# Telecommunications and Signal Processing at UT Austin

#### Prof. Brian L. Evans

http://www.ece.utexas.edu/~bevans

Department of Electrical and Computer Engineering The University of Texas at Austin, Austin, TX 78712-1084

http://www.ece.utexas.edu

# Outline

- Introduction
- Wireline Communications
- Wireless Communications
- Raster Image Processing
- Power Quality Assessment
- Computer Architecture
- Conclusion

speaker phones, ADSL modems base stations, video cell phones printers, copiers, next-generation fax next-generation power meters high-performance processors

# **Telecommunications & Signal Processing Faculty**

#### • Signal and Image Processing • Networking

- J. K. Aggarwal *image*, vision, ATR
- Alan Bovik
- Brian Evans real-time DSP software
- Joydeep Ghosh neural networks
- Margarida Jacome DSP architecture
- Lizy John DSP architecture
- Thomas Milner biomedical imaging •
- John Pearce biomedical imaging
- Irwin Sandberg nonlinear systems
- Earl Swartzlander VLSI DSP

#### ۲

- Hao Ling propagation, E911
- Edward Powers
- Guanghan Xu smart antennas

satellite

- Ross Baldick Internet pricing – Bill Bard (adjunct) security, TCP/IP
- Gustavo de Veciana *performance*
- Takis Konstantopoulos analysis
- San-qi Li ATM networks/switches
- Scott Nettles active networks

- Aristotle Araposthatis stochastic
- Robert Flake manufacturing
- Baxter Womack machine learning

#### Wireless Communications • Speech and Audio Processing

- Mark Hamilton (ME) audio/acoustics
- Randy Diehl (Psychology)
- Russell Pinkston (Music) synthesis

http://www.ece.utexas.edu/telecom/faculty.html

# **Telecommunications & Signal Processing Courses**

| Area                                               | Graduate Courses                                                                                                                                                        | Undergraduate Courses                                                                                                                         |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Audio and Acoustics                                | Acoustics I                                                                                                                                                             | Noise and Vibration Control                                                                                                                   |
| Digital Signal Processing                          | <ul> <li>Digital Signal Processing</li> <li>Advanced Signal Processing</li> <li>Signal Compression</li> </ul>                                                           | <ul> <li>Linear Systems and Signals</li> <li>Digital Signal Processing</li> </ul>                                                             |
| Communications                                     | <ul> <li>Digital Communications</li> <li>Wireless Communications</li> <li>Advanced Probability and Random Processes</li> </ul>                                          | <ul> <li>Probability, Statistics, Random Processes</li> <li>Communication Systems</li> <li>Intro. to Digital Communications</li> </ul>        |
| Networking                                         | <ul> <li>Communication Networks: Tech., Arch., Protocols</li> <li>Communication Networks: Analysis &amp; Design</li> <li>Advanced Telecommunication Networks</li> </ul> | <ul> <li>Intro. to Telecommunication Networks</li> <li>Networking Engineering Laboratory</li> <li>Distributed Information Security</li> </ul> |
| Image and<br>Multidimensional Signal<br>Processing | <ul><li>Multidimensional Digital Signal Processing</li><li>Biomedical Image Processing</li></ul>                                                                        | • Digital Image Processing                                                                                                                    |
| Embedded Systems                                   | <ul> <li>Application-Specific Processing</li> <li><u>Superscalar Microprocessor Architecture</u></li> <li><u>High-Level Synthesis</u></li> </ul>                        | <ul> <li>Microprocessor Programming</li> <li>Microprocessor Applications/Organization</li> <li>Microprocessor Interfacing Lab</li> </ul>      |
|                                                    | <ul> <li>Embedded Software Systems</li> <li>Hardware/Software Codesign</li> </ul>                                                                                       | <ul> <li><u>Real-Time DSP Laboratory</u></li> <li>Computer Architecture</li> </ul>                                                            |
| Neural Networks                                    | Data Mining     Vellow underlined: four courses u                                                                                                                       | • Introduction to Neural Networks                                                                                                             |
|                                                    | renow undernied. Tour courses u                                                                                                                                         |                                                                                                                                               |

Green italics: three courses using Motorola microcontrollers

### **Undergraduate Telecommunications Laboratories**

#### Three Microprocessor Laboratories (Lipovski and Valvano)

- *Topics*: microcomputer organization, modular programming in C and assembly, interfacing, real-time software, data acquisition, communication, control
- Laboratory: develop software on and interface hardware to Motorola MC68HC11 and MC68HC12 microcontroller boards
- Enrollment: 500 per year

#### Real-time Digital Signal Processing Laboratory (Evans)

- *Topics:* digital signal processing, data conversion, digital communications, DSP architecture, real-time software, ADSL modems
- Laboratory: build a voiceband modem on TMS320C30 EVM in C and DSP assembly language using Code Composer
- Enrollment: 100 per year

#### Network Engineering Laboratory (Bard)

- Topics: ATM, TCP/IP, Ethernet, routers, switches, firewalls, servers, security
- Laboratory: configure Cisco equipment and PCs to create/analyze network services
- *Enrollment*: 20 per year (limited by space)

#### **Touchtone Decoding for Speaker Phones**

- *Problem:* Algorithms based on the Fourier transform cannot meet ITU Q.24 specifications
- *Goal:* Develop first ITUcompliant touchtone detector using 8-bit arithmetic
- Solution: Nonlinear frequency estimation by zero crossings using Friedman interpolator
- *Implementation*: 5-MIP 8-bit PIC16C711, 64 bytes data, 800 bytes program memory (1998)
- *Funding*: Nat. Sci. Foundation

| 697 Hz | 1 | 2 | 3 | А |
|--------|---|---|---|---|
| 770 Hz | 4 | 5 | 6 | В |
| 852 Hz | 7 | 8 | 9 | С |
| 941 Hz | * | 0 | # | D |

1209 Hz 1336 Hz 1477 Hz 1633 Hz

#### **ITU DTMF Specifications**

| Frequency  | Low Group           | ≤ 1.5%    |
|------------|---------------------|-----------|
| Tolerance  | High Group          | ≥ 3.5%    |
| Signal     | Operation           | 40 ms min |
| Duration   | Non-operation       | 23 ms max |
| Signal     | Pause Duration      | 40 ms max |
| Exceptions | Signal Interruption | 10 ms min |
| Twist      | Forward             | 8 dB      |
|            | Reverse             | 4 dB      |

Wireline Communications (Evans)

### **Touchtone Decoding for Central Offices**

**S1** 

**S**4

**FSM** 

**S**3

**S**2

- *Problem:* Algorithms based on the Fourier transform cannot meet ITU Q.24 specifications
- *Goal:* Develop first ITU-compliant touchtone decoder on a single DSP for a T1/E1 line
- *Solution:* Multiresolution algorithm (1997)
  - Sliding windows of 106 and 212 samples to meet both
     ITU frequency and timing specs (106 samples = 13.3 ms)
  - Signal analysis to provide power level and talk-off checks
  - Finite state machine (FSM) to enforce ITU specifications
  - UT Austin filed a patent application on April 3, 1998, on the detector (30 claims)
- Implementation: To decode 24 (32) voice channels of a T1 (E1) line: 17 (22) DSP MIPS, 800 data words, 1100 (1500) program words: 30-MIP TI C54, 16 kw RAM, 4 kw ROM (1998)
- *Funding:* UT Austin

Wireline Communications (Evans)

# **Improving Performance of ADSL Modems**

#### • *Problem:* Equalizer design

- Is computationally complex
- Does not maximize bit rate
- *Goal:* Design time-domain equalizer to maximize bit rate
- *Solution:* Model signal, noise, ISI paths in equalized channel
  - Derive cost function for ISI power as a function of equalizer taps



- Solve constrained quadratic optimization problem to minimize ISI power

*Implementation:* Suboptimal method weights ISI power in freq.

 Achieves 98% of channel capacity with 2 taps not 17 (*500x complexity reduction*)
 Achieves up to 18% more bit rate for same number of taps for ADSL channels

 *Funding:* None (Motorola contacts: Sayfe Kiaei, Jim Kosmach)

Wireline Communications (Evans)

### Wireless Base Station Design

- *Problem:* Mobile wireless services hampered by cochannel interference, multipath effects, fading, and noise
- *Goal:* Increase system quality and capacity through spatial diversity



- Solution: Base station smart antennas Narrow Band Testbed (1.8 GHz)
- *Implementation #1*: First university smart antenna testbed (1993)
  - Characterize wireless channels & test smart antenna algorithms: 1.5 GHz, 900 MHz
- *Implementation #2:* Real-time narrow band testbed (1997)
  - Mobile: 2 30-MIP DSPs for speech codec
  - Base: 16 A/Ds, D/As, DSPs; 2 33-MIP DSPs baseband
  - Funding: GE, Motorola, Raytheon TI, DoD (ONR/JSEP)
- *Implementation #3*: Wide band testbed (now)
  - Analog/IF baseband goes from 0.5 to 5 MHz
  - Funding: SBC, State of Texas, Nat. Science Foundation



TX/RX Circuit Board

Wireless Communications (Xu & Ling)

#### H.263 Video Cell Phone Implementation

- *Problem*: Motion compensation takes
   80% of computation in H.263 encoder
- *Goal*: Real-time H.263 codec on DSPs
- *Solution*: Handcode sum-of-absolute differences for two 16 x 16 subblocks
  - 9.2 : 1 speedup on C62x over C implementation with all compiler optimizations enabled
- *Implementation*: Modify H.263 codec in C from Univ. of British Columbia
  - TI's DCT/IDCT gives speedup of 2.7/2.3
  - Overall speedup of 4:1 10 QCIF (176 x 142) frames/s on 300 MHz C67x
- *Funding*: TI, State of Texas (started 1/15/00)
  - Motorola contact: Dana Taipale

Wireless Communications (Bovik & Evans)

#### Cycle counts Sum-of-absolute differences



# Improving H.263 Video Cell Phone Performance

- *Problem*: Controlling transmission rate, buffer size, and subjective quality
- *Goal*: Use nonuniform sampling of fovea
  - Resolution on retina falls off  $1/r^2$  away from fovea
  - Need point(s) of focus for observer(s)
- *Solutions*: Foveation points are estimated or obtained by eye tracker
  - Preprocessing: apply spatially-varying linear filter with cutoff freq. proportional to local bandwidth
  - Modify encoder: foveation simplifies motion est.
- *Implementation*: Demo available at http://pineapple.ece.utexas.edu/class/Video/demo.html
- *Funding:* Same project as previous slide



$$e_x = \tan^{-1} \left( \frac{i_d \, d_x}{i_p \, v_d} \right)$$



Wireless Communications (Bovik & Evans)

# Improving Image Quality in Printers and Copiers

- *Problem:* Halftoning (binarizing images for printing) introduces linear distortion, nonlinear distortion, and additive noise
- *Goal*: Develop low-complexity high-quality halftoning algorithms
- *Solution:* Model quantizer as gain plus noise (1997-present)
  - Halftone quality: edge sharpness (quantizer gain) and noise (noise transfer function)
  - Inverse halftones: blurring and spatially-varying noise
- *Funding:* HP, National Science Foundation, UT Austin



Original Image



Halftoned Image Raster Image Processing (Evans)



Inverse Halftone

### **Next-Generation Fax Machines**

- *Problem:* Fast algorithms for high-quality JBIG2 compression of halftones (JBIG2 standard adopted in April 2000 by ITU-T)
- *Goal:* Develop low-complexity encoding algorithms with good rate-distortion tradeoffs
- Solution: Filter, descreen, error diffuse, quantize (1999-present)
  - Use small symmetric FIR prefilter to reduce noise before descreening





Original

Compressed (5:1)

- Modify error diffusion: reduce gray levels & sharpening and trade off rate-distortion
- Measures of subjective quality based to rank encoding methods
- *Funding*: National Science Foundation, UT Austin

Raster Image Processing (Evans)

#### **Next-Generation Power Meters**

- *Problem:* A power quality disturbance can result in a loss of \$0.5M to \$2.0M in semiconductor industry (Dennis Johnson, TI, 5/3/2000, Texas Electrical Power Quality Workshop, UT Austin)
  - Disturbance: deviation from constant amplitude, freq. and phase in voltage/current
  - Deregulation: different providers of power generation, transmission, and distribution
- *Goal*: Detect/classify transient power quality disturbances
- *Solution*: Methods (1993-present)
  - Detect voltage sag, capacitance switching, and impulsive events in presence of noise
  - Characterize statistics by constant false alarm rate detectors to set thresholds

| Signal Analysis<br>Methods | Classification<br>Methods |
|----------------------------|---------------------------|
| Linear prediction          | Neural network            |
| Wavelets (6 scales)        | Rule-based                |
| Teager operator            | Hidden Markov             |
| Wigner operator            | models                    |

- *Implementation:* DSPs for future power meters and fault recorders
- *Funding*: Electric Power Research Institute, State of Texas, TXU

Power Quality (Powers & Grady)

# High-Performance Microarchitecture

- *Problem:* How to harness larger and larger numbers of transistors on a chip on behalf of higher performance processing
- *Goal*: Develop microarchitectures to improve performance
- *Solution #1:* Four-wide issue general-purpose processor (1984)
  - 1984: everyone laughed at it
  - 1996: everyone is doing it
- Solution #2: Two-level branch predictor (1991)
  - 1995: Intel first to adopt it (PentiumPro)
  - 2000: widely used as top-of-line predictor
- *Funding:* AMD, HAL Computer, IBM, Intel, Motorola

#### Current Research

Trace cache optimization Subordinate simultaneous microthreading Low-power implementations Application-specific highperformance coprocessors

Computer Architecture (Patt)

#### Conclusion

- UT ECE Department 62 full-time faculty, 1730 undergraduates, 570 graduate students
- UT ECE R&D in telecommunications and signal processing 22 full-time faculty, 300 undergraduates, 200 graduate students
- Leader in several telecommunication and signal processing R&D areas for high-volume products using digital signal processors
  - Wireline communications (touchtone detectors)
  - Wireless communications (wireless base stations and video cell phones)
  - Raster image processing (printers, copiers, and fax machines)
  - Power quality assessment (next-generation power meters and fault recorders)
  - Computer architecture (high-performance processors and coprocessors)

# **ADSL Modems**

#### • *Multicarrier modulation:* Decompose channel into subchannels

- Standardized for ADSL (ANSI 1.413) and proposed for VDSL
- Implemented by the fast Fourier transform (FFT): efficient DSP implementation
- *Cyclic prefix*: Append guard period to each symbol
  - Receiver has a **time-domain equalizer** to shorten effective channel length to be less than the cyclic prefix length to reduce intersymbol interference (ISI)
  - Helps receiver perform symbol synchronization



### ITU-T H.263 Video Encoder



Appendix: Wireless Communications

# Model Based Image Quality Assessment

- *Problem:* Develop quality measures to quantify the performance of image restoration algorithms
- *Goal* : Decouple linear distortion and noise injection
- Solution:
  - Modeled degradation as spatially varying blur and additive noise
  - Developed distortion measure to quantify linear distortion
  - Developed Non-linear Quality Measure (NQM) for additive uncorrelated noise

White noise added SNR=10.00dB NQM=20.47dB



Filtered white noise added SNR=10.00dB NQM=32.65dB



Appendix: Raster Image Processing (Evans)

# Adaptive Algorithms for Image Halftoning

- *Problem:* Low-complexity adaptive algorithm to minimize nonlinear and linear distortion in digital halftoning
- *Goal* : Threshold modulation method to preserve sharpness of original (a.k.a. what-you-see-is-what-you-get halftone)

#### • Solution:

- Minimize linear distortion: develop a framework for adaptive threshold modulation
- Reduce nonlinear distortion: use a deterministic bit flipping (DBF) quantizer to eliminate limit cycles



Appendix: Raster Image Processing (Evans)

# Speaker Localization Using Neural Networks

- *Problem:* Estimate speaker location (applications in videoconferencing and acoustic echo cancellation)
- *Goal:* Develop low-cost speaker location estimator for microphone array that works in far and near fields
- *Solution:* Neural network
  - Train multilayer perceptron off-line with normalized instantaneous cross-power spectrum samples as feature vectors (4 input nodes, 10 hidden nodes, and 1 output node)
  - Using more than four microphones gives diminishing returns
  - Less than 6° average error for modeled speech
  - Massively parallel with possible fixed-point implementation
- *Implementation:* 1 MFLOPS/s for 4 microphones at 8 kHz, 16 bits

Appendix: Speech Processing (Evans)



# Multi-Criteria Analog/Digital IIR Filter Design

- *Problem:* Optimize multiple filter behavioral and implementation characteristics simultaneously for analog and digital IIR filters
- *Goal*: Develop an extensible, automated framework
- Solution: Filter optimization packages for Mathematica
  - Solve constrained nonlinear optimization using Sequential Quadratic Programming: converges to global optimum and robust when closed-form gradients provided
  - Program *Mathematica* to derive formulas for cost function, constraints, and gradients, and synthesize formulas as Matlab programs to run optimization
- Analog example: linearize phase, minimize overshoot, max  $Q \le 10$



Minimized peak overshoot



http://www.ece.utexas.edu/~bevans/projects/syn\_filter\_software.html Appendix: Filter Optimization (Evans)