High-Speed Digital Subscriber Line Generation 2 (HDSL2) Modem

Srikanth Gummadi

work performed with Guner Arslan and Brian Evans

Embedded Signal Processing Laboratory Electrical and Computer Engineering Department The University of Texas at Austin Austin, TX 78712-1084

http://anchovy.ece.utexas.edu

hdsl.fm

Copyright © 1998, The University of Texas. All rights reserved.

EMBEDDED SIGNAL PROCESSING LAB

- Need for high bandwidth
- Digital Subscriber Line (DSL) standards
- Top-level block diagram of HDSL2 modem
- Estimate of implementation cost of a soft HDSL2 modem
- Summary

hdsl.fm

© 1998, p. 2 of 9

EMBEDDED SIGNAL PROCESSING LAB

Need for High Bandwidth

- Small Office / Home Office
 - Small business run out of home: 20 million small businesses in the US
- Internet Access
 - Internet users: 28 million, growing by 2x every year
- Internet Service
 - Web sites: 230,000, growing by 2x every 6 months
- Telecommuting
 - Work at home: 5-10 million telecommuters in the US
- Video-conferencing

Communication bandwidth between the computers has not kept up with advances in computing power, system memory size, and storage capacity

March 9, 1998: Motorola sends samples of CopperGold ADSL solution to customers Nov. 19,1997: Texas Instruments purchases Amati for its ADSL and VDSL technology (\$395 million)

hdsl.fm

© 1998, p. 3 of 9

Existing and Proposed DSL Standards

Standard	Meaning	Data Rate	Mode	Applications
V.34	Voice Band Modem	33.6 Kbps	Symmetric	Internet Access
V.PCM	Voice Band Modem	56 Kbps 33.6 Kbps	Down Up	Internet Access
ISDN	Integrated Services Digital Network	144 Kbps	Symmetric	Internet Access, Pair Gain (2 channels)
T1	T - Carrier One (requires two pairs)	1.544 Mbps	Symmetric	Enterprise, Expansion, Internet Service
HDSL	High Speed Digital Subscriber Line (requires two pairs)	1.544 Mbps	Symmetric	Pair Gain (12 channels) Internet Access, T1/E1 replacement
HDSL2	Single Line HDSL	1.544 Mbps	Symmetric	Pair Gain (24 channels)
ADSL	Asymmetric Digital Subscriber Line	1.5 - 9 Mbps 16-640 Kbps	Down Up	Internet Access, Digital Video
VDSL	Very High Speed DSL	13 - 52 Mbps 1.5-2.3 Mbps	Down Up	Internet Access, Digital Video

(Courtesy of Cicada Semiconductor, Austin, TX)

hdsl.fm

© 1998, p. 4 of 9

EMBEDDED SIGNAL PROCESSING LAB

Block Diagram of HDSL2 Transmitter

EMBEDDED SIGNAL PROCESSING LAB

Block Diagram of HDSL2 Receiver

EMBEDDED SIGNAL PROCESSING LAB

Estimate of Processing Power and Memory

Module	Multiplications (in millions/sec)	Additions (in millions/sec)	Memory (bits)
Framer	none	1.544	FrameSize
Scrambler	none	3 x 1.552	24 x 16 x 2
Trellis encoder	none	9 x 1.552	10 x 16
Bits to Symbol	none	none	2 x 16 x 16
Tomlinson precoder	100 x 1.552/3 + update	100 x 1.552/3 + update	100 x 16
Transmit filter	50 x 1.552/3	50 x 1.552 /3	50 x 16
Echo canceler	100 x 1.552/3 + update	100 x 1.552/3 + update	100 x 16
Receiver filter	50 x 1.552/3	50 x 1.552/3	50 x 16
Trellis decoder	512 x 2 x 2 x 1.552/3 = 2048 x 1.552/3	512 x 2 x 1.552/3	80 x 1024
Symbol to bits	none	none	2 x 16 x 16
Descrambler	none	3 x 1.552	24 x 16 x 16
Framer	none	1.554	FrameSize
TOTAL	1214.7 + 2 x update	711.34 + 2 x update	89,440

hdsl.fm

© 1998, p. 8 of 9

EMBEDDED SIGNAL PROCESSING LAB

Summary

- HDSL2 requires about 1.2 billion MACs
- Viterbi decoder takes about
 - 87% of processing power
 - 91% of memory
- Aim: Implement HDSL2 modem using
 - high-end DSP processors
 - coprocessors
- Optimization
 - Design transmit and receive filters to have dyadic coefficients
 - Replace Euclidean distance in Viterbi decoder with absolute differences
- Current work on HDSL2 modem design
 - Develop minimum phase transmit and receive filters
 - Embedded implementation of Viterbi decoder on DSP processors
 - Efficient implementation of echo cancelers and other filters
 - Replacing DSP processors with microcontrollers to reduce cost

hdsl.fm

© 1998, p. 9 of 9