The Embedded Signal Processing Laboratory

Prof. Brian L. Evans
http://www.ece.utexas.edu/~bevans

Graduate Students
Guner Arslan, Niranjan Damera-Venkata, Amey Deosthali, Srikanth Gummadi, Jong-il Kim, Biao Lu, Thomas D. Kite, Wade C. Schwartzkopf, and Dong Wei

Electrical and Computer Engineering Department
The University of Texas at Austin
Austin, TX 78712-1084

http://anchovy.ece.utexas.edu
Overview

• System-Level CAD Tools
 • Web-enabled simulation of embedded software on microcontrollers and DSPs
 • Cosimulation/cosynthesis of hybrid neural network/signal processing systems

• Wireline Systems
 • ITU-compliant DTMF detectors: speaker phone (µcontroller), T1 line (DSP)
 • HDSL2 modem design and implementation in software

• Wireless Systems
 • Smart antennas using the constant modulus algorithm
 • Analog phase-locked loop design and implementation (beyond 1 GHz)

• Filter Design
 • Multi-criteria optimization for analog IIR filters
 • Minimum phase digital FIR design for real and complex, 1-D and m-D filters

• Image and Video Processing Systems
 • Fast image halftoning and inverse halftoning algorithms
 • Hardware/software codesign for MPEG-4 video codecs
Web-Enabled Simulation

- **Problem:** Fast system simulation technology at low cost
- **Goal:** Provide immediate access to new simulation technology without having to purchase and maintain resource-intensive tools
- **Solution:** WEDS
 - *configurable:* GUI configures itself
 - *portable:* multi-platform
 - *extensible:* easy to add new tools
 - *freely distributable:* all source code

- **Simulators/Debuggers/Boards**
 - Motorola MC68HC11 µcontroller
 - Motorola MC56800 DSP
 - Texas Instruments TMS320C30 DSP

http://anchovy.ece.utexas.edu/~arifler/wetics

Dogu Arifler and Srikanth Gummadi

© 1998, p. 3 of 13
Hybrid Neural Network and Signal Processing Systems

• **Problem**: Develop a unified model of computation for mixed artificial neural network (ANN)/signal processing systems
 • Gamma Memory Model (add FIR filters on the inputs of the neurons)
 • Cellular Neural Network (CNN) detects impulsive noise in images which is removed by a median filter

• **Goal**: Find a unified model for simulation and synthesis

• **Solution**: Use dataflow models that support static schedules
 • ANNs during classification: Homogeneous Synchronous Dataflow (HSDF), except CNNs require BDF models (w/ static schedules)
 • ANNs during training: Boolean dataflow (BDF)

Demonstration in Ptolemy 0.7.1

Biao Lu
Single-Channel ITU-Compliant DTMF Detection

- **Problem**: Design of low-cost single-channel ITU-compliant dual-tone multi-frequency touchtone signal detection

- **Goal**: Develop/implement algorithm on one microcontroller for speakerphones

- **Solution**:
 - Frequency estimation by zero crossing and zero crossing using a Friedman interpolator
 - Technique developed at Crystal Semiconductor

- **DTMF Signals**
 - Sum of two sinusoids: one from a low-frequency group and one from a high-frequency group

ITU DTMF Specifications

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Low Group</th>
<th>High Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1209 Hz</td>
<td><=1.5%</td>
<td>>=3.5%</td>
</tr>
<tr>
<td>1336 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1477 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1633 Hz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal Duration</th>
<th>Operation</th>
<th>40ms min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-operation</td>
<td>23ms max</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal Exceptions</th>
<th>Pause Duration</th>
<th>40ms max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signal Interruption</td>
<td>10ms min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Twist</th>
<th>Forward</th>
<th>8 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reverse</td>
<td>4 dB</td>
</tr>
</tbody>
</table>
Multi-Channel ITU-Compliant DTMF Detection

- **Problem**: Design of low-cost multi-channel ITU-compliant dual-tone multi-frequency (DTMF) touchtone detector

- **Goal**: Develop/implement first ITU-compliant detector on a single digital signal processor to perform DTMF detection on a T1 telecommunications line

- **Solution**:
 - Two sliding windows of lengths 106 and 212 samples to meet both frequency and timing specifications (106 samples = 13.3 ms)
 - Signal analysis to provide power level and talk-off checks
 - Finite state machine (FSM) to enforce ITU specifications
 - Detector requires 24 DSP MIPS, 800 words of data memory, and 1000 words of program memory to decode the 24 telephone channels of a T1 line
 - UT Austin filed a patent application on April 3, 1998, on the detector, which includes 30 claims
HDSL2 Modem in Software

- HDSL2 requires about 1.2 billion MACs
- Viterbi decoder takes about
 - 87% of processing power
 - 91% of memory
- Aim: Implement HDSL2 modem using
 - high-end DSP processors
 - coprocessors
- Optimization
 - Design transmit and receive filters to have dyadic coefficients
 - Replace Euclidean distance in Viterbi decoder with absolute differences
- Current work on HDSL2 modems
 - Develop minimum phase transmit and receive filters
 - Embedded implementation of Viterbi decoder on DSP processors
 - Efficient implementation of echo cancelers and other filters
 - Replacing DSP processors with microcontrollers to reduce cost
Problem: Design receivers to overcome interference and fading in wireless communications systems

Goal: Enhance signals that suffer from multipath, fading, and inter-symbol interference effects

Solution: Constant Modulus Beamformer Plus Canceler

- Use I sensors to track L users sending CM signals (QPSK, FSK) where $I > L$
- Receive narrowband (IS-95, GSM) waveforms from users in the far-field
- Channel model includes Rayleigh fading; SNR > 10 dB at receiver output
- Blind equalization, real-time, robust, and overcomes small frequency offsets
- Make CMA insensitive to channel phase shifts by modifying decision process

Demod

RF bandpass waveforms at I sensors ($I>L$)

L user signals I channels

Adaptive FIR CMA Beamformer

Adaptive FIR CMA Beamformer

LMS Canceler

L-1 user signals I channels

LMS Canceler

L-2 user signals I channels

Signal 1 Estimate

Signal 2 Estimate

Srikanth Gummadi

© 1998, p. 8 of 13
Analog Phase-Locked Loop Design and Implementation

- **Problem**: Design, prototype, and manufacture higher-order phase-locked loops (PLLs)
- **Goal**: Derive closed-form optimum design formulas for macrocomponent values in terms of system parameters
- **Solution**: Apply symbolic mathematics tools.

 - Motorola Application Note AN1253 “An Improved PLL Design Method Without ω_n and ζ” derives formulas for r and c for a second-order loop as a function of charge pump gain, VCO gain, channel spacing, switching time, overshoot, loop bandwidth, VCO modulation bandwidth

- **Current work**
 - Derive formulas for higher-order PLLs
 - Perform sensitivity analysis given tolerance of components
 - Automate the design and implementation of higher-order PLLs

![Fifth-Order Phase-Locked Loop Diagram](image-url)
Multi-Criteria Analog IIR Filter Design

• **Problem:** Optimize multiple analog filter behavioral and implementation characteristics at the same time

• **Goal:** Develop an extensible, automated framework

• **Solution:** Filter Optimization Packages for Mathematica
 - Constrained non-linear optimization as Sequential Quadratic Programming: converges to global optimum & robust when closed-form gradients provided.
 - Program Mathematica to derive formulas for cost function, constraints, and gradients, and convert the formulas to Matlab programs to run optimization.
 - Example: linearize phase and minimize peak overshoot of an elliptic filter; constraining Q_{max} to 10 reduced Q_{max} from 61 to 10 (filter easier to build)

http://www.ece.utexas.edu/~bevans/projects/syn_filter_software.html

Niranjan Damera-Venkata
Minimum Phase Digital FIR Filter Design

- **Problem**: Design optimal minimum phase digital FIR filters
- **Goal**: Develop an algorithm that designs real and complex minimum phase digital FIR filters
- **Solution**: Use the Discrete Hilbert Transform
 - Use the generalized Hilbert Transform relation to compute the *unique* minimum phase response from the given magnitude response
 - Reconstruct the minimum phase polynomial sampling the magnitude and phase response and use the inverse FFT (*the FFT length controls coefficient accuracy*)
 - Example: group delay of a 65-tap minimum phase approximation for a telephone channel: group delay reduced from 33 samples to nearly 0 samples in passband
- For improvements to conventional design techniques:
 ftp://pepperoni.ece.utexas.edu/pub/minphase/mccaslin/minphase.m

![Group Delay Diagram](image-url)
Fast Image Halftoning & Inverse Halftoning Algorithms

- **Problem**: Fast high-quality algorithms for halftoning for printers and inverse halftoning for scanned images
- **Goal**: Develop scalable algorithms that deliver high subjective image quality
- **Solution**: Model halftoning as 2-D delta-sigma modulation
 - Noise-shaped feedback coder ($\Delta-\Sigma$) has signal and noise transfer functions
 - Objective measures of edge sharpening (proportional to quantizer gain) and shaped noise (noise transfer function) in halftoned images
 - Objective measures of blurring and spatially-varying noise in inverse halftoned images

Halftoned Image Original Image Inverse Halftone
Hardware/Software Codesign for MPEG-4 Video Codecs

- **Problem**: Rapid prototyping of audio/video codecs as a new standard being adopted each year since 1992, e.g.
 - MPEG-2 (1994): scalable (1-4 Mbps), surround sound, multiplexing
 - MPEG-4 (1998): scalable (0.01-4 Mbps), interactive, content-based

- **Goal**: Develop a formal system-level design methodology that includes H.261, H.263, H.263+, and MPEG 1, 2, and 4.

- **Solution**: Hierarchically combine multiple models of computation for reuse, fast cosimulation, and cosynthesis