The Embedded Signal Processing Laboratory

Prof. Brian L. Evans

http://www.ece.utexas.edu/~bevans

Graduate Students

Guner Arslan, Niranjan Damera-Venkata, Amey Deosthali, Srikanth Gummadi, Jong-il Kim, Biao Lu, Thomas D. Kite, Wade C. Schwartzkopf, and Dong Wei

Electrical and Computer Engineering Department The University of Texas at Austin Austin, TX 78712-1084

http://anchovy.ece.utexas.edu

espl.fm

Copyright © 1998, The University of Texas. All rights reserved.

EMBEDDED SIGNAL PROCESSING LAB

Overview

- System-Level CAD Tools
 - Web-enabled simulation of embedded software on microcontrollers and DSPs
 - Cosimulation/cosynthesis of hybrid neural network/signal processing systems
- Wireline Systems
 - ITU-compliant DTMF detectors: speaker phone (µcontroller), T1 line (DSP)
 - HDSL2 modem design and implementation in software
- Wireless Systems
 - Smart antennas using the constant modulus algorithm
 - Analog phase-locked loop design and implementation (beyond 1 GHz)
- Filter Design
 - Multi-criteria optimization for analog IIR filters
 - Minimum phase digital FIR design for real and complex, 1-D and m-D filters
- Image and Video Processing Systems
 - Fast image halftoning and inverse halftoning algorithms
 - Hardware/software codesign for MPEG-4 video codecs

espl.fm

© 1998, p. 2 of 13

Web-Enabled Simulation

- Problem: Fast system simulation technology at low cost
- *Goal*: Provide immediate access to new simulation technology without having to purchase and maintain resource-intensive tools
- Solution: WEDS
 - configurable: GUI configures itself
 - *portable*: multi-platform
 - extensible: easy to add new tools
 - freely distributable: all source code
- Simulators/Debuggers/Boards
 - Motorola MC68HC11 µcontroller
 - Motorola MC56800 DSP
 - Texas Instruments TMS320C30 DSP

http://anchovy.ece.utexas.edu/~arifler/wetics

Dogu Arifler and Srikanth Gummadi

© 1998, p. 3 of 13

espl.fm

Hybrid Neural Network and Signal Processing Systems

- *Problem*: Develop a unified model of computation for mixed artificial neural network (ANN)/signal processing systems
 - Gamma Memory Model (add FIR filters on the inputs of the neurons)
 - Cellular Neural Network (CNN) detects impulsive noise in images which is removed by a median filter
- Goal: Find a unified model for simulation and synthesis
- Solution: Use dataflow models that support static schedules
 - ANNs during classification: Homogeneous Synchronous Dataflow (HSDF), except CNNs require BDF models (w/ static schedules)
 Cellular Neural Network for Edge Detection
 - ANNs during training: Boolean dataflow (BDF)

EMBEDDED SIGNAL PROCESSING LAB

Single-Channel ITU-Compliant DTMF Detection

- *Problem*: Design of low-cost single-channel ITU-compliant dual-tone multi-frequency 1209 Hz 1336 Hz 1477 Hz 1633 Hz touchtone signal detection
- Goal: Develop/implement algorithm on one microcontroller for speakerphones
- Solution:
 - Frequency estimation by zero crossing and zero crossing using a Friedman interpolator
 - **Technique developed at Crystal Semiconductor**
- **DTMF Signals**
 - Sum of two sinusoids: one from a low-frequency group and one from a high-frequency group

espl.fm

697 Hz	1	2	3	А
770 Hz	4	5	6	В
852 Hz	7	8	9	С
941 Hz	*	0	#	D

ITU DTMF Specifications

o sing stal	Frequency Tolerance	Low Group	<=1.5%	
		High Group	>=3.5%	
	Signal	Operation	40ms min	
	Duration	Non-operation	23ms max	
	Signal	Pause Duration	40ms max	
	Exceptions	Signal Interruption	10ms min	
om One	Twist	Forward	8 dB	
p		Reverse	4 dB	
Amey	Deosthali	© 1998, p. 5 of 13		

EMBEDDED SIGNAL PROCESSING LAB

ERSITY OF TEXAS AT AUSTIN

Multi-Channel ITU-Compliant DTMF Detection

- *Problem*: Design of low-cost multi-channel ITU-compliant dual-tone multi-frequency (DTMF) touchtone detector
- *Goal*: Develop/implement first ITU-compliant detector on a single digital signal processor to perform DTMF detection on a T1 telecommunications line
- Solution:
 - Two sliding windows of lengths 106 and 212 samples to meet both frequency and timing specifications (106 samples = 13.3 ms)

- Finite state machine (FSM) to enforce ITU specifications
- Detector requires 24 DSP MIPS, 800 words of data memory, and 1000 words of program memory to decode the 24 telephone channels of a T1 line
- UT Austin filed a patent application on April 3, 1998, on the detector, which includes 30 claims

espl.fm

Guner Arslan, Matthew Felder, and James Mason © 1998, p. 6 of 13

EMBEDDED SIGNAL PROCESSING LAB

HDSL2 Modem in Software

- HDSL2 requires about 1.2 billion MACs
- Viterbi decoder takes about
 - 87% of processing power
 - 91% of memory
- Aim: Implement HDSL2 modem using
 - high-end DSP processors
 - coprocessors
- Optimization
 - Design transmit and receive filters to have dyadic coefficients
 - Replace Euclidean distance in Viterbi decoder with absolute differences
- Current work on HDSL2 modems
 - Develop minimum phase transmit and receive filters
 - Embedded implementation of Viterbi decoder on DSP processors
 - Efficient implementation of echo cancelers and other filters
- Replacing DSP processors with microcontrollers to reduce cost espl.fm Guner Arslan and Srikanth Gummadi © 1

© 1998, p. 7 of 13

Smart Antennas Using the Constant Modulus Algorithm

- *Problem*: Design receivers to overcome interference and fading in wireless communications systems
- *Goal*: Enhance signals that suffer from multipath, fading, and inter-symbol interference effects
- Solution: Constant Modulus Beamformer Plus Canceler
 - Use *I* sensors to track *L* users sending CM signals (QPSK, FSK) where *I* > *L*
 - Receive narrowband (IS-95, GSM) waveforms from users in the far-field
 - Channel model includes Rayleigh fading; SNR > 10 dB at receiver output
 - Blind equalization, real-time, robust, and overcomes small frequency offsets
 - Make CMA insensitive to channel phase shifts by modifying decision process

EMBEDDED SIGNAL PROCESSING LAB

Analog Phase-Locked Loop Design and Implementation

- *Problem*: Design, prototype, and manufacture higher-order phase-locked loops (PLLs)
- *Goal*: Derive closed-form optimum design formulas for macrocomponent values in terms of system parameters
- Solution: Apply symbolic mathematics tools.
 - Motorola Application Note AN1253 "An Improved PLL Design Method Without ω n and ζ " derives formulas for r and c for a second-order loop as a function of charge pump gain, VCO gain, channel spacing, switching time, overshoot, loop bandwidth, VCO modulation bandwidth

• Current work

- Fifth-Order Phase-Locked Loop
- Derive formulas for higher-order PLLs
- Perform sensitivity analysis given tolerance of components
- Automate the design and implementation of higher-order PLLs

espl.fm

Niranjan Damera-Venkata

© 1998, p. 9 of 13

EMBEDDED SIGNAL PROCESSING LAB

Multi-Criteria Analog IIR Filter Design

- *Problem*: Optimize multiple analog filter behavioral and implementation characteristics at the same time
- Goal: Develop an extensible, automated framework
- Solution: Filter Optimization Packages for Mathematica
 - Constrained non-linear optimization as Sequential Quadratic Programming: converges to global optimum & robust when closed-form gradients provided.
 - Program Mathematica to derive formulas for cost function, constraints, and gradients, and convert the formulas to Matlab programs to run optimization.
 - Example: linearize phase and minimize peak overshoot of an elliptic filter; constraining Q_{max} to 10 reduced Q_{max} from 61 to 10 (filter easier to build)

EMBEDDED SIGNAL PROCESSING LAB

Minimum Phase Digital FIR Filter Design

- Problem: Design optimal minimum phase digital FIR filters
- *Goal*: Develop an algorithm that designs real and complex minimum phase digital FIR filters
- Solution: Use the Discrete Hilbert Transform
 - Use the generalized Hilbert Transform relation to compute the *unique* minimum phase response from the given magnitude response
 - Reconstruct the minimum phase polynomial sampling the magnitude and phase response and use the inverse FFT (the FFT length controls coefficient accuracy)
 - Example: group delay of a 65-tap minimum phase approximation for a telephone channel: group delay reduced from 33 samples to nearly 0 samples in passband

• For improvements to conventional design techniques: ftp://pepperoni.ece.utexas.edu/pub/minphase/mccaslin/minphase.m

espl.fm

Niranjan Damera-Venkata

© 1998, p. 11 of 13

EMBEDDED SIGNAL PROCESSING LAB

Fast Image Halftoning & Inverse Halftoning Algorithms

- *Problem*: Fast high-quality algorithms for halftoning for printers and inverse halftoning for scanned images
- *Goal*: Develop scalable algorithms that deliver high subjective image quality
- Solution: Model halftoning as 2-D delta-sigma modulation
 - Noise-shaped feedback coder (Δ - Σ) has signal and noise transfer functions
 - Objective measures of edge sharpening (proportional to quantizer gain) and shaped noise (noise transfer function) in halftoned images
 - Objective measures of blurring and spatially-varying noise in inverse halftoned images

EMBEDDED SIGNAL PROCESSING LAB

Hardware/Software Codesign for MPEG-4 Video Codecs

- *Problem*: Rapid prototyping of audio/video codecs as a new standard being adopted each year since 1992, e.g.
 - MPEG-2: (1994): scalable (1-4 Mbps), surround sound, multiplexing
 - MPEG-4 (1998): scalable (0.01-4 Mbps), interactive, content-based
- *Goal*: Develop a formal system-level design methodology that includes H.261, H.263, H.263+, and MPEG 1, 2, and 4.
- *Solution*: Hierarchically combine multiple models of computation for reuse, fast cosimulation, and cosynthesis

EMBEDDED SIGNAL PROCESSING LAB