INTRODUCTION TO DIGITAL SIGNAL PROCESSORS

Prof. Brian L. Evans

in collaboration with

Niranjan Damera-Venkata and

Magesh Valliappan

Accumulator architecture

Memory-register architecture

Load-store architecture

Embedded Signal Processing Laboratory The University of Texas at Austin Austin, TX 78712-1084

http://anchovy.ece.utexas.edu/

Signal Processing Applications

- Low-cost embedded systems
 - Modems, cellular telephones, disk drives, printers
- High-throughput applications
 - Halftoning, radar, high-resolution sonar, tomography
- PC based multimedia
 - Compression/decompression of audio, graphics, video
- Embedded processor requirements
 - Inexpensive with small area and volume
 - Deterministic interrupt service routine latency
 - Low power: ~50 mW (TMS320C5402/20: 0.32 mA/MIP)

Conventional DSP Architecture

High data throughput

- Harvard architecture
 - Separate data memory/bus and program memory/bus
 - Three reads and one or two writes per instruction cycle
- Short deterministic interrupt service routine latency
- Multiply-accumulate (MAC) in a single instruction cycle
- Special addressing modes supported in hardware
 - Modulo addressing for circular buffers (e.g. FIR filters)
 - Bit-reversed addressing (e.g. fast Fourier transforms)
- Instructions to keep the 3-4 stages of the pipeline full
 - Zero-overhead looping (one pipeline flush to set up)
 - Delayed branches

Conventional DSP Architecture (con't)

Data-shifting

Modulo addressing

> implementing circular buffers and delay lines

Modulo addressing

 Bit reversed addressing
 used to implement the radix-2

FFT

Conventional DSP Architecture (con't)

	Fixed-Point	Floating-Point
Cost/Unit	\$5	\$10
Architecture	accumulator	load-store or
		memory-register
Registers	2–4 data	8 or 16 data
	8 address	8 or 16 address
Data Words	16 or 24 bit integer and	32 bit integer and
	fixed-point	fixed/floating-point
On-Chip	2–64 kwords data *	8–64 kwords data
Memory	2–64 kwords program	8–64 kwords program
Address	16 kw–8 Mw data	16 Mw–4Gw data
Space	16–64 kw program **	16 Mw–4 Gw program
Compilers	C compilers;	C, C++ compilers;
	poor code generation	better code generation
Examples	TI TMS320C5x;	TI TMS320C3x;
	Motorola 56000	Analog Devices SHARC

Pipelining: Hazards

- A control hazard occurs when a branch instruction is decoded
 - "Flush" the pipeline
 - or: Delayed branch (expose pipeline)
- A data hazard occurs because an operand cannot be read yet
 - Intended by programmer
 - or: Interlock hardware inserts "bubble"

TMS320C5x example

LAC #064h	LAR AR2, DATA
SAMM AR2	LACC *-
NOP	
T.ACC *-	

Pipelining: Avoiding Control Hazards

TI TMS320C6x VLIW DSP Architecture

14

TI TMS320C6x VLIW DSP Architecture

- One instruction cycle per clock cycle
- Two parallel data paths with single-cycle units:
 - Data unit 32-bit address calculations (modulo, linear)
 - Multiplier unit 16 bit x 16 bit with 32-bit result
 - Logical unit 40-bit (saturation) arithmetic & compares
 - Shifter unit 32-bit integer ALU and 40-bit shifter
- 16 32-bit general purpose registers in each path
 - 40 bits can be stored in adjacent even/odd registers
- 32-bit addressing of 8/16/32 bit data
- Fixed-point (C62x) and floating-point (C67x)
- C67x computes floating-point multiply in 4 cycles

C5x and C6x Addressing Modes

 Immediate The operand is part of 	TMS320C5x	TMS320C6x		
the instruction	ADD #0FFh	add .L1 -13,A1,A6		
Register				
The operand is specified in a register	(implied)	add .L1 A7,A6,A7		
Direct				
The address of the operand is part of the instruction (added to imply memory page)	ADD 010h	not supported		
 Indirect The address of the operand is stored in a register 	ADD *	ldw .L1 *A5++[8],A1		

TMS320C6x vs. Pentium MMX

Processor	Peak MIPS	BDTI marks	ISR latency	Power	Unit Price	Area	Volume
Pentium MMX 233	466	49	1.14 µs	4.25 W	\$213	5.5" x 2.5"	8.789 in ³
Pentium MMX 266	532	56	1.00 μs	4.85 W	\$348	5.5" x 2.5"	8.789 in ³
C62x 150 MHz	1200	74	0.12 μs	1.45 W	\$25	1.3" x 1.3"	0.118 in ³
C62x 200 MHz	1600	99	0.09 µs	1.94 W	\$96	1.3" x 1.3"	0.118 in ³

BDTImarks: Berkeley Design Technology Inc. DSP benchmark results (larger means better) http://www.bdti.com/bdtimark/results.htm http://www.ece.utexas.edu/~bevans/courses/ee382c/lectures/processors.html

Application: FIR Filter

- Each tap requires
 - Fetching one data sample
 - Fetching one operand
 - Multiplying two numbers
 - Accumulating multiplication result
 - Shifting one sample in the delay line

Computing an FIR tap in one instruction cycle

- Three data memory accesses
- Auto-increment or decrement addressing modes
- Modulo addressing to implement delay line as circular buffer
- Eleven RISC instructions

 Z^{1}

 Z^1

DSP Cores

- ASIC with:
 - Programmable DSP
 - ▶ RAM
 - ▶ ROM
 - Standard cells
 - Codec
 - Peripherals
 - Gate array
 - Microcontroller

- Multimedia applications on PCs
 - Video, audio, graphics and animation
 - Repetitive parallel sequences of instructions
- Native signal processing examples
 - Sun Visual Instruction Set (UltraSPARC 1/2)
 - Intel MMX (Pentium I/II/III)
 - Intel Concurrent SIMD-FP (Pentium III)
- Single Instruction Multiple Data (SIMD)
 - One instruction acts on multiple data in parallel
 - Well-suited for graphics

DSP on General Purpose Processors (con't)

Programming is considerably tougher

- C/C++ compilers do not generate native signal processing code except Metrowerks CodeWarrior 4 gives MMX code
- Libraries of routines using native signal processing
- Hand code using in-line assembly for best performance
- Pack/unpack data not aligned on SIMD word boundaries
- 50-cycle penalty to switch out of MMX; 0 penalty for VIS
- Saturation arithmetic in MMX; not supported in VIS
- Extended-precision accumulation in MMX; none in VIS
- Speedup for applications
 - Signal and image processing 1.5:1 to 2:1
 - Graphics 4:1 to 6:1 (no packing/unpacking)

Intel MMX Instruction Set

- 64-bit SIMD register (4 data types)
 - 64-bit quad word
 - Packed byte (8 bytes packed into 64 bits)
 - Packed word (4 16-bit words packed into 64 bits)
 - Packed double word (2 double words packed into 64 bits)
- **57** new instructions
 - Pack and unpack
 - Add, subtract, multiply, and multiply/accumulate
- Saturation and wraparound arithmetic
- Maximum parallelism possible
 - 8:1 for 8-bit additions
 - 4:1 for 8 x 16 multiplication or 16-bit additions

References

- G. E. Allen, B. L. Evans, and D. C. Schanbacher, "Real-Time Sonar Beamforming on a Unix Workstation," *Proc. IEEE Asilomar Conf. On Signals, Systems, and Computers*, pp. 764-768, 1998. http://www.ece.utexas.edu/~bevans/papers/1998/beamforming/
- 2 R. Bhargava, R. Radhakrishnan, B. L. Evans, and L. K. John, "Evaluating MMX Technology Using DSP and Multimedia Applications," *Proc. IEEE Sym. On Microarchitecture*, pp. 37-46, 1998. http://www.ece.utexas.edu/~ravib/mmxdsp/
- 3 W. Chen, H. J. Reekie, S. Bhave, and E. A. Lee, "Native Signal Processing on the UltraSPARC in the Ptolemy Environment," *Proc. IEEE Asilomar Conf. On Signals, Systems, and Computers*, 1996. http://www.ece.utexas.edu/~bevans/courses/ee382c/lectures/21_nsp/vis/
- 4 B. L. Evans, "EE379K-17 Real-Time DSP Laboratory," UT Austin. http://www.ece.utexas.edu/~bevans/courses/realtime/
- 5 B. L. Evans, "EE382C Embedded Software Systems," UT Austin. http://www.ece.utexas.edu/~bevans/courses/ee382c/
- 6 A. Kulkarni and A. Dube, "Evaluation of the Code Generation Domain in Ptolemy," http://www.ece.utexas.edu/~bevans/talks/benchmarking97/sld001.htm
- 7 P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, *DSP Processor Fundamentals*, IEEE Press, 1997.