Multi-Criteria Analog IIR Filter Optimization

Prof. Brian L. Evans

http://www.ece.utexas.edu/~bevans

work performed with Niranjan Damera-Venkata

Electrical and Computer Engineering Department The University of Texas at Austin Austin, TX 78712-1084

http://anchovy.ece.utexas.edu

analogfilters.fm

Copyright © 1998, The University of Texas. All rights reserved.

EMBEDDED SIGNAL PROCESSING LAB

Outline

- Introduction
- Modeling
- Objective Measures for Properties
- Distance Measures for Properties
- Design Example
- Validation
- Conclusion

analogfilters.fm

© 1998, p. 2 of 12

EMBEDDED SIGNAL PROCESSING LAB

Introduction

- *Problem*: Optimize multiple analog filter behavioral and implementation characteristics at the same time
- Goal: Develop an extensible, automated framework
- Solution: Filter Optimization Packages for Mathematica
 - Constrained non-linear optimization as Sequential Quadratic Programming: converges to global optimum & robust when closed-form gradients provided.
 - Program Mathematica to derive formulas for cost function, constraints, and gradients, and convert the formulas to Matlab programs to run optimization.
 - Example: linearize phase and minimize peak overshoot of an elliptic filter; constraining Q_{max} to 10 reduced Q_{max} from 61 to 10 (filter easier to build)

EMBEDDED SIGNAL PROCESSING LAB

Modeling

- Free Parameters: Locations of Poles and Zeros
 - List of *n* conjugate pole-pairs $a_k \pm j b_k$ (and multiplicities)
 - List of *r* conjugate zero-pairs $c_k \pm j d_k$ (and multiplicities)
 - Can be combined into a cascade of second-order sections

Properties

- Behavioral: magnitude, phase, and step responses
- Implementation: quality factors
- All properties are real-valued

• Formulate Optimization Problem

- *Objective measures* of the properties as functions of the free parameters
- Distance measures for deviation of the actual and desired property values
- Cost function as a weighted combination of distance measures
- Constraints on the values of the free parameters

analogfilters.fm

© 1998, p. 4 of 12

EMBEDDED SIGNAL PROCESSING LAB

Objective Measures for Properties

Objective Measures for the All-Pole IIR Filter Case

• Magnitude response (with polynomials in Horner's form)

$$|H(j\omega)| = \prod_{k=1}^{n} \frac{a_k^2 + b_k^2}{\sqrt{(\omega^2 + 2(a_k^2 - b_k^2))\omega^2 + (a_k^2 + b_k^2)^2}}$$

Unwrapped phase response

$$\angle H(j\omega) = \sum_{k=1}^{n} \left(\operatorname{atan} \frac{\omega - b_k}{a_k} + \operatorname{atan} \frac{\omega + b_k}{a_k} \right)$$

- Quality factors
 - For kth second-order section, use standard formula
 - $Q_k >= 0.5$, where $Q_k = 0.5$ corresponds to a real pole and Q_k of infinity corresponds to an imaginary pole

$$Q_k = \frac{\sqrt{a_k^2 + b_k^2}}{-2a_k}$$

• Effective quality factor Q_{eff} is a combination of the second-order quality factors: we chose the *geometric mean*

analogfilters.fm

© 1998, p. 5 of 12

EMBEDDED SIGNAL PROCESSING LAB

Measuring Peak Overshoot in the Step Response

Partial fractions decomposition

$$\frac{H(s)}{s} = \frac{1}{s} \sum_{k=1}^{n} \frac{C_k s + D_k}{s^2 - 2a_k s + a_k^2 + b_k^2}$$

• Step response, where $y_k = C_k (a_k^2 + b_k^2) / D_k$,

$$h_{step}(t) = \sum_{k=1}^{n} \frac{D_k}{a_k^2 + b_k^2} \left(1 - e^{a_k t} \left(\cos(b_k t) - \frac{a_k + \gamma_k}{b_k} \sin(b_k t) \right) \right)$$

• Time when peak overshoot occurs in each section

$$t_{peak}^{k} = -\frac{1}{b_{k}} \left(\operatorname{atan} \left(\frac{\gamma_{k} b_{k}}{a_{k}^{2} + \gamma_{k} a_{k} + b_{k}^{2}} \right) + \pi \right)$$

• For computing gradients only, approximate peak overshoot time as a constant times the average of second-order peak overshoot times

analogfilters.fm

© 1998, p. 6 of 12

EMBEDDED SIGNAL PROCESSING LAB

Distance Measures for Properties

- Deviation in Magnitude Response
 - Euclidean distance over each passband, stopband, and transition band
- Deviation from Linear Phase Response
 - Measure deviation from linear phase over the passband

$$\sigma_{phase} = \int_{\omega_2}^{\omega_1} \left(\angle H(j\omega) - m_{lp}\omega \right)^2 d\omega$$

• Optimal slope of the phase, m_{lp} , is a function of the passband interval (ω_1, ω_2) as well as the pole and zero pairs

$$m_{lp} = \frac{\int_{\omega_2}^{\omega_1} \angle H(j\omega) \omega d\omega}{\int_{\omega_2}^{\omega_1} \omega^2 d\omega} = \frac{3}{2(\omega_2^3 - \omega_1^3)} \sum_{k=1}^n (f_k(\omega_1) - f_k(\omega_2))$$

• Calculated by computer algebra software

- Deviation for Peak Overshoot: (h_{step}(t_{peak}) 1)²
- Deviation for Quality Factors: Q_{eff} 0.5

analogfilters.fm

© 1998, p. 7 of 12

Optimizing for Linear Phase and Peak Overshoot

Table 1: Fourth-Order Lowpass Filter

	Initial	Final
Pole Pair 1	- 8.4149 <u>+</u> <i>j</i> 20.3153	-7.7918 <u>+</u> <i>j</i> 22.8984
Pole Pair 2	-20.3153 <u>+</u> j 8.4149	$-19.5623 \pm j \ 0.6255$
Cost Function	1.17	0.000047
Peak Overshoot	0.16%	0.08%

- *initial value*: fourth-order lowpass Butterworth filter
- *final value*: a hybrid filter
- phase response in passband became *nearly linear*
- one second-order section more sensitive to perturbations
- quality factors: {0.541, 1.31} -> {0.500, 1.55}

analogfilters.fm

Guner Arslan and Srikanth Gummadi

© 1998, p. 8 of 12

Design Example (continued)

EMBEDDED SIGNAL PROCESSING LAB

Design Example (continued)

Trade-off Magnitude Response for Step and Phase Response

EMBEDDED SIGNAL PROCESSING LAB

Algebraic Verification of Formulas

- Formula for partial fractions decomposition
- Formula for step response
- Optimal slope for linear phase

Numerical Validation of Formulas

• Magnitude and phase formulas

Validation of Synthesized Code

- Plot Mathematica and MATLAB formulas
- SQP MATLAB *constr* routine checks symbolic gradients

analogfilters.fm

Jong-il Kim

© 1998, p. 11 of 12

EMBEDDED SIGNAL PROCESSING LAB

Automating the Solution

- Enter objective measures, distance measures, and constraints in computer algebra environment
- Choose an optimization technique
- Transform optimization problem to fit the technique
- Synthesize transformed problem into software
- Export solution to a system-level design environment

Advantages

- Abstract design specification to a higher level
- Avoid errors in performing algebra and calculus
- Avoid errors in converting equations to source code

analogfilters.fm

© 1998, p. 12 of 12