 dB, the sum capacity varies greatly with the fairness constraint

ratio. For example, when the averaged channel power of user 1, denoted as E(ch1),
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is 10 dB higher than average channel power of user 2, denoted as E(ch2), the sum

capacity reduces as γ1/γ2 decreases. The reason is as γ1/γ2 decreases, more priority

is assigned to user 2. Hence user 2 will be assigned most of the available resources,

i.e. power and bandwidth, which consequently lowers the sum capacity since the

average channel power of user 2 is 10 dB lower than user 1.

From Fig. 2.3, the proposed method achieves about 95% of the optimal

performance in a two-user ten-subchannel system. Although in a real cellular or

wireless LAN system, the number of users and subchannels is much larger, it is

still expected the proposed method to perform close to the optimum because the

subchannel allocation algorithm is designed to utilize the subchannels with large

channel-to-noise ratio as much as possible, and the power distribution is always

optimal for any determined subchannel allocation.

2.5.2 Comparison with Maximum Fairness

The objective in [64] is to maximize the minimum user’s capacity. By setting γ1 : γ2 :

... : γK = 1 : 1 : ... : 1, the objective of the optimization problem in (2.1) is identical

to the one in [64], since the worst user’s capacity is maximized when all users have

the same capacity and the sum capacity is maximized. Hence, the problem in [64]

is a special case of the framework presented in this chapter. In this section of

simulations, the worst user’s capacity is compared. In [64], a suboptimal algorithm

is proposed to achieve near-optimal capacity using adaptive subchannel allocation,

but an equal power distribution is assumed. When the number of users increases,

the equal power distribution does not equalize every user’s capacity. By transferring

power from the users with high capacity to the users with low capacity, the worst

user’s capacity could be even increased. For the purpose of comparison, I use the

suboptimal algorithm in [64], which is a special case of the subchannel allocation

algorithm in 2.4.1, to allocate the subchannels first and then apply the optimal

power allocation scheme proposed in 2.4.2. Both of these adaptive schemes are
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compared with the fixed time division multiple access (TDMA) resource allocation

scheme.

The wireless channel is modeled as before, and the total transmit power

available at the basestation is 1 W. The power spectral density of additive white

Gaussian noise is −80 dBW/Hz, and the total bandwidth is 1 MHz, which is divided

into 64 subchannels. The maximum path loss difference is 40 dB, and the user

locations are assumed to be uniformly distributed. In this part of the simulation,

the subchannel SNR is high, hence the power allocation algorithm can be reduced

to the high channel-to-noise case discussed in section 2.4.2.
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Figure 2.4: Minimum user’s capacity vs. number of users.

Fig. 2.4 shows the capacity vs. number of users in the OFDM system.

From Fig. 2.4, adaptive resource allocation can achieve significant capacity gain

over non-adaptive TDMA. Also the adaptive scheme with optimal power allocation

achieves even higher capacity than the scheme with equal power distribution. Notice

that this capacity gain is purely from the optimal power allocation algorithm, since
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both adaptive resource allocation algorithms adopt the same subchannel allocation.

Further, Fig. 2.4 shows that the capacity gain over TDMA increases when the

number of users increases. This can be explained by multiuser diversity: the more

users in the system, the lower the probability that a given subchannel is in a deep

fade for all users. In a system of 16 users, the adaptive scheme with the proposed

optimal power allocation achieves 17% more capacity gain than the scheme with

equal power distribution, when compared to fixed TDMA.

2.5.3 Comparison with Maximum Total Throughput

In this section, I compare the sum capacity achieved by the proposed algorithm with

the method in [36]. The simulation parameters are the same as the previous section,

i.e. the total available bandwidth is 1 MHz, the total transmit power at basestation

is 1W, the AWGN power density is −80 dBW/Hz, and the number of subchannels

is N = 64.
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Figure 2.5: Ergodic sum capacity of an 8-user OFDM system vs. various Γ-sets.
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Fig. 2.5 shows that the sum capacity of the proposed resource allocation

algorithm in an eight-user OFDM system vs. different fairness constraints, which

are defined in Table 2.1. The average channel power of user 2 to user 8 are the same,

while the average channel power of user 1 is 10 dB higher than the other seven users.

In Fig. 2.5, I also include

• the sum capacity achieved by the method in [36],

• the capacity achieved by a static TDMA system, in which each user is allocated

an equal share of time slots and equal transmit power, and

• the capacities of two types of single user systems, one for the user with high

average channel power, and the other for those with low average channel power.

All sum capacities shown in Fig. 2.5 are ergodic capacities averaged over 5 × 104

channel realizations. It can be seen that the sum capacity maximization method in

[36] achieves the maximum sum capacity, because all resources are allocated to the

users with the best channel gains. The capacity achieved by the proposed algorithm

varies as the rate constraint changes. As more priority is allocated to user 1, i.e. as

the Γ-set index increases, higher sum capacity is achieved. This is reasonable since

user 1 has higher average channel gain and hence can more efficiently utilize the

resources.

Fig. 2.6 shows the normalized ergodic capacity distribution among users for

Γ-set index 3 in Table 2.1, where γ1 = 8 and γ2 = γ2 = · · · = γ8 = 1. With the

proposed subchannel and power allocation algorithm, the capacity is distributed

very well among users according to the rate constraints. However, for the capacity

maximization method in [36], user 1 gets most of the resources and hence achieves a

significant part of the sum capacity. Static TDMA tends to allocate similar capacity

to each user, since all users get the same opportunity to transmit. Notice that the

capacity distribution of the method in [36] and static TDMA cannot be changed

38



1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

 E
rg

od
ic

 C
ap

ac
ity

 P
er

 U
se

r

User Index

ideal, defined by Γ−set
proposed subchannel+optimal power
sum capacity, Jang’s method
static TDMA

Figure 2.6: Normalized Ergodic sum capacity distribution among 8 users.

by varying the Γ-set values, because there is no fairness control mechanism in these

systems.

Since the problem formulation in (2.1) is to allocate resources to satisfy the

rate constraints strictly for each channel realization, I define a quantity to measure

how well the rate constraints are satisfied. Let Rk,i be the capacity of user k for a

certain channel realization i, R̃k,i = Rk,iPK
k=1 Rk,i

be the normalized capacity for user k,

Table 2.1: Rate Constraints (Γ-sets) and Rate Constraint Deviations for Figs. 2.5
& 2.6, K = 8

Γ-Set Index m 0 1 2 3 4 5 6 7
γ1 = 2m 20 21 22 23 24 25 26 27

γ2 = · · · = γ8 1 1 1 1 1 1 1 1
D, proposed algorithm 0.0026 0.0024 0.0020 0.0015 0.0012 0.0010 0.0013 0.0012
D, sum capacity [36] 0.8848 0.7825 0.6441 0.5004 0.3878 0.3216 0.2902 0.2751
D, static TDMA 0.1118 0.1114 0.2247 0.3867 0.5453 0.6633 0.7377 0.7799
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Table 2.2: Rate Constraints (Γ-sets) and Rate Constraint Deviations for Figs. 2.7
& 2.8, K = 16

Γ-Set Index m 0 1 2 3 4
γ1 = · · · = γ4 = 2m 20 21 22 23 24

γ5 = · · · = γ16 1 1 1 1 1
D, proposed algorithm 0.0015 0.0015 0.0013 0.0012 0.0018
D, sum capacity [36] 0.9238 0.8361 0.7438 0.6662 0.6133
D,static TDMA 0.1150 0.1093 0.2548 0.4071 0.5193

and γ̃k = γkPK
k=1 γk

be the normalized rate constraint. The normalized rate constraint

deviation measure for channel realization i is defined as

Di =

K∑
k=1

|R̃k,i − γ̃k|

maxeRk,i

K∑
k=1

|R̃k,i − γ̃k|
. (2.23)

Notice that the denominator in (2.23) refers to the maximum deviation over all

possible R̃k,i values. It is shown in Appendix C that

maxeRk,i

K∑

k=1

|R̃k,i − γ̃k| = 2− 2min
k

γ̃k. (2.24)

Table 2.1 shows the averaged rate constraint deviations, denoted as D =
∑I

i=1Di/I, where I is the total number of channel realizations of the eight-user

OFDM system. The rate constraint deviation of the proposed subchannel and power

allocation is orders of magnitude smaller than those achieved by the method in [36]

and the static TDMA. In other words, the price of maximizing ergodic capacity is

that the short-term data rates vary widely and users may have poor performance

over a certain block of time.

Fig. 2.7 shows the ergodic sum capacities in a multiuser OFDM systems with

16 users. The simulation parameters are the same as those in the previous 8-user

system. The average channel power of the first four user are 10 dB higher than the

rest of twelve users. The Γ-set index and the rate constraint deviations are shown in

40



0 0.5 1 1.5 2 2.5 3 3.5 4
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

E
rg

od
ic

 S
um

 C
ap

ac
ity

 (b
its

/s
/H

z)

Γ−Set Index m

sum capacity, Jang’s method
single user (higher SNR)
proposed subchannel+optimal power
static TDMA
single user (lower SNR)

Figure 2.7: Ergodic sum capacity of a 16-user OFDM system vs. various Γ-sets.

Table 2.2. Fig. 2.8 shows the normalized average sum capacity distribution among

users with γ1 = · · · = γ4 = 8 and γ5 = · · · = γ16 = 1. It should be noted that

higher sum capacity is achieved by the method in [36] in this 16-user OFDM system

since more users with high channel power are in this system, hence more multiuser

diversity. However, it can be seen from Fig. 2.8 that the users with lower average

channel power, i.e. users 5-16, get very small portions of the sum capacity, since

in most channel realizations, the subchannels and power are allocated to the users

with larger subchannel gains.

2.6 Conclusion

In this chapter, I presented a resource allocation framework in multiuser OFDM

systems to achieve variable proportional rate constraints. For different rate con-

straints, i.e. {γk}K
k=1, different proportional rates can be achieved among users.

41



0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

N
or

m
al

iz
ed

 E
rg

od
ic

 C
ap

ac
ity

 P
er

 U
se

r

User Index

ideal, defined by Γ−set
proposed subchannel+optimal power
sum capacity, Jang’s method
static TDMA

Figure 2.8: Normalized Ergodic sum capacity distribution among 16 users.

The term “variable” refers to the facts that the rate constraints can be configured

at the basestation and hence rate allocation among users is flexible.

The proposed optimization problem considers maximizing the sum capacity

while maintaining proportional fairness among users for each channel realization.

The algorithm to find the optimal solution is discussed, and a low complexity sub-

optimal algorithm, which reduces complexity from O(KN ) to O(KN), is also pro-

posed. In the suboptimal algorithm, subchannel and power allocation are carried

out separately. The optimal power allocation to a determined subchannel scheme

is developed. A two-step procedure may be taken to get the optimal power dis-

tribution. First, a set of nonlinear equations has to be solved in order to get the

power distribution among users. Then to a particular user, the greedy water-filling

algorithm is adopted to maximize the capacity. The existence of power allocation

is also discussed.

Simulation results show that the suboptimal algorithm can achieve above
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95% of the optimal performance in a two-user system. Simulation results also shows

that in a system of 16 users, the proposed optimal power allocation achieves 17%

more capacity over fixed TDMA than the max-min method in [64]. It is also shown

that with the proposed resource allocation algorithm, the sum capacity is distributed

more fairly among users than the sum capacity maximization algorithm in [36].
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Chapter 3

Sum Capacity of Multiuser

MIMO Broadcast Channels

with Block Diagonalization

3.1 Introduction

Multiple-input multiple-output (MIMO) systems have drawn a lot of attention in

the last decade. The spatial dimension, in addition to the time and frequency

dimensions, can be exploited with multiple antennas at the transmitter and receiver.

A pioneering paper on point-to-point MIMO channel capacity is due to Telatar [84],

followed by other papers, e.g. [7] [12] [27] [37] [49] [60] [78] [87]. In [84], Telatar

showed that for Rayleigh fading channels, the MIMO channel capacity scales linearly

with the minimum number of transmit and receive antennas.

The sum capacity of a Gaussian MIMO BC channel is achievable with DPC

[88]. A practical coding scheme that approaches the DPC sum capacity, however,

is still unavailable. Several nonlinear or linear algorithms have been proposed in

[2] [82] [107]. These algorithms, however, are typically too complicated for cost-
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effective implementations. An alternative linear precoding technique for downlink

multiuser MIMO systems is Block Diagonalization (BD) [14] [59] [80] [99]. With

BD, each user’s data is multiplied by a linear precoding matrix before transmission.

The precoding matrix for every user lies in the null space of all other users’ channels.

Consequently, with perfect channel state information at the basestation, each user

sees no inter-user interference, rendering a simple receiver structure. Hence, BD is

a potentially realizable precoding method for a MIMO broadcast channel, although

it is suboptimal as far as the sum capacity.

The sum capacity gain of DPC vs. TDMA for MIMO broadcast channels

has been studied in [39] [67]. In TDMA, the transmitter only sends data to the user

with the largest channel capacity. It has been proven in [39] that for a set of given

channels, for any number of users, any number of transmit and receive antennas,

and any SNR, the ratio of the DPC sum capacity over TDMA can be up-bounded

by the minimum of the number of users and the number of transmit antennas. In

this chapter, I focus on the sum capacity gain of DPC over BD. BD’s sum capacity

is defined to be the maximum total throughput over all possible user sets. Hence the

TDMA sum capacity, where no precoding is employed, is automatically incorporated

in BD’s sum capacity definition. Therefore, the general bound on the gain of DPC

vs. TDMA applies to the gain of DPC vs. BD.

In this chapter, I analyze the sum capacity of BD with receive antenna selec-

tion. The sum capacity gain of DPC over BD without receive antenna selection for

a set of given channels is presented. I show that 1) if user channels are orthogonal

to each other, then BD achieves the same sum capacity as DPC; 2) if user channels

lie in the same subspace, then the gain of DPC over BD can be reduced to the min-

imum of the number of transmit and receive antennas. These statements also hold

for BD with receive antenna selection. Further, the ergodic sum capacity of DPC

is compared to that of BD in a Rayleigh fading channel. I propose an upper bound

on the ergodic sum capacity gain of DPC over BD. The proposed upper bound on
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the gain can be evaluated with a few numerical integrations.

3.2 System Model and Background on Block Diagonal-

ization

In this section, I introduce the system model and briefly describe the generalized

block diagonalization method for multiuser MIMO systems presented in [59].

Consider a downlink multiuser MIMO system with K users. Let us denote

the number of transmit antennas at the basestation as Nt and the number of receive

antennas for the jth user as Nr,j . It is assumed that Nr,j ≤ Nt for all j = 1, 2, · · · ,K

in this chapter. The transmitted symbol of user j is denoted as a Nj-dimensional

vector xj , which is multiplied by a Nt × Nj precoding matrix Tj . At receiver j,

a Mj × Nr,j (Mj ≤ Nr,j) matrix Rj is applied to the received signals from all

receive antennas. The purpose of the post-processing matrices {Rj}K
j=1 is to form

a set of better effective user channels to improve the sum capacity. Hence, the

post-processed received signal yj for user j can be represented as

yj = Rj


HjTjxj +

K∑

k=1,k 6=j

HjTkxk + vj




= RjHjTjxj + Rj

K∑

k=1,k 6=j

HjTkxk + Rjvj (3.1)

where the first item in the right-hand-side (RHS) of (3.1) is the desired signal for user

j; the second item in the RHS of (3.1) is the interference seen by user j from the other

users’ signals; and vj denotes the additive white Gaussian noise (AWGN) vector for

user j with variance E[vjv∗j ] = σ2I, where ()∗ denotes the matrix conjugate trans-

pose. Matrix Hj ∈ CNr,j×Nt denotes the channel transfer matrix from the basesta-

tion to the jth user, with each entry following an i.i.d. complex Gaussian distribution

CN (0, 1). For analytical simplicity, I assume that rank(Hj) = min(Nr,j , Nt) for all
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users. It is also assumed that the channels Hj experienced by different users are

statistically independent due to the users’ different locations.

The key idea of block diagonalization is to design Tj and Rj , such that

Tj ∈ U(Nt, Nj)

RT
j ∈ U(Nr,j ,Mj)

RiHiTj = 0 for all i 6= j and 1 ≤ i, j ≤ K, (3.2)

where ()T denotes the matrix transpose and U(n, k) represents the set of n × k

(n ≥ k) matrices with orthonormal columns, i.e. for any U ∈ U(n, k), it holds

that U∗U = Ik where Ik is the identity matrix of size k × k. The constraint that

Tj ∈ U(Nt, Nj) ensures that the total transmit power is not changed; the constraint

that Rj ∈ U(Nr,j ,Mj) avoids noise enhancement after applying Rj to the received

signals; and the last constraint in (3.2) eliminates inter-user interference.

Hence with precoding matrices Tj and post-processing matrix Rj , the post-

processed received signal for user j can be simplified to

yj = RjHjTjxj + Rj

K∑

k=1,k 6=j

HjTkxk + Rjvj

= RjHjTjxj + Rjvj . (3.3)

For a fixed set of {Rj}K
j=1, let

H̃j = [(R1H1)
T · · · (Rj−1Hj−1)

T (Rj+1Hj+1)
T · · · (RKHK)T ]T . (3.4)

To satisfy the constraint in (3.2), Tj shall be in the null space of H̃j . Let Ñj denote

the rank of H̃j . Let the singular value decomposition (SVD) of H̃j be

H̃j = ŨjΛ̃j [Ṽj,1 Ṽj,0]∗ (3.5)

where Ũj ∈ U(Ñj , Ñj), Λ̃j is a diagonal matrix of size Ñj × Nt; Ṽj,1 ∈ U(Nt, Ñj)

contains the first Ñj right singular vectors and Ṽj,0 ∈ U(Nt, Nt − Ñj) contains the
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last Nt− Ñj right singular vectors of H̃j . The columns in Ṽj,0 form a set of basis in

the null space of H̃j , and hence the columns in Tj are linear combinations of those

in Ṽj,0. In fact, Tj can be any set of basis in the null space of H̃j .

Due to the zero inter-user interference requirement, the number of data

streams for each user is limited in a block diagonalization system. The following

Lemma shows the maximum number of possible data streams for a user.

Lemma 1: For a fixed set of {Rj}K
j=1, let H = [(R1H1)

T · · · (RKHK)T ]T

and N be the rank of H. To satisfy the zero-interference constraint (3.2), the number

of possible independent data streams of user j, denoted N j (N j ≤ Nj), must satisfy

N j ≤ min{N − Ñj ,Mj}. (3.6)

Proof: A detailed proof can be found in [11] [59] [80]. 2

In the rest of the chapter, for notational and analytic simplicity, it is assumed

that every user has the same number of receive antennas, i.e. Nr,k = Nr for k =

1, 2, · · · ,K. The results in this chapter can be easily extended to the case where

different users have different numbers of receive antennas.

3.3 Sum Capacity of Block Diagonalization with Re-

ceiver Antenna Selection

Consider a given set of channel realizations for a multiuser MIMO system, where

Hj denotes the channel for user j. Notice that the precoding matrices {Tj}K
j=1 can

be determined based on {Hj}K
j=1 and {Rj}K

j=1, i.e. Tj can be any set of basis in the

null space of H̃j = [(R1H1)
T · · · (Rj−1Hj−1)

T (Rj+1Hj+1)
T · · · (RKHK)T ]T .

Ideally, the sum capacity can be obtained by jointly optimizing {Rj}K
j=1 and the

users’ transmit signal covariance matrices {Qj}K
j=1 in the following problem
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max
Mj ,Rj ,Qj

K∑

j=1

log
∣∣∣∣I +

1
σ2

RjHjTjQjT
∗
jH

∗
jR

∗
j

∣∣∣∣ (3.7)

subject to RT
j ∈ U(Nr,Mj) for all j

RiHiTj = 0 for all i 6= j

0 ≤ Mj ≤ Nr for all j
K∑

j=1
Tr(Qj) ≤ P

Qj ≥ 0 for all j

where RjHjTj denotes the effective channel for user j, Qj = E[xjx∗j ] is user j’s Nj×
Nj input covariance matrix, N is the rank of H = [(R1H1)

T · · · (RKHK)T ]T , Ñj is

the rank of H̃j = [(R1H1)
T · · · (Rj−1Hj−1)

T (Rj+1Hj+1)
T · · · (RKHK)T ]T , and

P denotes the total transmit power available at the basestation. The optimization

over Qj ensures the best signal covariance for user j. The maximization over Rj ,

as well as its dimension Mj , ensures that the total throughput can be maximized.

Notice that for a single user j, the user’s throughput may be decreased by choosing

Mj < Nr. The total throughput, however, can be increased because user j saves ad-

ditional dimension for other users. Notice that due to the zero-forcing requirement,

i.e. the third constraint in (3.7), not all K users can be simultaneously supported

with block diagonalization, i.e. Mj = 0 for those users that are not scheduled for

transmission.

The optimization problem in (3.7) is difficult to solve, especially the max-

imization over {Rj}K
j=1. The difficulty primarily comes from the zero inter-user

interference requirement, i.e. the third constraint in (3.7). In [59], an iterative

algorithm was proposed to optimize {Rj}K
j=1 and {Tj}K

j=1 so that the aggregate

effective channel energy is maximized. The sum capacity, however, is not directly

optimized in [59]. In this chapter, I consider a set of special Mj ×Nr matrices Rj

(for j = 1, 2, · · · ,K) that are formed by taking Mj rows from INr [41]. For example,

49



if Mj = 2 and Nr = 3, then Rj must be in the following set:

R(2,3) =






 1 0 0

0 1 0


 ,


 1 0 0

0 0 1


 ,


 0 1 0

0 0 1






 (3.8)

where R(m,n) denotes the set of matrices formed by taking m rows from In. The

motivation of studying this special Rj are:

1. Since the matrices {Rj}K
j=1 and {Tj}K

j=1 are designed at the basestation, the

post-processing matrices {Rj}K
j=1 need to be conveyed to the users, which is

a system overhead that should be kept low. To successfully convey the post-

processing matrices to the users, much less overhead (in the number of bits)

is required for this specially formed Rj than a general Mj × Nr matrix. For

example, log2

(
Nr∑

Mj=0

|R(Mj ,Nr)|
)

= Nr bits are sufficient to convey Rj to user

j, where |R(Mj ,Nr)| denotes the cardinality of set R(Mj ,Nr).

2. With this special Rj , user j can select Mj receive antennas to use. Hence, user

selection and receive antenna selection can be combined to optimize the total

throughput of all users. If Rj = INr for those users scheduled for transmission

and Rj = ∅ (i.e. Mj = 0) for those unscheduled users, then the generalized

block diagonalization [59] reduces to the BD algorithm without post-processing

presented in [14] [80].

3. With the additional constraint that Rj ∈ R(Mj ,Nr) for j = 1, 2, · · · , K, the

optimization problem in (3.7) is solvable by exhaustively searching over all

possible sets of {Rj}K
j=1. For each set of {Rj}K

j=1, the corresponding {Tj}K
j=1

can be found according to the SVD outlined in Section II. Due to the zero-

forcing condition, the effective channels for all users do not interfere each other.

Hence, the optimal {Qj}K
j=1 can be obtained by the water-filling algorithm

with an overall transmit power constraint [80].
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3.4 BD vs. DPC: Sum Capacity for a Given Set of

Channels

In this section, I compare the sum capacity achieved by block diagonalization with-

out receive antenna selection with the sum capacity achieved by dirty paper coding.

The BD sum capacity is defined based on the algorithm in [80], i.e. Rj = INr for all

scheduled users. With this assumption, each user will utilize all Nr receive antennas

provided he/she is scheduled for transmission. The simulation results in section VI

show that the sum capacity of BD without receive antenna selection is very close to

that with receive antenna selection in Rayleigh fading channels.

Consider a given set of channel realizations for a multiuser MIMO system,

where Hj denotes the channel for user j. Let K = {1, 2, · · · ,K} denote the set of

user indices. Assume all user sets are ordered and let Ai ∈ K be the ith set. Let

Hj = HjTj denote the effective channel after precoding for user j ∈ Ai, then the

total throughput achieved with BD applied to the user set Ai with total power P

can be expressed as

CBD|Ai
(HAi , P, σ2) = max

{Qj : Qj≥0,
P

j∈Ai

Tr(Qj)≤P}

∑

j∈Ai

log
∣∣∣∣I +

1
σ2

HjQjH
∗
j

∣∣∣∣ (3.9)

where Qj = E[xjx∗j ] is user j’s input covariance matrix of size Nj ×Nj . Let A be

the set containing all possible user sets, i.e. A = {A1,A2, · · · }. The sum capacity

of BD is defined as the maximum total throughput of BD as

CBD(H1,··· ,K , P, σ2) = max
Ai∈A

CBD|Ai
(HAi , P, σ2). (3.10)

It has been proven that the sum capacity of a multiuser Gaussian broadcast

channel is achieved with dirty paper coding [88]. With the duality results in [88],

the sum capacity can be expressed as

CDPC(H1,··· ,K , P, σ2) = max
{Sj : Sj≥0,

KP
j=1

Tr(Sj)≤P}
log

∣∣∣∣∣∣
I +

1
σ2

K∑

j=1

H∗
jSjHj

∣∣∣∣∣∣
(3.11)
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where Sj of size Nr × Nr is the signal covariance matrix for user j in the dual

multiple access channel.

In this section, I am interested in the gain of DPC over BD in terms of sum

capacity. Analogous to [39], I define the ratio of DPC to BD as

G(H1,··· ,K , P, σ2) , CDPC(H1,··· ,K , P, σ2)
CBD(H1,··· ,K , P, σ2)

. (3.12)

The gain is obviously dependent on the channel realizations {Hk}K
k=1, the total

power, and noise variance. The next theorem gives a bound on G(H1,··· ,K , P, σ2)

that is valid for any {Hk}K
k=1, P , and σ2.

Theorem 1: The sum capacity gain of DPC over BD is lower bounded by

1 and upper bounded by the minimum of Nt and K, i.e.

1 ≤ G(H1,··· ,K , P, σ2) ≤ min{Nt,K} (3.13)

Proof: Theorem 3 in [39] states that

CDPC(H1,··· ,K , P, σ2)
CTDMA(H1,··· ,K , P, σ2)

≤ min{Nt,K} (3.14)

where

CTDMA(H1,··· ,K , P, σ2) , max
k∈K

C(Hk, P, σ2) (3.15)

= max
k∈K

max
{Qk: Qk≥0,Tr(Qk)≤P}

log
∣∣∣∣I +

1
σ2

HkQkH
∗
k

∣∣∣∣ .(3.16)

It is easy to show that

CBD(H1,··· ,K , P, σ2) ≥ CTDMA(H1,··· ,K , P, σ2). (3.17)

Hence, following Theorem 3 in [39], it can be immediately concluded that

CDPC(H1,··· ,K , P, σ2)
CBD(H1,··· ,K , P, σ2)

≤ CDPC(H1,··· ,K , P, σ2)
CTDMA(H1,··· ,K , P, σ2)

≤ min{Nt,K}. (3.18)

Furthermore, it is true that

CDPC(H1,··· ,K , P, σ2) ≥ CBD(H1,··· ,K , P, σ2). (3.19)
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Combining (3.18) and (3.19) completes the proof. 2

Although the bound in Theorem 1 holds for any Nt, Nr, K, {Hi}K
i=1, P , and

σ2, it is generally a loose bound. In the following, several cases are presented where

the bound on G(H1,··· ,K , P, σ2) can be tightened. I first show a sufficient condition

where CDPC(H1,··· ,K , P, σ2) = CBD(H1,··· ,K , P, σ2).

Lemma 2: Assume Nr ≤ Nt and K ≤ bNt
Nr
c. If {Hk}K

k=1 are mutually

orthogonal, i.e. HiH∗
j = 0 for i 6= j, then

CDPC(H1,··· ,K , P, σ2) = CBD(H1,··· ,K , P, σ2). (3.20)

Proof: Please see Appendix D. 2

Lemma 2 shows that when the user channels are mutually orthogonal to each

other, BD achieves the same capacity as DPC. This is very different from [39] where

DPC vs. TDMA is compared. For TDMA, even though the users are mutually

orthogonal, it is not possible to achieve the same sum capacity as DPC. In fact, the

gain of DPC over TDMA can still be at the maximum, i.e. min{Nt,K}, when the

user channels are mutually orthogonal, e.g. when each user has one receiver antenna

and the user channels have the same energy.

While Lemma 2 shows DPC and BD are essentially the same when the user

channels are orthogonal to each other, in the next Lemma, I show that when all

user channels are in the same vector subspace, the bound on the gain of DPC over

BD in Theorem 1 can be tightened to min{Nr,K} for Nr ≤ Nt.

Lemma 3: Assume Nr ≤ Nt. If the row vector spaces of all user channels

are the same, i.e. span(H1) = span(H2) = · · · = span(HK), which is denoted as W,

then

G(H1,··· ,K , P, σ2) ≤ min{Nr, K}. (3.21)

Proof: Please see Appendix E. 2

Notice Lemma 2 and Lemma 3 are two extreme cases, where the channels

{Hi}K
i=1 are either mutually orthogonal or in the same subspace. When the user
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channels are mutually orthogonal, BD is the same as DPC. On the other hand,

when the user channels are in the same subspace, BD is the same as TDMA. For

the general case where the user channels are partially overlapped to each other, BD

may be superior to TDMA since multiple users may be supported at the same time.

However, a good bound on the sum capacity gain of DPC over BD for the general

case is very difficult to obtain.

For BD with receive antenna selection, if the optimal receive antenna set is

obtained for each user through complete search as outlined at the end of Section III,

then the sum capacity may be increased compared to BD without receive antenna

selection. Since BD without receive antenna selection is a special case of BD with

receive antenna selection, i.e. Rj = INr for j = 1, 2, · · · , K, the results in Theorem

1, Lemma 2 and 3 also hold for BD with receive antenna selection.

3.5 BD vs. DPC: Ergodic Sum Capacity in Rayleigh

Fading Channels

In this section, I analyze the ergodic capacity of a multiuser MIMO system in

Rayleigh fading channels for block diagonalization without receive antenna selection

vs. DPC. Let Hj = HjTj be the equivalent channel for user j after precoding. With

the assumptions that {Hj}K
j=1 are statistically independent for different j and the

elements in Hj are i.i.d. complex Gaussian random variables, the following theorem

on the probability density function of Hj holds.

Theorem 2: In a downlink MIMO system with block diagonalization applied

to a fixed set of users, if the MIMO channel for each user is modeled as i.i.d.

complex Gaussian, then the effective channel after precoding is also an i.i.d. complex

Gaussian matrix.

Proof : Since Hj = HjTj and Hj is i.i.d. complex Gaussian, then Hj con-

ditioned on Tj is also complex Gaussian. Recall that for BD without receive antenna
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selection, Tj is a set of basis in the null space of H̃j = [HT
1 · · · HT

j−1 HT
j+1 · · · HT

K ]T ,

hence Hj is independent of Tj . Therefore, the theorem is proved. 2

Theorem 2 indicates that if BD is applied to a fixed set of users, the effective

channel for each user still follows the i.i.d. complex Gaussian distribution if the

original channels are i.i.d. complex Gaussian. Hence the ergodic capacity of user

j can be easily evaluated with the eigenvalue distribution of HjH
∗
j , where HjH

∗
j

follows a Wishart distribution [19] [58] [84].

3.5.1 A Lower Bound on Ergodic Sum Capacity with BD

Let Ai = {1, 2, · · · , i} be the set of the first i users, for i = 1, 2, · · · , I where

I = min
{

K,
⌊

Nt
Nr

⌋}
. Notice that for i ≤ min

{
K,

⌊
Nt
Nr

⌋}
, when the elements in

{H}K
k=1 are generated according to an i.i.d. complex Gaussian distribution, a lower

bound on the ergodic sum capacity of BD can be obtained as

E
[
CBD(HAi , P, σ2)

] (a)

≥ E




i∑

j=1

log
∣∣∣∣I +

1
σ2

HjQjH
∗
j

∣∣∣∣


 (3.22)

=
i∑

j=1

E

[
Nr∑

n=1

log
∣∣∣∣1 +

Pj,n

σ2
λ

2
j,n

∣∣∣∣
]

(3.23)

(b)

≥
i∑

j=1

E

[
Nr∑

n=1

log
∣∣∣∣1 +

P

iNrσ2
λ

2
j,n

∣∣∣∣
]

(3.24)

=
i∑

j=1

NrE

[
log

∣∣∣∣1 +
P

iNrσ2
λ

2
j,1

∣∣∣∣
]

(3.25)

(c)
= i NrE

[
log

∣∣∣∣1 +
P

iNrσ2
λ

2
i,1

∣∣∣∣
]

(3.26)

, CBD(HAi , P, σ2) (3.27)

where λ
2
j,n are nth unordered eigenvalues of HjH

∗
j and Hj is of size Nr×(Nt − (i− 1)Nr).

Inequality (a) holds because the RHS of (3.22) assumes all i users are simultaneously

transmitting for all channel realizations. Inequality (b) holds because the RHS of
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(3.24) assumes equal power is allocated to every non-zero eigenmode. Equality (c)

holds because λj,1 has the same distribution for j = 1, 2, · · · , i.

For notational simplicity, I denote αi = λ
2
i,1 and N i = Nt − (i− 1)Nr. With

Theorem 2 and [84], the distribution of αi can be expressed as

pN i,Nr
(αi) =

1
Nr

Nr∑

m=1

ϕm(αi)2αN i−Nr
i e−αi (3.28)

where

ϕk+1(αi) =
[

k!
(k + N i −Nr)!

]1/2

LN i−Nr

k (αi) (3.29)

for k = 0, 1, · · · ,m− 1, and

Ln−m
k (x) =

1
k!

exxm−n dk

dxk

(
e−xxn−m+k

)
. (3.30)

Hence (3.26) can be easily evaluated with a numerical integration.

Hence, the ergodic sum capacity with BD can be lower bounded by

E
[
CBD(H1,··· ,K , P, σ2)

] ≥ max
i∈{1,2,··· ,I}

CBD(HAi , P, σ2). (3.31)

It is important to note that to evaluate the lower bound, up to I = min
{

K,
⌊

Nt
Nr

⌋}

numerical integrations need to be carried out because of the maximization in the

RHS of (3.31).

3.5.2 An Upper Bound on the Ergodic Sum Capacity of DPC

It is well known that the sum capacity of a K-user broadcast channel with DPC is up-

per bounded if the receivers are allowed to cooperate [88]. Let H = [HT
1 HT

2 · · · HT
K ]T ,
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and N = max{Nt,KNr} and M = min{Nt, KNr}, then

E
[
CDPC(H1,··· ,K , P, σ2)

] ≤ E

[
log

∣∣∣∣I +
1
σ2

HQH∗
∣∣∣∣
]

(3.32)

=
M∑

m=1

E

[
log

(
1 +

Pm

σ2
λ2

m

)]
(3.33)

= ME

[
log

(
1 +

P1

σ2
α1

)]
(3.34)

≤ M

∞∫

σ2/Γ0

log
(

Γ0α1

σ2

)
pN,M (α1)dα1 (3.35)

, Ccoop(H1,··· ,K , P, σ2) (3.36)

where λ2
m is mth unordered eigenvalue of H∗H and α1 , λ2

1; pN,M (α1) is the

distribution for α1, which is given by (3.28) with Nr and N i replaced by M and

N respectively. The parameter Γ0 is optimized so that the ergodic sum capacity is

maximized with the average power constraint, i.e. M
∞∫

σ2/Γ0

(
Γ0 − σ2

α

)
pN,M (α)dα =

P . Details on the inequality (3.35) can be found in [78].

3.5.3 An Upper Bound on the Ergodic Capacity of DPC vs. BD

From the above two sections, an upper bound on the ergodic sum capacity gain of

DPC over BD can be derived as

E
[
CDPC(H1,··· ,K , P, σ2)

]

E [CBD(H1,··· ,K , P, σ2)]
≤ Ccoop(H1,··· ,K , P, σ2)

max
i∈{1,2,··· ,I}

CBD(HAi , P, σ2)
. (3.37)

Notice that the upper bound in (3.37) is a function of Nt, Nr, K, P , and σ2.

Furthermore, min
{

K,
⌊

Nt
Nr

⌋}
+ 1 numerical integrations are necessary to evaluate

the bound in (3.37). The tightness of this bound is shown in the numerical results

section.
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Figure 3.1: Ergodic sum capacity of DPC vs. BD in Rayleigh fading channels.
Nt = 10, Nr = 2, K = 5.

3.6 Numerical Results

In this section, I provide some numerical demonstrations of the gain of DPC over

BD. I compare the sum capacity achieved by

• dirty paper coding (DPC) implemented with the iterative water-filling algo-

rithm [40],

• block diagonalization with receive antenna selection (BD w RxAS),

• block diagonalization without receive antenna selection (BD w/o RxAS).

I show the ergodic sum capacity of DPC and BD by Monte Carlo simulations and

compare the gain with the bound in (3.37) for various system parameters. In

Rayleigh fading channels, BD achieves a significant part of the sum capacity of

DPC in most cases. And the bound in (3.37) is tight for medium to high SNRs or
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when K ≤ bNt
Nr
c.
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Figure 3.2: Ergodic sum capacity gain of DPC over BD in Rayleigh fading channels.
Nt = 10, Nr = 2, K = 5.

Fig. 3.1 shows the ergodic sum capacity of DPC vs. BD under different

SNRs, with Nt = 10, Nr = 2, and K = 5. In the low SNR regime, BD achieves

almost the same sum capacity as DPC. As SNR goes to infinity, the sum capacity

of both DPC and BD increase with the same slope. Essentially, the ratio of the sum

capacity of BD and DPC equals one in asymptotically low and high SNR regimes

[39]. Fig. 3.2 shows the gain of DPC over BD from the curves in Fig. 3.1, as well as

the bound on the gain evaluated from (3.37). As the SNR increases, the bound in

(3.37) gets tighter. For low SNR, the bound in (3.37) is loose mainly because 1) the

lower bound on BD assumes an equal power allocation to all non-zero eigenvalues;

2) the cooperative upper bound on DPC is also loose in low SNR. The bound in the

low SNR regime is, however, less interesting because it has been proven in [39] that

the sum capacity of BD equal that of DPC for asymptotically low SNRs.
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Figure 3.3: Ergodic sum capacity of DPC vs. BD in Rayleigh fading channels.
Nr = 2, K = 3.

Fig. 3.3 shows the ergodic sum capacity of DPC vs. BD for different Nt,

with Nr = 2 and K = 3. As the number of transmit antenna increases, the sum

capacity of BD gets closer to the sum capacity of DPC. Fig. 3.4 shows the gain of

DPC over BD from the curves in Fig. 3.3, with SNR = 20 dB. It is observed that

the bound from (3.37) is fairly tight for Nt > KNr.

Fig. 3.5 shows the ergodic sum capacity of DPC vs. BD for different numbers

of users, with Nt = 10 and Nr = 2. For small numbers of users, BD achieves almost

the same sum capacity as DPC. As the number of users increases, DPC exhibits

higher performance than BD. Fig. 3.6 shows the gain of DPC over BD from the

curves in Fig. 3.5, with SNR = 20 dB. For small numbers of users, the bound from

(3.37) is very tight. For larger numbers of users, the bound from (3.37) loosens. The

main reason is that for Nt = 10 and Nr = 2, BD without receive antenna selection

can support at most 5 users simultaneously. The increase in the ergodic sum ca-
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Figure 3.4: Ergodic sum capacity gain of DPC over BD in Rayleigh fading channels.
Nr = 2, K = 3, SNR = 20 dB.

pacity of BD as K increases is mainly from multiuser diversity. However, the lower

bound on the sum capacity of BD in (3.31) does not take multiuser diversity into

consideration, which means the lower bound on BD is the same for k = 5, 6, · · · , 10.

Notice that throughout the simulations, BD with receive antenna selection

(RxAS) achieves higher sum capacity than BD without receive antenna selection.

On the other hand, to find the optimal user and/or receive antenna set for the sum

capacity, the search space for BD with RxAS is much higher that that of BD without

RxAS. Some low complexity user selection algorithms for BD or zero-forcing (ZF)

can be found in [74] [101].
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Figure 3.5: Ergodic sum capacity of DPC vs. BD in Rayleigh fading channels.
Nt = 10, Nr = 2.

3.7 Conclusion

In this chapter, I compare the sum capacity of BD with and without receive antenna

selection to that of DPC. For a given set of channel realizations, the sum capacity

gain of DPC over BD can be generally bounded by min{Nt,K}, where Nt and K are

the number of transmit antennas and the number of users, respectively. The gain

can be tightened in two special cases: 1) if the user channels are orthogonal to each

other, BD achieves the same sum capacity with DPC; 2) if the user channels are

in the same vector space, the gain can be reduced to min{Nr,K}, where Nr is the

number of receive antennas at each user with Nr ≤ Nt. The ergodic sum capacity

gain of DPC over BD is also studied in a Rayleigh fading channel. Simulations

show that BD can achieve a significant part of the total throughput of DPC. An

upper bound on the ergodic sum capacity gain of DPC over BD is proposed. The
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Figure 3.6: Ergodic sum capacity gain of DPC over BD in Rayleigh fading channels.
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bound is very tight for medium to high SNRs or when K ≤ bNt
Nr
c, which is useful in

estimating how far away BD is from being optimal in terms of ergodic sum capacity.
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Chapter 4

Low Complexity User Selection

Algorithms for Multiuser

MIMO Systems with Block

Diagonalization

4.1 Introduction

As discussed in the previous chapter, Block Diagonalization is a practical precoding

technique for downlink broadcast MIMO channels [14] [59] [80] [99] . With BD, each

user’s signal is multiplied by a precoding matrix before transmission. Every user’s

precoding matrix is restricted to be in the null space of all other users’ channels.

Hence if the channel matrices of all users are perfectly known at the transmitter,

each user perceives an interference-free channel.

Due to the rank condition imposed by the fact that each user’s precoding

matrix must lie in the null space of all other users’ channels, the number of users

that can be simultaneously supported with BD is limited by the number of transmit
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antennas, the number of receive antennas, and the richness of the channels [80]. For

systems with a large number of users, a subset of users can be selected to maximize

the total throughput (defined as the aggregate error-free capacity). In this chapter,

I assume that every user utilizes all its receive antennas. A brute-force complete

search over all possible user sets guarantees that the total throughput is maximized.

The complexity, however, is prohibitive if the number of users in the system is large.

For example, if K̂ is the maximum number of users that can be simultaneously

supported by BD and K is the total number of users, then the complete search for

the optimal user set has combinatoric complexity because every i (1 ≤ i ≤ K̂) out

of K users must searched.

A user selection algorithm for downlink multiuser MISO systems has been

proposed in [101], where the users are equipped with one receive antenna and zero-

forcing beamforming is performed at the transmitter, which is equivalent to BD. The

algorithm in [101] constructs a set of semi-orthogonal users whose total throughput

is close the sum capacity achieved by DPC. Analogous to the user selection problem

is the antenna selection problem where the transmitter and receiver select a subset

of antennas to transmit and receive signals [23] [29] [57], e.g. a low complexity an-

tenna selection algorithm is proposed in [23] that achieves almost the same outage

capacity as the optimal selection method. Antenna selection has also been consid-

ered in downlink multiuser MIMO systems with BD [11], where it has been shown

that a significant reduction in symbol error rate can be achieved even with one ex-

tra transmit antenna. Space division multiple access (SDMA) with scheduling for

multimedia services has been studied in [100]. It was shown in [100] that the sys-

tem throughput-delay characteristics can be improved by scheduling the users with

nearly orthogonal spatial signatures at each time slot. Several other scheduling as

well as admission control algorithms for downlink SDMA systems can also be found

in [6].

In this chapter, I propose two suboptimal user selection algorithms for BD
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with the aim of maximizing the total throughput while keeping the complexity low.

Both algorithms iteratively select users until the maximum number of simultane-

ously supportable users are reached. The first user selection algorithm greedily

maximizes the total throughput. In each user selection step, the algorithm selects a

user who provides the maximum total throughput with those already selected users.

While the first algorithm requires frequent singular value decomposition (SVD) of

the channel matrices, the second proposed algorithm selects the users based on the

channel energy, thus reducing the computational complexity. I show that the pro-

posed algorithms achieve around 95% of the total throughput of the optimal user

set, and the complexity of the proposed algorithms is linear in the total number of

users K.

4.2 System Model and Background

The system model and the BD algorithm has been presented in Chapter 3. In a

downlink multiuser MIMO system with K users, I denote the number of transmit

antennas at the basestation as Nt and the number of receive antennas for the jth

user as Nr,j . In the rest of the chapter, it is assumed that every user has and uses the

same number of receive antennas, i.e. Nr,j = Nr for j = 1, 2, · · · ,K for simplicity,

where K is the total number of users in the system. With the assumption that each

element in the user MIMO channel matrix Hj is generated by an i.i.d. complex

Gaussian distribution, it can be inferred from the rank condition in [80] that the

maximum number of simultaneous users is
⌈

Nt
Nr

⌉
, where d·e is the ceiling operation.

4.3 Low Complexity User Selection Algorithms

In this section, the sum capacity (i.e. the maximum total throughput) of BD de-

fined in Section 3.4 is repeated. Two suboptimal user selection algorithms are then
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proposed to reduce the complexity of finding the optimal user set.

Consider a set of channels {Hj}K
j=1 for a multiuser MIMO system. Let

K = {1, 2, · · · ,K} denote the set of all users, and Ai be a subset of K, where the

cardinality of Ai is less than or equal to the maximum number of simultaneous users

K̂. Let Hj = HjTj denote the effective channel after precoding for user j ∈ Ai,

then the total throughput achieved with BD applied to the user set Ai with total

power P can be expressed as

CBD|Ai
(HAi , P, σ2) = max

{Qj : Qj≥0,
P

j∈Ai

Tr(Qj)≤P}

∑

j∈Ai

log
∣∣∣∣I +

1
σ2

HjQjH
∗
j

∣∣∣∣ (4.1)

where Qj = E[xjx∗j ] is user j’s input covariance matrix of size Nj × Nj and HAi

denotes the set of channels for those users in Ai. Notice that the solution to the

RHS of (4.1) can be obtained by the water-filling algorithm over the eigenvalues of

{HjH
∗
j}j∈Ai with total power constraint P , as discussed in [80].

Let A be the set containing all possible Ai, i.e. A = {A1,A2, · · · }, then the

sum capacity (maximum total throughput) with BD can be defined as

CBD(H1,H2, · · · ,HK , P, σ2) = max
Ai∈A

CBD|Ai
(HAi , P, σ2). (4.2)

Denote K̂ =
⌈

Nt
Nr

⌉
as the maximum number of simultaneous users, and the Cardi-

nality of A is |A| =
∑K̂

i=1 KCi, where nCm denotes the combination of n choosing

m. Hence, it is clear that a brute-force exhaustive search over A is computationally

prohibitive if K À K̂.

4.3.1 Capacity-Based Suboptimal User Selection Algorithm

The exhaustive search method needs to consider roughly O(KK̂) possible user sets.

In this section, I present a suboptimal algorithm whose complexity is O(K̂K).

Let si denote the user index selected in the ith iteration, i.e. si ∈ {1, 2, · · · ,K}
and 1 ≤ i ≤ K̂. Let Ω denote the set of unselected users and Υ denote the set of
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Table 4.1: Capacity-Based Suboptimal User Selection Algorithm

1. Initially, let Ω = {1, 2, · · · ,K} and Υ = ∅. Let s1 =
arg max

k∈Ω
log

∣∣I + 1
σ2 HkQkH

∗
k

∣∣ where Tr(Qk) ≤ P and Qk is semi-positive

definite. Let Ω = Ω − {s1} and Υ = Υ + {s1}. Let Ctemp =
max
k∈Ω

log
∣∣I + 1

σ2 HkQkH
∗
k

∣∣.

2. for i = 2 : K̂

(a) For every k ∈ Ω,

i. Let Υk = Υ + {k}.
ii. Find the precoding matrix Tj for each j ∈ Υk, and obtain the effec-

tive channel Hj = HjTj for each j ∈ Υk.
iii. Perform a singular value decomposition (SVD) on Hj , and obtain

the M singular values {λj,m}M
i=1.

iv. Water-fill over λ2
j,m for j ∈ Υk and 1 ≤ m ≤ M . Find the total

throughput to the user set Υk, denoted as Ck.

(b) Let si = arg max
k∈Ω

Ck.

(c) If max
k∈Ω

Ck < Ctemp

Algorithm terminated. The selected user set is Υ.
else
Let Ω = Ω− {si} and Υ = Υ + {si}. And let Ctemp = max

k∈Ω
Ck.

selected users. The capacity-based user selection algorithm is described in Table 4.1.

In words, the algorithm first selects the single user with the highest capacity. Then,

from the remaining unselected users, it finds the user that provides the highest total

throughput together with those selected users. The algorithm terminates when K̂

users are selected or the total throughput drops if more users are selected (the total

throughput may decrease with an additional user because the size of the null space

for every user reduces in order to meet the zero inter-user interference requirement).

Clearly, the proposed algorithm needs to search over no more than K̂K user sets,

which greatly reduces the complexity compared to the exhaustive search method.
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Since the user selection criterion is based on the sum capacity, I name the above

algorithm the capacity-based suboptimal user selection algorithm. Its throughput

performance will be shown in Section 4.5.

4.3.2 Frobenius Norm-Based Suboptimal User Selection Algorithm

Although the capacity-based suboptimal user selection algorithm greatly reduces

the size of the search set, the algorithm still may not be cost-effective for real-time

implementation because singular value decomposition, which is computationally in-

tensive, is required for each user in each iteration to find the total throughput. In

this section, I propose another suboptimal user selection algorithm which is based

on channel Frobenius norm. The motivation is that the capacity is closely related

to eigenvalues of the effective channel after precoding. Although the channel Frobe-

nius norm cannot characterize the capacity completely, it is related to the capacity

because the Frobenius norm indicates the overall energy of the channel, i.e. the sum

of the eigenvalues of HH∗ equals ||H||2F .

Let si denotes the user index selected in the ith iteration, i.e. si ∈ {1, 2, · · · ,K}
and 1 ≤ i ≤ K̂. Let Ω denote the set of unselected users and Υ denote the set of

selected users. Let Vk be the basis for the row vector space of Hk after applying

the Gram-Schmidt orthogonalization procedure to the rows of Hk. The Frobenius

norm-based user selection algorithm is described in Table 4.2. The idea of the norm-

based user selection algorithm is to select the set of users such that the sum of the

effective channel energy of those selected users is as large as possible. Notice that

steps 1 and 2 in the norm-based algorithm are independent with SNR, i.e. P . Once

the K̂ users are selected, step 3 makes the final user selection (possibly a subset

of the K̂ users chosen by steps 1 and 2) with the capacity-based algorithm, where

the SNR is taken into consideration. Clearly, the norm-based algorithm requires

fewer SVD operations than the capacity-based algorithm. Detailed computational

complexity will be analyzed in Section 4.4.
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Table 4.2: Frobenius Norm-Based Suboptimal User Selection Algorithm

1. Initially, let Ω = {1, 2, · · · ,K} and Υ = ∅. Let s1 = arg max
k∈Ω

||Hk||2F . Let

V = Vs1 . Let Ω = Ω− {s1} and Υ = Υ + {s1}.
2. for i = 2 : K̂

(a) For each k ∈ Ω, let H̃k = Hk −HkV∗V. Then H̃k is in the null space of
V.
for j = 1 : i− 1

i. Let
Ĥsj ,k = [HT

s1
· · · HT

sj−1
HT

sj+1
· · · HT

si−1
HT

k ]T .

ii. Let Wsj ,k be the row basis for Ĥsj ,k after Gram-Schmidt orthogo-
nalization.

(b) For each s ∈ Υ, let H̃s = Hs − HsW∗
s,kWs,k. Then H̃s is in the null

space of Ĥs,k. Let

si = arg max
k∈Ω

(∑

s∈Υ

||H̃s||2F + ||H̃k||2F
)

.

(c) Let Ω = Ω− {si} and Υ = Υ + {si}. Apply the Gram-Schmidt orthogo-

nalization procedure to H̃si and get Ṽsi . Let V = [VT Ṽ
T

si
]T .

3. Apply the capacity-based suboptimal user selection algorithm to the set Υ,
and get the final selected user set and the total throughput.
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4.4 Computational Complexity Analysis

Since the primary motivation for the two proposed suboptimal algorithm is their

reduced computational complexity, in the section I quantify their complexity and

compare with the brute-force approach. The complexity is counted as the number

of flops, denoted as ψ. A flop is defined to be a real floating point operation [28]. A

real addition, multiplication, or division is counted as one flop. A complex addition

and multiplication have two flops and six flops, respectively. Although flop counting

cannot characterize the true computational complexity, it captures the order of the

computation load, so suffices for the purpose of the complexity analysis in this

chapter.

4.4.1 Complexity of Typical Matrix Operations

For an m × n complex-valued matrix H ∈ Cm×n, I first provide the flop count of

several matrix operations that are frequently used in the suboptimal user selection

algorithm. It is assumed that K À K̂, K̂Nr ≈ Nt, and m ≤ n in this section.

• Frobenius norm ‖H‖2
F takes 2mn real multiplications and 2mn real additions,

hence the flop count is 4mn.

• Gram-Schmidt orthogonalization GSO(H) takes 4m2n− 2mn real multiplica-

tions; 4m2n− 2mn real additions; and 2mn real divisions. The flop count for

GSO is 8m2n− 2mn.

• Water-filling over n eigenmodes takes up to 1
2(n2 + 3n) real multiplication;

n2 + 3n real additions; and 1
2(n2 + 3n) real divisions. The flop count for

water-filling is 2n2 + 6n.

• The flop count for SVD of real-valued m × n (m ≥ n) matrices is 4m2n +

8mn2 + 9n3 [28]. For complex-valued m× n (m ≤ n) matrices, the flop count
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is approximated as 24mn2 + 48m2n + 54m3 by treating every operation as

complex multiplication.

4.4.2 Suboptimal User Selection Algorithm I: Capacity-Based Ap-

proach

1. i = 1: SVD of Hk has 48N2
r Nt+24NrN

2
t +54N3

r flops, water-filling needs 2N2
r +

6Nr flops, and the calculation of total throughput requires 2Nr flops. In total,

step 1 has computational complexity K
(
48N2

r Nt + 24NrN
2
t + 54N3

r + 2N2
r + 8Nr

)
.

2. i ≥ 2:

For each k ∈ Ω, to get Tk by SVD needs 48(i−1)2N2
r Nt+24(i−1)NrN

2
t +54(i−

1)3N3
r flops. To compute Hk = HkTk, the complexity of this multiplication

is 8NtNr(Nt − (i − 1)Nr). SVD of Hk introduces 48N2
r (Nt − (i− 1)Nr) +

24Nr (Nt − (i− 1)Nr)
2 + 54N3

r flops. Water-filling needs 2iNr(iNr + 3) flops,

whereas the total throughput calculation has complexity 2iNr.

Hence, the flop count of the capacity-based user selection algorithm is

ψc

(a)
<

l
Nt
Nr

m
∑

i=2

{[
48i(i− 1)2 + 48i

]
N2

r Nt

+ [24i(i− 1) + 32i] NrN
2
t +

(
54i(i− 1)3 + 54i

)
N3

r

+2i2N2
r + 8iNr

}× (K − i + 1)

+K
(
48N2

r Nt + 24NrN
2
t + 54N3

r + 2N2
r + 8Nr

)

≈ O
(

K

⌈
Nt

Nr

⌉5

N3
r

)
≈ O

(
K

⌈
Nt

Nr

⌉2

N3
t

)
, (4.3)

where the inequality in (a) is due to the upper bound of (Nt − (i− 1)Nr) by Nt in

the calculation of Hk and the SVD of Hk.
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4.4.3 Suboptimal User Selection Algorithm II: Frobenius Norm

Approach

1. i = 1: The Frobenius norm of K users needs 4KNrNt flop counts.

2. i ≥ 2.

For each k ∈ Ω, 18(i − 1)N2
r Nt flops are needed for H̃k = Hk − HkV∗V,

which include the flops for both matrix multiplications and additions; 8(i −
1)2N2

r Nt − 2(i− 1)NrNt flops for Wsj ,k; 18(i− 1)N2
r Nt + 4(i− 1)NrNt flops

for ‖Hs −HsW∗
s,kWs,k‖2

F ; and 4(i− 1)NrNt flops for ‖H̃k‖2
F .

3. The complexity of applying the capacity-based algorithm to the selected K̂ =⌈
Nt
Nr

⌉
users is O

{⌈
Nt
Nr

⌉3
N3

t

}
, which is not dependent on K, and hence negli-

gible compared to the complexity of steps 1 and 2.

Therefore, the total flops of the norm-based user selection algorithm is

ψn ≈

l
Nt
Nr

m
∑

i=2

{[
8(i− 1)3 + 18(i− 1)2 + 18(i− 1)

]
N2

r Nt+

[2(i− 1)2 + 4(i− 1)]NrNt

}× (K − i + 1) + 4KNrNt

≈ O
(

K

⌈
Nt

Nr

⌉4

N2
r Nt

)
≈ O

(
K

⌈
Nt

Nr

⌉2

N3
t

)
. (4.4)

4.4.4 Optimal User Selection Algorithm: Complete Search

In the optimal user selection algorithm, the basestation conducts an exhaustive

search over the
∑
l

Nt
Nr

m
i=1 KCi possible user sets. The complexity of this complete
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search method is

ψcs

(a)

≥ KClNt
Nr

m ⌈
Nt

Nr

⌉[(
48

(⌈
Nt

Nr

⌉
− 1

)2

+ 8

)
N2

r Nt + 24
(⌈

Nt

Nr

⌉
− 1

)
NrN

2
t

+

(
54

(⌈
Nt

Nr

⌉
− 1

)3

+ 2
⌈

Nt

Nr

⌉2

+ 126

)
N3

r + 8
⌈

Nt

Nr

⌉
Nr

]

≈ O
(

KClNt
Nr

m ⌈
Nt

Nr

⌉
N3

t

)
(4.5)

where the inequality in (a) holds because only the case of picking K̂ =
⌈

Nt
Nr

⌉
out of

K users is considered to simplify the complexity analysis.

In summary, the proposed two suboptimal user selection algorithms have only

a fraction of the complexity of the complete search method approximately equal to

η ≈
K

⌈
Nt
Nr

⌉

KClNt
Nr

m . (4.6)

Both the capacity-based and the Frobenius norm-based algorithms have linear com-

plexity with K, because no more than K̂K user sets need to be searched over. The

norm-based algorithm has slightly lower complexity than the capacity-based one

because SVD is less frequently used in the norm-based algorithm. In my Matlab 7.0

implementation of the two proposed suboptimal algorithms, I observed that both

algorithms take tens to hundreds of milliseconds (on a Pentium M 1.6 GHz PC) to

select a user set, and the CPU run time is linear in the number of users. Further,

the norm-based algorithm runs roughly two times faster than the capacity-based

algorithm, for systems with a large number of users.

4.5 Simulation Results

In this section, I compare the performance of the following algorithms:

• iterative water-filling for dirty paper coding [40] (DPC),
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• optimal user selection by complete search (BD Optimal),

• capacity-based user selection algorithm (BD c-algorithm),

• Frobenius norm-based user selection algorithm (BD n-algorithm),

• round-robin algorithm for K̂ simultaneous users (BD no selection).
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Figure 4.1: Ergodic sum capacity vs. the number of users. Nt = 4 and Nr = 2.

Figs. 4.1–4.3 show the ergodic sum capacity (averaged over 1000 channel

realizations) vs. the number of users for (Nt = 4, Nr = 2), (Nt = 12, Nr = 4),

and (Nt = 8, Nr = 1) MIMO systems, where K̂ = 2, 3, 8, respectively. Fig. 4.3

shows only up to 16 users in the system due to the complexity of the exhaustive

search method. In all simulations, the capacity-based and the norm-based user

selection algorithms achieve around 95% of the total throughput of the complete

search method. The capacity-based algorithm performs slightly better than the

norm-based algorithm because its user selection criterion is directly based on the
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Figure 4.2: Ergodic sum capacity vs. the number of users. Nt = 12 and Nr = 4.

sum capacity. For low SNRs, e.g. SNR = 0 dB, the proposed algorithms achieve

almost the same sum capacity as the exhaustive search method. This is true because

beamforming to the user with the highest capacity, which is the first step in the

capacity-based user selection algorithm, is asymptotically optimal for sum capacity

of BD in the low SNR regime. For high SNRs, although the proposed algorithms

may not always find the optimal user set due to their reduced search range, they can

still achieve a significant part of the ergodic sum capacity of the exhaustive search

method because both algorithms greedily try to maximize the total throughput. The

sum capacity achieved by dirty paper coding (DPC) is also plotted in Figs. 4.1–4.3.

In general, DPC achieves higher sum capacity than BD because DPC is optimal for

the sum capacity of MIMO broadcast channels [88][93]. BD, however, still achieves

a significant part of the DPC sum capacity. Further, the low complexity property

of the BD algorithm (e.g. without the requirement for successively encoding and

decoding user signals) makes it more suitable for practical implementations.
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Figure 4.3: Ergodic sum capacity vs. the number of users. Nt = 8 and Nr = 1.

It is also noticeable that the throughput does not increase significantly when

the number of total users is already large, for dirty paper coding, block diagonal-

ization, and the proposed user selection algorithms. In fact, it has been proven that

the sum capacity of dirty paper coding scales as log log K for large K [67], where

K denotes the total number of users in the system. Hence, most of the multiuser

diversity can be achieved with a medium number of users. This motivates user

grouping in practical systems to reduce the computational complexity with small

throughput degradation compared to the optimal solution.

4.6 Conclusion

Two suboptimal user selection algorithms for multiuser MIMO systems with block

diagonalization are proposed in this chapter. The goal is to select a subset of users

to maximize the total throughput while keeping the complexity low. The brute-
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force complete search method yields the optimal user set, but the complexity is

roughly O{KK̂}, where K is the total number of users and K̂ is the maximum

number of simultaneous users. Simulations show that the proposed capacity-based

and norm-based user selection algorithms achieve about 95% of the sum capacity

whereas their complexity is O{K}. Although the proposed user selection algorithms

are greedy in nature, they can be easily extended to incorporate fairness, e.g. the

rate proportional fairness in [72].
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Chapter 5

Conclusion

As the data rate requirements increase for media-rich communications, channel-

aware adaptive resource allocation is becoming more critical to system performance.

Enabled by multicarrier modulation and multi-antenna technologies, multiple par-

allel channels can be created in either the frequency or spatial domain. Compared

to single channel systems, resource allocation in multiuser multichannel systems is

more challenging because of the additional degree of freedom for resources. In this

dissertation, I study the performance of adaptive resource allocation in multiuser

multichannel wireless communication systems [70] [72] [76] [77]. Adaptive resource

allocation can usually be formulated as an optimization problem. The optimal so-

lution is typically very difficult to obtain due to the large number of variables.

Further, the wireless channel is time-varying, so adaptive resource allocation should

be performed to match the channel variations. Due to the need for real-time channel

adaptation, low complexity algorithms are mandatory for any practical implemen-

tation of resource allocation. This dissertation presents low complexity resource

allocation algorithms for both multiuser OFDM systems [70] [72] and multiuser

MIMO systems [74] [75].

79



5.1 Summary of Contributions

The first contribution of this dissertation is an optimization framework for multiuser

OFDM systems, in which the tradeoff between total throughput and user fairness

can be easily evaluated. In downlink multiuser OFDM systems, data streams from

multiple users are multiplexed into each OFDM symbol. Hence, the basestation

can serve multiple users simultaneously. While the channel conditions of different

users are largely independent due to users’ different locations, multiuser OFDM can

exploit the multiuser diversity to improve the system performance. Previous works

either maximize the total system throughput without consideration of user data fair-

ness [36] [48] or provide maximum fairness among users with the sacrifice of system

throughput [64]. In this dissertation, I propose to maximize the total throughput

while maintaining user data rates proportional [70] [72]. With the proportional rate

constraints, the data rate fairness among users can be flexibly controlled by a set of

parameters. Further, the total system throughput is also adjustable by varying the

proportional fairness parameters.

The formulated optimization problem for adaptive resource allocation in

multiuser OFDM systems includes both continuous and binary variables and, hence,

is difficult to solve. To lower the computational complexity, I propose a subopti-

mal algorithm that separates the subchannel and power allocation among users.

By doing so, the number of variables each step has to optimized is almost reduced

by half. First, the subchannels are allocated among users assuming equal power

is distributed in each subchannel. Second, transmit power is optimally allocated

among users and within each individual user according to the subchannel allocation

scheme. In general, the optimal power allocation is the solution to a set of nonlinear

equations, which can be found iteratively with the Newton-Raphson method. Due

to the special characteristics of the nonlinear equations, it is shown in Appendix B

that a computational complexity of O(K) is necessary to obtain the optimal power
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allocation, where K is the total number of users in the system. Two specially cases

where the iterative Newton-Raphson method can be avoided are also analyzed in

the dissertation. The Matlab implementation of the proposed algorithm is available

at http://www.ece.utexas.edu/˜bevans/papers/2005/multiuserOFDM/.

Simulations show that the proposed suboptimal algorithm can achieve about

95% of the optimal total throughput in a two-user ten-subchannel OFDM system,

while reducing the complexity from exponential to linear in the number of subchan-

nels. It is also shown that in a system of 16 users, the proposed optimal power

allocation achieves 17% more capacity over fixed TDMA than the max-min method

with equal power allocation in [64]. Further, with the proposed resource allocation

algorithm, the sum capacity is distributed more fairly and flexibly among users than

the sum capacity maximization algorithm in [36]. Since the proposed adaptive re-

source allocation applies to each channel realization, proportional data rates can be

assured among users for any time scale of interest. Further, the proposed optimiza-

tion framework allows different users request variable priorities of their services with

different prices, which is suitable for systems with heterogenous user services.

The second contribution is an analysis on the sum capacity of multiuser

MIMO broadcast channels with block diagonalization [76] [77]. Block diagonaliza-

tion [14] [80] is a linear precoding method in downlink multiuser MIMO systems.

Each user’s signal is pre-multiplied by a precoding matrix before transmission. The

precoding matrix of each user lies in the null space of all other users’ channels,

hence inter-user interference is completely eliminated if the channel state informa-

tion of all users is available at the basestation. The effective channel for every user,

therefore, is a point-to-point MIMO channel, rendering a simpler receiver structure.

The resource allocation in multiuser MIMO systems aims to distribute the transmit

power optimally such that a certain objective function, e.g. the sum capacity stud-

ied in this dissertation, is optimized. Although it has been shown that dirty paper

coding is optimal for the sum capacity [88] of downlink multiuser MIMO systems,
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cost-effective coding schemes that approach the dirty paper coding sum capacity,

however, are still unavailable. Therefore, block diagonalization, as a practically im-

plementable technique for downlink multiuser MIMO systems, deserves a thorough

study.

In this dissertation, I formulate an optimization problem for block diagonal-

ization with both transmitter precoding and receiver post-processing to maximize

the total system throughput [76]. While the optimal post-processing matrices at

the receivers are difficult to obtain, I restrict myself to a set of selection matrices

[76]. The selection matrices allow each user to select a subset of receive antennas

to use. Although for a particular user, his/her throughput may be reduced by us-

ing fewer receive antennas, the system throughput can increase because additional

spatial dimension is saved for other users. Further, since the precoding and post-

processing matrices are designed at the basestation, the post-processing matrices

should be conveyed to their own users, which increases system overhead. Due to

the simple structure of the selection matrices, less system overhead is required for

the selection matrices than the optimal post-processing matrices. Simulations show

that with receive antenna selection, the total throughput of a downlink multiuser

MIMO system with block diagonalization can be further improved.

I also analytically compare block diagonalization with dirty paper coding.

It is shown that for a set of fixed channels, 1) if the user channels are orthogonal

to each other, then block diagonalization achieves the same sum capacity as dirty

paper coding; 2) if the user channels lie in the same subspace, then the gain of dirty

paper coding over block diagonalization can be upper bounded by the minimum of

the number of transmit and receive antennas. The ergodic sum capacity of block

diagonalization in a Rayleigh fading channel is also studied. Simulations show that

block diagonalization can achieve a significant part of the dirty paper coding sum

capacity. An upper bound on the ergodic sum capacity gain of dirty paper coding

over block diagonalization is proposed for easy estimation of the gap between the
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sum capacity of dirty paper coding and block diagonalization.

The third contribution of this dissertation consists of two low complexity

user selection algorithms in downlink multiuser MIMO systems with block diago-

nalization [74] [75]. Due to the zero inter-user interference requirement imposed by

block diagonalization, the maximum number of simultaneously supportable users

is limited. For systems with a large number of users, optimal user set selection is

necessary to increase the system throughput by exploiting the multiuser diversity.

While the complete search method yields the optimal user set, its computational

complexity is prohibitive if the number of users is large.

In this dissertation, I propose two suboptimal user selection algorithms, both

of which aim to select a subset of users such that the total throughput is nearly

maximized. The user selection criterion of the first algorithm is the total system

throughput, and it greedily selects a user that provides the best total throughput

along with those already scheduled users. While the computationally intensive ma-

trix operations, such as Singular Value Decomposition, are frequently used in the

first algorithm, the second algorithm selects users based on the channel energy, hence

further reduces the computational complexity. It is shown that both algorithms have

a linear computational complexity in the number of users and achieve around 95%

of the total throughput of the complete search method. The first algorithm achieves

slightly higher total throughput than the second algorithm since it directly uses

the total throughput as the user selection criterion. The computational complex-

ity, however, favors the second algorithm because Singular Value Decomposition is

avoided as much as possible.

5.2 Future Research

In this section, I propose several future research topics for multicarrier and/or multi-

antenna wireless systems, potentially for other researchers interested in this area.
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• Implementing Adaptive Resource Allocation with Proportional Data Rate Con-

straints in Multiuser OFDM systems

Several aspects on the proposed proportional data rate resource allocation

algorithm need to be investigated before practical implementation. For ex-

ample, the set of system parameters {γk}K
k=1 should be determined based on

users’ target applications. A simple example is to let users choose their γk

from a set pre-determined discrete values to represent their service priorities.

The basestation, after receiving users’ requests, can grant a subset of users for

transmission based on the available resources. Other methods to determine

the proportional data rate constraints need further study. Another implemen-

tation issue is on the solution to a system of non-linear equations, which is

required for the optimal power distribution among users. In practical systems,

the channel-to-noise ratio of different users can vary significantly, largely due

to the different user locations and pathloss, which could make the system of

non-linear equations ill-conditioned. Hence efficient and accurate implementa-

tion of the proposed algorithm is very important to obtain the optimal power

allocation. Grouping users with similar channel-to-noise ratios and perform-

ing the proposed algorithm to each user group is a possible solution to make

the system of non-linear equations less ill-conditioned, as the channel-to-noise

ratio in each user group is about the same value. Another method [98] to

lower the computational complexity is to allocate the subchannels such that

the system of non-linear equations is reduced to the linear case as discussed

in Section 2.4.2.

• Adaptive Resource Allocation in Multiuser MIMO-OFDM Systems

The next generation of cellular systems is likely to be OFDM based with mul-

tiple antennas [65]. With OFDM, the wideband is divided into a number of

parallel subchannels in the frequency domain. With multiple antennas, mul-
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tiple users can be supported for simultaneous transmissions in each frequency

subchannel. Resource allocation in multiuser MIMO-OFDM systems [109] is

likely to be even more challenging because the limited resource shall be op-

timized in multiple dimensions. If block diagonalization is employed on each

frequency subchannel, then the user selection algorithms proposed in Chapter

4 can be potentially used on a per-subchannel basis to select a good user set

to optimize the total throughput. Power allocation shall be designed carefully

as it involves

– Power allocation among different frequency subchannels;

– Power allocation among users in each frequency subchannel;

– Power allocation in the multi-dimensional spatial domain for each user.

Data rate fairness among users demands further study for adaptive resource

allocation in multiuser MIMO-OFDM systems.

• Semi-Adaptive Resource Allocation for Multiuser OFDM Systems

For multiuser OFDM systems discussed in this dissertation, it is assumed that

adaptive resource allocation is performed as soon as the user channels are

changed. The system overhead for conveying the channel state information

from the users to the basestation and the resource allocation schemes from

the basestation to the users has not been incorporated into the problem for-

mulation. While this system overhead is negligible for slow varying channels,

it may be large for systems with fast channel variations. One possible solution

to reduce the system overhead is a semi-adaptive resource allocation, where

the subchannel allocation among users is performed once and remains fixed

throughout the whole transmission period, hence the subchannel allocation

scheme only needs to be conveyed to users once. The subchannel allocation

can be performed based on, e.g., the average channel condition of all users
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and/or the data rates, bit error rates, and service priorities required by dif-

ferent users. The subchannel allocation shall be carried out when one user’s

service is fulfilled or new service requests are admitted. Power allocation

among the subchannels assigned to each user can still be adapted to the chan-

nel variations. Further, since the subchannel allocation is fixed, the resource

allocation algorithm is much easier to realize in practical systems.

• Maximizing Ergodic Sum Capacity with Ergodic Proportional Rate Constraints

in Multiuser OFDM Systems

The adaptive resource allocation in multiuser OFDM systems proposed in this

dissertation is a static algorithm, i.e. for each channel realization, the algo-

rithm should be carried out and the proportional rate constraints are strictly

applied for each channel realization. Although the proposed algorithm guar-

antees proportional rates in any time scale, the ergodic sum capacity is not

necessarily optimized. A future research is to optimize the ergodic sum ca-

pacity while maintaining users’ ergodic rates proportional. Thus, multiuser

diversity can be even further exploited to improve the ergodic sum capacity.

• Impact of Imperfect Channel State Information for Adaptive Resource Alloca-

tion

Users’ channel state information (CSI) is required at the basestation for adap-

tive resource allocation in both multiuser OFDM and multiuser MIMO sys-

tems. In this dissertation, it is assumed that channel station information is

perfectly known at the basestation through a separate feedback channel. The

CSI is usually estimated at the receivers and, hence, prone to estimation er-

rors. Moreover, feedback delays may cause outdated CSI used by the adaptive

resource allocation algorithm. The impact of imperfect CSI to the system

performance with adaptive resource allocation needs further study. Channel

prediction [71] [97] and limited feedback techniques [13] [50] can be combined
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with adaptive resource allocation to combat the effects of feedback delay and

reduce the amount of feedback information.

• Fixed-Point Implementation of Adaptive Resource Allocation Algorithms

Since adaptive resource allocation should be performed frequently to match

the wireless channel variations, low complexity algorithms are desirable for

practical implementations. However, even the low complexity algorithms re-

quire a certain amount of computational efforts. For example, the optimal

power allocation for multiuser OFDM systems proposed in the dissertation

requires the Newton-Raphson method to solve a set of nonlinear equations it-

eratively and Singular Value Decomposition is necessary for multiuser MIMO

systems with block diagonalization to find the spatial eigenmodes of different

users. Currently these algorithms are implemented with floating-point arith-

metic. Future research shall map the proposed low complexity algorithms into

fixed-point implementations and lower the memory footprint.

• Sum Capacity of MIMO Broadcast Channels with Channel Frobenius Norm

Constraints

It has been proven that the sum capacity of a MIMO broadcast channel can

be achieved with dirty paper coding [88]. The duality results in [88] show that

for a given set of channels {Hk}K
k=1, the sum capacity of a Gaussian broadcast

MIMO channel can found by solving the following problem:

max
{Qk}

log

∣∣∣∣∣I +
K∑

k=1

H∗
kQkHk

∣∣∣∣∣ (5.1)

subject to
K∑

k=1

Tr(Qk) ≤ P

where Hk is the MIMO channel matrix for user k; Qk is the signal covariance

matrix for user k in the dual multiple access channel; P is the total transmit

power constraint; and K is the total number of users.
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For future work, I propose to jointly optimize the user channel matrices

{Hk}K
k=1 and their signal covariance {Qk}K

k=1 with a set of channel Frobe-

nius norm constraints as following

max
{Hk}

max
{Qk}

log
∣∣∣∣I +

K∑
k=1

H∗
kQkHk

∣∣∣∣ (5.2)

subject to
K∑

k=1

Tr(Qk) ≤ P

||Hk||2F ≤ Wk for k = 1, 2, · · · ,K.

The motivations for optimizing the channel jointly with the input covariance

matrix under the transmit power and channel power constraints are: 1) for the

class of power-constrained channels, an upper bound on the MIMO channel

capacity can be found; and 2) the characteristics of the channels providing the

maximum capacity can be obtained, which may be used to direct the adaptive

antenna array configuration if possible. Initial results for some special cases

can be found in [73]. The optimal solution in general is still for future study.
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Appendix A

Convexity of the Objective

Function in the Relaxed

Optimization Problem in

Section 2.3

First consider the following function

f (ρk,n, pk,n) = ρk,n log2

(
1 +

pk,nHk,n

ρk,n

)
(A.1)

where Hk,n =
h2

k,n

N0
B
N

.

The Jacobian of f(ρk,n, pk,n) is calculated as

∇f (ρk,n, pk,n) =


 log2

(
1 + pk,nHk,n

ρk,n

)
− 1

ln 2
pk,nHk,n

ρk,n+pk,nHk,n

1
ln 2

ρk,nHk,n

ρk,n+pk,nHk,n


 . (A.2)

The Hessian of f(ρk,n, pk,n) is calculated as

∇2f (ρk,n, pk,n) =
1

ln 2
pk,nH2

k,n

(ρk,n + pk,nHk,n)2


 −pk,n

ρk,n
1

1 −ρk,n

pk,n


 . (A.3)
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Since ρk,n, pk,n,Hk,n are all positive, it is not difficult to see that the Hessian of

f(ρk,n, pk,n) is negative semi-definite and hence f(ρk,n, pk,n) is concave. Thus the

Hessian of −f(ρk,n, pk,n) is positive semi-definite and −f(ρk,n, pk,n) is convex. The

objective function in (2.4) can be expressed as

K∑

k=1

N∑

n=1

1
N

(−f (ρk,n, pk,n)) (A.4)

and thus is a summation of a set of convex functions, which is also convex.
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Appendix B

Newton-Raphson Method for

Nonlinear Equations

In the following, I outline the major steps to find the power allocation with Newton-

Raphson method.

Denote the variables as

P = [P1,tot P2,tot . . . PK,tot]+ (B.1)

where [•]+ represents the operation of matrix transpose.

Also define a square system of equations g(P) = 0 where

g1(P) =
K∑

k=1

Pk,tot − Ptotal = 0 (B.2)

and

gk(P) =
N1

N

(
log2

(
1 + H1,1

P1,tot − V1

N1

)
+ log2 W1

)

−γ1

γk
· Nk

N

(
log2

(
1 + Hk,1

Pk,tot − Vk

Nk

)
+ log2 Wk

)
= 0 (B.3)

for k = 2, ...,K.
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Denote 4P as the update direction. The major step in Newton-Raphson

method is to solve the following equation to find 4P

J (P)4P = −g(P) (B.4)

and update P as

P = P +4P (B.5)

where

J (P) =




∂g1

∂P1,tot

∂g1

∂P2,tot
. . . ∂g1

∂PK,tot

∂g2

∂P1,tot

∂g2

∂P2,tot
. . . ∂g2

∂PK,tot

...
...

. . .
...

∂gK
∂P1,tot

∂gK
∂P2,tot

. . . ∂gK
∂PK,tot




(B.6)

is the Jacobian matrix of g(P) evaluated at P.

It is true that the computational complexity is still high since in general, a

matrix inversion or LU decomposition has to be performed in order to get 4P each

iteration. Fortunately, the Jacobain matrix of g(P) has a good structure which can

be fully utilized to reduce the computational complexity.

J (P) =




∂g1

∂P1,tot

∂g1

∂P2,tot
. . . ∂g1

∂PK,tot

∂g2

∂P1,tot

∂g2

∂P2,tot
. . . ∂g2

∂PK,tot

...
...

. . .
...

∂gK
∂P1,tot

∂gK
∂P2,tot

. . . ∂gK
∂PK,tot




=




1 1 . . . . . . 1
H1,1

N ln 2
1

1+H1,1
P1,tot−V1

N1

−γ1

γ2

H2,1

N ln 2
1

1+H2,1
P2,tot−V2

N2

0 . . . 0

...
...

...
. . .

...
H1,1

N ln 2
1

1+H1,1
P1,tot−V1

N1

0 . . . 0 − γ1

γK

HK,1

N ln 2
1

1+HK,1
PK,tot−VK

NK




.

(B.7)

Every except the first row of the Jacobian matrix has only two non-zero entries. By

substitution, 4P can be calculated with the complexity of O(K).
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Appendix C

Derivation of the Maximum

Deviation in Section 2.5.3

Notice that
∑K

k=1 R̃k,i = 1 and
∑K

k=1 γ̃k = 1. Hence there must exist some k,

such that R̃k,i − γ̃k < 0. Without loss of generality, assume that R̃k,i − γ̃k < 0 for

k = 1, 2, ..., k∗ and R̃k,i − γ̃k ≥ 0 for k = k∗ + 1, ..., K, then the objective function

can be written as

K∑

k=1

|R̃k,i − γ̃k| =
k∗∑

k=1

(
γ̃k − R̃k,i

)
+

K∑

k=k∗+1

(
R̃k,i − γ̃k

)

=
k∗∑

k=1

γ̃k −
K∑

k=k∗+1

γ̃k +
K∑

k=k∗+1

R̃k,i −
k∗∑

k=1

R̃k,i

=
k∗∑

k=1

γ̃k +
K∑

k=k∗+1

γ̃k − 2
K∑

k=k∗+1

γ̃k +
K∑

k=k∗+1

R̃k,i +
k∗∑

k=1

R̃k,i − 2
k∗∑

k=1

R̃k,i

≤ 1− 2min
k

γ̃k + 1

= 2− 2min
k

γ̃k (C.1)

Let argminkγ̃k = kmin, then one maximizer of the objective function in (2.24) is

R̃k,i = 1 for k = kmin and R̃k,i = 0 else.
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Appendix D

Proof of Lemma 2 in Section 3.4

Proof: Let the SVD of Hi be

Hi = UiΛiV∗
i (D.1)

where Ui is of size Nr×Nr and UiU∗
i = I; Λi = diag{λi,1, λi,2, · · · , λi,Nr} is a diag-

onal matrix of size Nr ×Nr; and Vi is of size Nt×Nr and V∗
i Vi = I. Furthermore,

H∗
i HiVi = ViΛ2

i . For i 6= j, V∗
jVi = (Λ2

j )
−1V∗

jH
∗
jHjH∗

i HiVi(Λ2
i )
−1 = 0 because

HjH∗
i = 0.

Let H = [H∗
1 H∗

2 · · · H∗
K ]∗, then the SVD of H can be expressed as H =

UΛV∗, where U = bdiag{U1,U2, · · · ,UK} is an unitary block diagonal matrix of

size KNr ×KNr; Λ = bdiag{Λ1,Λ2, · · · ,ΛK} is a diagonal matrix of size KNr ×
KNr; and V = [V1 V2 · · · VK ] is of size Nt×KNr and V∗V = I because V∗

jVi = 0

for i 6= j and V∗
jVi = I for i = j.

The capacity of the point-to-point MIMO channel H can be regarded as an

upper bound on the sum capacity of the broadcast channel because user cooperation

is allowed with H. Hence

CDPC(H1,··· ,K , P, σ2) ≤ Ccoop(H1,··· ,K , P, σ2) (D.2)

=
K∑

i=1

Nr∑

n=1

log
(

1 +
Pi,n

σ2
λ2

i,n

)
(D.3)
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where Pi,n is the power allocated to user i’s nth eigenmode and Pi,n is obtained by

the water-filling algorithm with total power constraint
K∑

i=1

Nr∑
n=1

Pi,n = P .

On the other hand, since V∗
jVi = 0 for i 6= j, we have H∗

jVi = 0 for i 6= j.

Thus we can set Tj = Vj to satisfy the null constraint in (3.2). Notice the effective

channel Hj = HjVj has the same singular values as Hj . Hence

CBD(H1,··· ,K , P, σ2) ≥ max
{Qj : Qj≥0,

P
j∈K

Tr(Qj)≤P}

∑

j∈K
log

∣∣∣∣I +
1
σ2

HjQjH
∗
j

∣∣∣∣ (D.4)

=
K∑

i=1

Nr∑

n=1

log
(

1 +
Pi,n

σ2
λ2

i,n

)
. (D.5)

With (D.3), (D.5), and the fact that CDPC ≥ CBD, we have CDPC = CBD as the

conditions in Lemma 3 are satisfied. 2
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Appendix E

Proof of Lemma 3 in Section 3.4

Proof: Let E = [e∗1 e∗2 · · · e∗Nr
]∗ be a basis in W, which is the row vector space

spanned by {Hi}K
k=1, where ei is of size 1 × Nt. Hence EE∗ = I. Let the SVD of

Hi be Hi = UiΛiV∗
i . There exists a unitary matrix Fi of size Nr × Nr such that

V∗
i = FiE. Then Hi = UiΛiFiE. Denote H(W)

i = UiΛiFi, it is easy to see that

H(W)
i has the same singular values of Hi. Hence

CDPC(H1,··· ,K , P, σ2) = max
{Sj : Sj≥0,

KP
j=1

Tr(Sj)≤P}
log

∣∣∣∣∣∣
I +

1
σ2

K∑

j=1

H∗
jSjHj

∣∣∣∣∣∣

= max
{Sj : Sj≥0,

KP
j=1

Tr(Sj)≤P}
log

∣∣∣∣∣∣
I +

1
σ2

K∑

j=1

E∗(H(W)
i )∗SjH

(W)
i E

∣∣∣∣∣∣

= max
{Sj : Sj≥0,

KP
j=1

Tr(Sj)≤P}
log

∣∣∣∣∣∣
I +

1
σ2

K∑

j=1

(H(W)
i )∗SjH

(W)
i

∣∣∣∣∣∣

= CDPC(H(W)
1,··· ,K , P, σ2). (E.1)
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Since the size of H(W)
i (for i = 1, 2, · · · ,K) is Nr ×Nr, analogous to Theorem 1 in

[39], we can obtain

CDPC(H1,··· ,K , P, σ2) = CDPC(H(W)
1,··· ,K , P, σ2)

≤ Nr log
(

1 +
P

σ2
λ2

max

)
(E.2)

where λmax = max
1≤i≤K,1≤n≤Nr

λi,n where λi,n is the ith user’s nth singular value.

On the other hand, if span(H1) = span(H2) = · · · = span(HK) and only one

user is supported with BD, we have

CBD(H1,··· ,K , P, σ2) = CTDMA(H1,··· ,K , P, σ2) (E.3)

≥ log
(

1 +
P

σ2
λ2

max

)
(E.4)

Then we can immediately obtain

G(H1,··· ,K , P, σ2) ≤ min{Nr,K} (E.5)

by Theorem 3 in [39]. 2
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