UT Telecommunications and Signal Processing Tech. Option

Professors
- J. K. Aggarwal
- Aristotle Arapostathis
- Alan C. Bovik
- Gustavo de Veciana
- Brian L. Evans
- Takis Konstantopoulos
- San-Qi Li
- Edward J. Powers
- Irwin W. Sandberg
- Harold W. Smith
- Gary L. Wise
- Baxter F. Womack
- Guanghan Xu

Adjunct Faculty
- Bill Bard
- Sayfe Kiaei
- Granville Ott
- Dana Taipale
Wireless Communications

- Time-frequency approaches (Fourier analysis)
- Digital communications increases SNR and capacity
- Antenna array adds further increase in SNR & capacity by using spatial diversity
- Third-generation systems: transmit voice & data (wideband CDMA)

Picture by Mr. Murat Torlak, UT Austin
DSL Technologies

- **HDSL** High bitrate 1.544 Mbps in both directions
- **ADSL** Asymmetric 1-9 Mbps downstream, 0.5-1 Mbps up
- **VDSL** Very high bitrate, 51.84 Mbps down, 6.48 Mbps up
Telecommunication Networks

- Internet
- Video-on-demand
- Sonet
- ATM
- Broadband ISDN
- Gigabit Ethernet

Picture by Prof. Jean Walrand, UC Berkeley
Telecommunications Block

- **Wireless Communications**
 - EE351M Digital Signal Processing
 - EE379K-17 (EE345S) Real-Time Digital Signal Processing Laboratory
 - EE360K Communication Electronics (Intro. to Digital Communications)
 - EE371M Communication Systems

- **Wireline Communications**
 - EE351M Digital Signal Processing
 - EE379K-17 (EE345S) Real-Time Digital Signal Processing Laboratory
 - EE371M Communication Systems

- **Networking**
 - EE379K-14 Telecommunication Networks
 - EE379K-18 Distributed Information Security
 - EE379K Networking Engineering Laboratory
 - EE379K Cryptography

- **Imaging**
 - EE371R Digital Image and Video Processing

Taking EE345L and EE379K-17 (EE345S) satisfies the EE321K requirement