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Introduction

• Problem: Optimize multiple analog filter behavioral and
implementation characteristics at the same time

• Goal: Develop an extensible, automated framework

• Solution: Filter Optimization Packages for Mathematica
•  Constrained non-linear optimization as Sequential Quadratic Programming:

converges to global optimum & robust when closed-form gradients provided.

•  Program Mathematica to derive formulas for cost function, constraints, and
gradients, and convert the formulas to Matlab programs to run optimization.

•  Example: linearize phase and minimize peak overshoot of an elliptic filter;
constraining Qmax to 10 reduced Qmax from 61 to 10 (filter easier to build)

http://www.ece.utexas.edu/~bevans/projects/syn_filter_software.html
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Modeling

•  Free Parameters: Locations of Poles and Zeros
•  List of n conjugate pole-pairsak + j bk (and multiplicities)

•  List of r conjugate zero-pairsck + j dk (and multiplicities)

•  Can be combined into a cascade of second-order sections

•  Properties
• Behavioral: magnitude, phase, and step responses

• Implementation: quality factors

•  All properties are real-valued

•  Formulate Optimization Problem
• Objective measures of the properties as functions of the free parameters

• Distance measures for deviation of the actual and desired property values

• Cost function as a weighted combination of distance measures

• Constraints on the values of the free parameters
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Objective Measures for Properties

Objective Measures for the All-Pole IIR Filter Case

•  Magnitude response (with polynomials in Horner’s form)

•  Unwrapped phase response

•  Quality factors
•  For kth second-order section, use standard formula

• Qk >= 0.5, whereQk = 0.5 corresponds to a
real pole andQk of infinity corresponds to an
imaginary pole

•  Effective quality factor Qeff is a combination of the second-order quality
factors: we chose the geometric mean
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Objective Measures for Properties

Measuring Peak Overshoot in the Step Response

•  Partial fractions decomposition

•  Step response, whereyk = Ck (ak
2 + bk

2) / Dk,

•  Time when peak overshoot occurs in each section

•  For computing gradients only, approximate peak overshoot time as a
constant times the average of second-order peak overshoot times
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Distance Measures for Properties

•  Deviation in Magnitude Response
•  Euclidean distance over each passband, stopband, and transition band

•  Deviation from Linear Phase Response
•  Measure deviation from linear phase over the passband

•  Optimal slope of the phase,mlp, is a function of the passband interval (ω1, ω2)
as well as the pole and zero pairs

•  Calculated by computer algebra software

•  Deviation for Peak Overshoot:(hstep(tpeak) - 1)2

•  Deviation for Quality Factors: Qeff - 0.5
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Design Example

Optimizing for Linear Phase and Peak Overshoot

• initial value: fourth-order lowpass Butterworth filter

• final value: a hybrid filter

•  phase response in passband becamenearly linear

•  one second-order section more sensitive to perturbations

•  quality factors: {0.541, 1.31} -> {0.500, 1.55}

Table 1: Fourth-Order Lowpass Filter
Initial Final

Pole Pair 1 - 8.4149+ j 20.3153 -7.7918+ j 22.8984

Pole Pair 2 -20.3153+ j 8.4149 -19.5623+ j 0.6255

Cost Function 1.17 0.000047

Peak Overshoot 0.16% 0.08%

Guner Arslan and Srikanth Gummadi
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Design Example (continued)

5 10 15 20
ω

Phase Response

-2.5

-2

-1.5

-1

-0.5

 

0.2 0.4 0.6 0.8 1
t

Step Response

0.2

0.4

0.6

0.8

1

 

---- initial filter
___ optimized filter



© 1998, p.  10 of  12analogfil ters. fm

EMBEDDED SIGNAL PROCESSING LAB             THE UNIVERSITY OF TEXAS AT AUSTIN

Design Example (continued)

Trade-off Magnitude Response for Step and Phase Response
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Validation of the Automated Framework

Algebraic Verification of Formulas

•  Formula for partial fractions decomposition

•  Formula for step response

•  Optimal slope for linear phase

Numerical Validation of Formulas

•  Magnitude and phase formulas

Validation of Synthesized Code

•  Plot Mathematica and MATLAB formulas

•  SQP MATLAB constr routine checks symbolic gradients

Jong-il Kim
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Conclusion

Automating the Solution

•  Enter objective measures, distance measures, and
constraints in computer algebra environment

•  Choose an optimization technique

•  Transform optimization problem to fit the technique

•  Synthesize transformed problem into software

•  Export solution to a system-level design environment

Advantages

•  Abstract design specification to a higher level

•  Avoid errors in performing algebra and calculus

•  Avoid errors in converting equations to source code


