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Overview

•  System-Level CAD Tools
•  Web-enabled simulation of embedded software on microcontrollers and DSPs

•  Cosimulation/cosynthesis of hybrid neural network/signal processing systems

•  Wireline Systems
•  ITU-compliant DTMF detectors: speaker phone (µcontroller), T1 line (DSP)

•  HDSL2 modem design and implementation in software

•  Wireless Systems
•  Smart antennas using the constant modulus algorithm

•  Analog phase-locked loop design and implementation (beyond 1 GHz)

•  Filter Design
•  Multi-criteria optimization for analog IIR filters

•  Minimum phase digital FIR design for real and complex, 1-D and m-D filters

•  Image and Video Processing Systems
•  Fast image halftoning and inverse halftoning algorithms

•  Hardware/software codesign for MPEG-4 video codecs
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Web-Enabled Simulation

• Problem:Fast system simulation technology at low cost

• Goal: Provide immediate
access to new simulation
technology without having
to purchase and maintain
resource-intensive tools

• Solution: WEDS
• configurable: GUI configures itself

• portable: multi-platform

• extensible: easy to add new tools

• freely distributable: all source code

•  Simulators/Debuggers/Boards
•  Motorola MC68HC11 µcontroller

•  Motorola MC56800 DSP

•  Texas Instruments TMS320C30 DSP
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http://anchovy.ece.utexas.edu/~arifler/wetics
Dogu Arifler and Srikanth Gummadi



© 1998, p.  4 of  13espl . fm

EMBEDDED SIGNAL PROCESSING LAB             THE UNIVERSITY OF TEXAS AT AUSTIN

Hybrid Neural Network and Signal Processing Systems

• Problem: Develop a unified model of computation for mixed
artificial neural network (ANN)/signal processing systems
•  Gamma Memory Model (add FIR filters on the inputs of the neurons)

•  Cellular Neural Network (CNN) detects impulsive noise in images which is
removed by a median filter

• Goal: Find a unified model for simulation and synthesis

• Solution: Use dataflow models that support static schedules
•  ANNs during classification: Homogeneous Synchronous Dataflow (HSDF),

except CNNs require BDF
models (w/ static schedules)

•  ANNs during training:
Boolean dataflow (BDF)
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Single-Channel ITU-Compliant DTMF Detection

• Problem: Design of low-cost single-channel ITU-compliant
dual-tone multi-frequency
touchtone signal detection

• Goal: Develop/implement
algorithm on one
microcontroller for
speakerphones

•  Solution:
•  Frequency estimation by zero

crossing and zero crossing using
a Friedman interpolator

•  Technique developed at Crystal
Semiconductor

•  DTMF Signals
•  Sum of two sinusoids: one from

a low-frequency group and one
from a high-frequency group

Amey Deosthali
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Frequency
Tolerance

Low Group <=1.5%

High Group >=3.5%

Signal
Duration

Operation 40ms min

Non-operation 23ms max

Signal
Exceptions

Pause Duration 40ms max

Signal Interruption 10ms min

Twist Forward 8 dB

Reverse 4 dB

ITU DTMF Specifications
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Multi-Channel ITU-Compliant DTMF Detection

• Problem: Design of low-cost multi-channel ITU-compliant
dual-tone multi-frequency (DTMF) touchtone detector

• Goal: Develop/implement first ITU-compliant detector on a
single digital signal processor to perform DTMF detection
on a T1 telecommunications line

• Solution:
•  Two sliding windows of lengths 106 and 212 samples

to meet both frequency and timing specifications
(106 samples = 13.3 ms)

•  Signal analysis to provide power level and talk-off checks

•  Finite state machine (FSM) to enforce ITU specifications

•  Detector requires 24 DSP MIPS, 800 words of data memory, and 1000 words
of program memory to decode the 24 telephone channels of a T1 line

•  UT Austin filed a patent application on April 3, 1998, on the detector, which
includes 30 claims

Guner Arslan, Matthew Felder, and James Mason
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HDSL2 Modem in Software

•  HDSL2 requires about 1.2 billion MACs

•  Viterbi decoder takes about
•  87% of processing power

•  91% of memory

•  Aim: Implement HDSL2 modem using
•  high-end DSP processors

•  coprocessors

•  Optimization
•  Design transmit and receive filters to have dyadic coefficients

•  Replace Euclidean distance in Viterbi decoder with absolute differences

•  Current work on HDSL2 modems
•  Develop minimum phase transmit and receive filters

•  Embedded implementation of Viterbi decoder on DSP processors

•  Efficient implementation of echo cancelers and other filters

•  Replacing DSP processors with microcontrollers to reduce cost
Guner Arslan and Srikanth Gummadi
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Smart Antennas Using the Constant Modulus Algorithm

• Problem: Design receivers to overcome interference and
fading in wireless communications systems

• Goal: Enhance signals that suffer from multipath, fading,
and inter-symbol interference effects

• Solution: Constant Modulus Beamformer Plus Canceler
•  UseI  sensors to trackL users sending CM signals (QPSK, FSK) whereI  > L

•  Receive narrowband (IS-95, GSM) waveforms from users in the far-field

•  Channel model includes Rayleigh fading; SNR > 10 dB at receiver output

•  Blind equalization, real-time, robust, and overcomes small frequency offsets

•  Make CMA insensitive to channel phase shifts by modifying decision process
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Srikanth Gummadi
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Analog Phase-Locked Loop Design and Implementation

• Problem: Design, prototype, and manufacture higher-order
phase-locked loops (PLLs)

• Goal: Derive closed-form optimum design formulas for
macrocomponent values in terms of system parameters

• Solution: Apply symbolic mathematics tools.
•  Motorola Application Note AN1253

“An Improved PLL Design Method
Without ωn and ζ” derives formulas
for r and c for a second-order loop
as a function of charge pump gain,
VCO gain, channel spacing, switching
time, overshoot, loop bandwidth,
VCO modulation bandwidth

•  Current work
•  Derive formulas for higher-order PLLs

•  Perform sensitivity analysis given tolerance of components

•  Automate the design and implementation of higher-order PLLs
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Niranjan Damera-Venkata
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Multi-Criteria Analog IIR Filter Design

• Problem: Optimize multiple analog filter behavioral and
implementation characteristics at the same time

• Goal: Develop an extensible, automated framework

• Solution: Filter Optimization Packages for Mathematica
•  Constrained non-linear optimization as Sequential Quadratic Programming:

converges to global optimum & robust when closed-form gradients provided.

•  Program Mathematica to derive formulas for cost function, constraints, and
gradients, and convert the formulas to Matlab programs to run optimization.

•  Example: linearize phase and minimize peak overshoot of an elliptic filter;
constraining Qmax to 10 reduced Qmax from 61 to 10 (filter easier to build)

http://www.ece.utexas.edu/~bevans/projects/syn_filter_software.html
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Minimum Phase Digital FIR Filter Design

• Problem: Design optimal minimum phase digital FIR filters

• Goal: Develop an algorithm that designs real and complex
minimum phase digital FIR filters

• Solution: Use the Discrete Hilbert Transform
•  Use the generalized Hilbert Transform relation to compute theunique

minimum phase response from the given magnitude response

•  Reconstruct the minimum phase polynomial sampling the magnitude and
phase response and use the
inverse FFT (the FFT length
controls coefficient accuracy)

•  Example: group delay of a 65-tap
minimum phase approximation
for a telephone channel: group
delay reduced from 33 samples to
nearly 0 samples in passband

•  For improvements to conventional design techniques:

Niranjan Damera-Venkata
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Fast Image Halftoning & Inverse Halftoning Algorithms

• Problem: Fast high-quality algorithms for halftoning for
printers and inverse halftoning for scanned images

• Goal: Develop scalable algorithms that deliver high
subjective image quality

• Solution: Model halftoning as 2-D delta-sigma modulation
•  Noise-shaped feedback coder (∆-Σ) has signal and noise transfer functions

•  Objective measures of edge sharpening (proportional to quantizer gain) and
shaped noise (noise transfer function) in halftoned images

•  Objective measures of blurring and spatially-varying noise in inverse
halftoned images

Thomas Kite and Niranjan Damera-Venkata
Halftoned Image Original Image Inverse Halftone
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Hardware/Software Codesign for MPEG-4 Video Codecs

• Problem: Rapid prototyping of audio/video codecs as a new
standard being adopted each year since 1992, e.g.
•  MPEG-2: (1994): scalable (1-4 Mbps), surround sound, multiplexing

•  MPEG-4 (1998): scalable (0.01-4 Mbps), interactive, content-based

• Goal: Develop a formal system-level design methodology
that includes H.261, H.263, H.263+, and MPEG 1, 2, and 4.

• Solution: Hierarchically combine multiple models of
computation for reuse, fast cosimulation, and cosynthesis
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