DESIGN AND QUALITY ASSESSMENT OF FORWARD AND INVERSE ERROR DIFFUSION HALFTONING ALGORITHMS

Prof. Brian L. Evans

bevans@ece.utexas.edu
http://www.ece.utexas.edu/~bevans

Collaboration with Dr. Thomas D. Kite and Mr. Niranjan Damera-Venkata

Laboratory for Image and Video Engineering The University of Texas at Austin http://anchovy.ece.utexas.edu/

OUTLINE

- Introduction to halftoning and JBIG2
- Perceptually weighted SNR measure
- Halftoning by error diffusion
 - Linear gain model
 - Modified error diffusion
 - Noise metric
 - Tonality metric
- Inverse halftoning
 - Algorithm design and results
 - Modeling inverse halftoning
 - Quality metrics
- Interpolation and rehalftoning
- Conclusions

Was analog, now digital processing

Wordlength reduction for images

- 8-bit to 1-bit for grayscale
- 24-bit RGB to 8-bit for color displays
- 24-bit RGB to CMYK for color printers

Applications

- Printers
- Digital copiers
- Liquid crystal displays
- Video cards

Halftoning methods

- Screening
- Error diffusion
- Direct binary search
- Hybrids

EXAMPLE HALFTONES

Original image

Clustered dot screen

Dispersed dot screen Error diffusion II

Direct binary search

Error diffusion I

FOURIER TRANSFORMS

THE JBIG2 STANDARD (cont.)

Bi-level text coding

- Hard pattern matching (lossy)
- Soft pattern matching (lossless or near lossless) may be context based

Halftone coding

- Direct halftone compression
- Context based halftone coding
- Inverse halftoning and compression of grayscale image

Implications

- Printers, fax machines, scanners, etc. will need to decode JBIG2 bitstreams
- Fast decoding may require dedicated hardware and embedded software
- Need for low complexity, low memory solutions

PROBLEMS TO BE SOLVED

- Visual quality metrics for forward and inverse halftones
 - Quantify frequency distortion
 - Quantify effect of scan
 - Quantify quantization noise
- Modeling error diffusion
 - Develop tractable model
 - Demonstrate accuracy of model
 - Use model to improve designs
- Inverse halftoning
 - Develop efficient algorithm
 - Develop model for inverse halftoning
 - Fast JBIG2-compliant rehalftoning

OUTLINE **Introduction to halftoning and JBIG2** Perceptually weighted SNR measure Halftoning by error diffusion Linear gain model Modified error diffusion Noise metric Tonality metric **Inverse halftoning** Algorithm design and results Modeling inverse halftoning • Quality metrics Interpolation and rehalftoning Conclusions

HUMAN VISUAL SYSTEM

- Non-linear, spatially varying
- Assuming spatial invariance and linearity explains [Cornsweet 1970]
 - Mach band effect (false edge sharpness)
 - Apparent brightness vs. intensity

White noise SNR = 10 dB

Blue (highpass) noise SNR = 10 dB

 Weight noise component by spatial frequency to quantify visual impact

OUTLINE

- Introduction to halftoning and JBIG2
- Perceptually weighted SNR measure
- Halftoning by error diffusion
 - Linear gain model
 - Modified error diffusion
 - Noise metric
 - Tonality metric
- Inverse halftoning
 - Algorithm design and results
 - Modeling inverse halftoning
 - Quality metrics
- Interpolation and rehalftoning
- Conclusions

- Signal gain: $K_s \approx \text{constant}$
- Noise gain: $K_n = 1$

UNSHARPENED HALFTONES

• If
$$L = \frac{1 - K_s}{K_s}$$
 then STF = 1 (flat)

Accounts for frequency distortion

Original image

Unsharpened halftone

Jarvis halftone

Residual

OBJECTIVE TONALITY METRIC

- Limit cycles cause visual 'worm' artifacts [Fan & Eschbach 1994]
- Larger filters and serpentine scan result in lower tonality

Define tonality metric

Total distortion of sine grating

$$T = \left[\frac{1}{Y(e^{j\omega_f})Y^*(e^{j\omega_f})}\sum_{\omega\in\{\omega_d\}}Y(e^{j\omega})Y^*(e^{j\omega})\right]^{\frac{1}{2}}$$

- ω_f is the grating frequency
- Average *T* over tone frequencies {ω_d}: harmonics and aliased harmonics of ω_f
- Agrees with subjective evaluation
 - Correct ranking of error filters
 - Serpentine scan less tonal

OUTLINE

- Introduction to halftoning and JBIG2
- Perceptually weighted SNR measure
- Halftoning by error diffusion
 - Linear gain model
 - Modified error diffusion
 - Noise metric
 - Tonality metric
- Inverse halftoning
 - Algorithm design and results
 - Modeling inverse halftoning
 - Quality metrics
- Interpolation and rehalftoning
- Conclusions

INVERSE HALFTONING

- Recover grayscale from halftones
- Applications
 - Digital copiers (could support JBIG2)
 - Scanner software (could support JBIG2)
 - Embedded JBIG2 decoders
- Frame-based approaches
 - Bayesian estimation
 - Projection onto convex sets
 - Iterative lowpass smoothing and nonlinear filtering
 - Wavelet denoising
- Scan-based approaches
 - Proposed fast algorithm
- Frame-based methods are slow, memory-hungry, and often iterative

PROPOSED METHOD

- Apply anisotropic diffusion [Kite, Damera-Venkata, Evans & Bovik 1998]
 - Estimate image gradients
 - Compute diffusion coefficient
 - Preserve edges, smooth elsewhere
- Unique environment
 - Highpass noise, SNR ≈ 3 dB
 - Tonal
- Solution
 - Specialized gradient estimator
 - Correlate estimate across scales [Mallat & Zhong 1992]
 - Separable smooth parallel to edges
- Local operations
 - Low memory requirement
 - Low computational cost

PROPOSED METHOD (cont.)

- Estimate gradients at two scales
 - 7×7 and 5×5 FIR filters
 - Integer additions only
- Correlate gradients across scales
 - 5 dB improvement in gradient SNR
- Build parametric smoothing filter
 - 7×7 separable FIR filter
 - Family optimized for halftones
 - Quantized integer coefficients

INVERSE HALFTONE RESULTS

Original image

Halftone

Proposed method, 3s

Wavelet method, 180s

INVERSE HALFTONING MODEL

- Inverse (forward) halftoning blurs (sharpens) image and adds noise
- Model inverse halftoning
 - Compute unsharpened halftone
 - Inverse halftone; save filter parameters at each pixel
 - Filter original image using saved filters
- Typical correlation
 - Inverse halftone: $C_{RI} = 0.32$
 - Modeled inverse halftone: $C_{RI} = 0.01$

Inverse halftone

Modeled

Residual (×4)

INVERSE HALFTONE QUALITY

WSNR results

Reference	WSNR(dB)				
Image	boats	lena	barbara	mandrill	peppers
Original	25.36	26.93	20.47	19.02	27.69
Model	33.02	32.74	32.29	31.93	31.77

Compute effective transfer function

- Divide FFT of model inverse halftone by FFT of original image
- Radially average over annuli
- Lowpass characteristic (blurring effects)

OUTLINE

- Introduction to halftoning and JBIG2
- Perceptually weighted SNR measure
- Halftoning by error diffusion
 - Linear gain model
 - Modified error diffusion
 - Noise metric
 - Tonality metric
- Inverse halftoning
 - Algorithm design and results
 - Modeling inverse halftoning
 - Quality metrics
- Interpolation and rehalftoning
- Conclusions

INTERPOLATION

- Image resizing
- Different methods (increasing cost)
 - Nearest neighbor
 - Bilinear
 - Bicubic, cubic splines, lowpass filtering
- Nearest neighbor, bilinear methods
 - Low computational cost
 - Artifacts masked by quantization noise in halftone
 - Correct blurring by modified error diffusion
- Examine ×2 interpolation: method applies to any scaling factor
- Design *L* for flat transfer function using linear gain model (*L* is constant for given interpolator)

INTERPOLATION RESULTS

Nearest neighbor ×2

1.2

8.0 generation Wagnitude

0.2

0

Bilinear $\times 2$

Transfer function L = -0.0105

Transfer function L = 0.340

REHALFTONING

- Halftone conversion, manipulation
- Error diffused halftones
- Fixed lowpass inverse halftoning filter, compromise cut-off frequency
 - Noise leakage masked by halftoning
 - Correct blur by modified error diffusion
 - Computationally efficient

- Use linear gain model to design L for flat response
- Use approximation for digital frequency: $e^{j\omega} \approx 1 + j\omega \omega^2/2$

REHALFTONING RESULTS

Original image

Rehalftone

Signal transfer function

IMPLICATIONS FOR JBIG2

- JBIG2 embedded decoders
 - Low memory requirements
 - Low computational complexity
 - High parallelism
- Inverse halftoning: a robust solution for lossy coding of halftones
 - Rendering device can use a different halftoning scheme than encoder
 - Multiresolution halftone rendering (archive browsing)
 - High halftone compression ratios (9-16:1)
 - Quality enhancement if the encoder halftoning method is transmitted
- Low-cost embedded implementations

CONCLUSIONS

- Visual quality measures for distortion and noise in halftones
- Linear gain model of error diffusion
 - Validate accuracy of quantizer model
 - Tonality measure accounts for artifacts
 - Link between filter gain and signal gain

Inverse halftoning

- New efficient method, embedded
- Model inverse halftoning
- Quality measures for inverse halftones

Rehalftoning and interpolation

- Efficient algorithms
- Impact on emerging JBIG2 standard
- Web site for software and papers
 - http://www.ece.utexas.edu/~bevans/
 projects/inverseHalftoning.html