Introduction

- Electronic systems are inherently *heterogeneous*
 - Perform a combination of signal processing, communications, and control algorithms
 - Implemented using a combination of digital signal processors (DSPs), microcontrollers, dedicated hardware, and configurable hardware
- No single design methodology is applicable to entire system
- Embrace heterogeneity: develop a formal consistent framework for specification, simulation, and synthesis
 - Integrate application-specific design methods (fast simulation, verification)
 - Integrate application-specific implementation technologies (DSPs, FPGAs)
- Focus: Automate the design of scalable software and hardware for image and video processing systems
 - Scalable hardware expands to a variable number of processors (Mercury)
 - Scalable software adapts to the available processors (Solaris, Windows NT)
- *Theme*: Decouple computational models from technologies for implementation (e.g., SPW, HP EEsof, and Ptolemy).

Heterogeneity in System-Level Design

Hardware/Software Codesign for Video Codecs

- *Problem*: Rapid prototyping of audio/video codecs as a new standard being adopted each year since 1992, e.g.
 - MPEG-2 (1994): scalable (1-4 Mbps), surround sound, multiplexing
 - MPEG-4 (1999): scalable (0.01-4 Mbps), interactive, content-based
- Goal: Develop a formal system-level design methodology that includes H.261, H.263, H.263+, and MPEG 1, 2, and 4.
- Solution: Hierarchically combine multiple models of computation for reuse, fast cosimulation, and cosynthesis

Shape Coding for Multimedia Content and Retrieval

- *Problem*: Efficient object representation in video for compression/retrieval.
- Goal: Develop a scalable framework for lossy and lossless coding of shapes.

- Solution: Generalized predictive shape coding using polygonal representation (lossless) & approximation (lossy)
 - Contour segment coding: polygonal approximation and vertex coding
 - Contour motion estimation: shape motion estimation (temporal)
- One parameter d_{max}
 - Maximum distance between polygon and contour (0 for lossless coding)
 - Controls bitrate and distortion

Scalable Software for Sonar Imaging Systems

- *Problem*: Real-time 3-D sonar systems are expensive to develop, manufacture & upgrade due to custom hardware
- Goal: Software beamformer on a desktop workstation
- Solution: CAD framework for scalable software that merges
 - symmetric multiprocessing on Unix workstations
 - lightweight POSIX threads (AIX, Irix, HP-UX, Linux, Solaris)
 - Process Network model (concurrency, determinism, boundedness)
- Real-time 4-GFLOP digital interpolation sonar front-end using 12 x 336 MHz UltraSPARC-IIs: cascade of 1 vertical beamformer (80 staves, 10 sensors/stave, 100 kHz, 16 bits, 160 MB/s, 2.5 CPUs), 3 horizontal beamformers (each: 80 staves, 61 beams, 32-bit floats, 32 MB/s, 3 CPUs), and 3 shifters/decimators
- Reduces weight, volume, and development time by factor of two, and costs by:
- CAD tools can be deployed with the workstation

Front End	Manufacturing Costs	Development Costs
Custom Hardware	\$1,000,000	\$3,000,000
Ultra-2 6000	\$400,000	\$300,000

Tutorial: http://www.ece.utexas.edu/~allen/GuestLecture.html

Embedded Software for Scanning and Printing

- *Problem*: Fast high-quality algorithms for halftoning for printers and inverse halftoning for scanned/printed images
- Goal: Develop scalable algorithms that deliver high subjective image quality
- Solution: Model halftoning as 2-D delta-sigma modulation
 - Noise-shaped feedback coder $(\Delta \Sigma)$ has signal and noise transfer functions
 - Objective measures of edge sharpening (proportional to quantizer gain) and shaped noise (noise transfer function) in halftoned images
 - Objective measures of blurring and spatially-varying noise in inverse halftoned images

Halftoned Image

Original Image

Inverse Halftone

Hybrid Neural Network and Signal Processing Systems

- *Problem*: Develop a unified model of computation for mixed artificial neural network (ANN)/signal processing systems
 - Gamma Memory Model (add FIR filters on the inputs of the neurons)
 - Cellular Neural Network (CNN) detects impulsive noise in images which is removed by a median filter
- Goal: Find a unified model for simulation and synthesis
- Solution: Use dataflow models that support static schedules

• ANNs during classification: Homogeneous Synchronous Dataflow (HSDF),

except CNNs require BDF models (w/ static schedules)

• ANNs during training: Boolean dataflow (BDF)

Demonstration in Ptolemy 0.7

Real-Time Digital Signal Processing Laboratory Course

- Introduced undergraduate course that covers
 - Digital signal processing (DSP): signals, sampling, filters, difference equations, z-transforms, quantization

• Digital communications: modulation, pulse shaping, pseudo random sequences, timing recovery, modems

- DSP architectures: Harvard architecture, special addressing modes, parallel instructions, real-time programming, modern trends in DSP architectures
- Students build a 4800 baud modem using DSP processor
- Integrating research and education through guest lecturers:
 - Dr. Sayfe Kiaei, Motorola, "Asymmetric Digital Subscriber Line (ADSL) Modem Design and Implementation," about CopperGold ADSL chip
 - Mr. Jeff Michalski, Concur Systems, "Mini-Web Servers for Real-time Data Acquistion" using DSPs
 - Mr. Thomas Kite, UT, "Sigma-Delta Modulation"

- In-class multimedia demonstrations
- Lectures on-line: http://www.ece.utexas.edu/~bevans/courses/realtime/

Embedded Software Systems Course

- Introduced graduate course that covers
 - Models of computation based on formal methods (with mathematical basis)
 - Specifying algorithms, simulating systems, and mapping specifications onto embedded systems using models of computation.
 - Management of heterogeneity in system-level CAD frameworks, esp. composition of formal models to form complex systems
- Integrating research and education
 - Hands-on experience with modifying/using system-level CAD tool Ptolemy

- Projects require a literature survey and a computer implementation
- Half of student projects published in IEEE publications
- Lectures on-line: http://www.ece.utexas.edu/~bevans/courses/ee382c/

Multidimensional Digital Signal Processing Course

Introduced graduate course that covers

• Theory and algorithms of multidimensional systems: signals, systems, Fourier analysis, discrete cosine transforms, linear filters, resampling

• Applications: sonar beamforming, seismic data processing, tomography, image halftoning, image restoration, video coding

Curriculum development is impacting

• R. M. Mersereau, D. E. Dudgeon, and B. L. Evans, *Multidimensional Digital Signal Processing*, 2nd edition, Prentice-Hall, in progress.

Integrating research and education

• Eight guest lecturers on current research topics in eight different application areas

- Projects require a literature survey and a computer implementation
- One-third of student projects published in IEEE publications
- Lectures on-line: http://www.ece.utexas.edu/~bevans/courses/ee381k/

Selected Journal Papers Citing NSF Support

Accepted/Published (6 total)

- N. Damera-Venkata and B. L. Evans, "An Automated Framework for Multi-criteria Optimization of Analog Filter Designs," *IEEE Trans. on Circuits and Systems II:* Analog and Digital Signal Processing.
- J.-I. Kim, B. L. Evans, and A. C. Bovik, "Generalized Predictive Binary Shape Coding Using Polygon Approximations," *Signal Processing: Image Communication*.
- B. L. Evans, "Designing Commutative Cascades of Multidimensional Upsamplers and Downsamplers," *IEEE Signal Processing Letters*, vol. 4, no. 11, pp. 313-6, 1997.
- D. Wei, B. L. Evans, and A. C. Bovik, "Loss of Perfect Reconstruction in Multidimensional Filter Banks and Wavelets Designed by Extended McClellan Transformations," *IEEE Signal Processing Letters*, vol. 4, no. 10, pp. 295-7, 1997.

• Submitted/In Revision (5 total)

- T. D. Kite, B. L. Evans, and A. C. Bovik, "Modeling and Quality Assessment of Halftoning by Error Diffusion," *IEEE Trans. on Image Processing*, in revision.
- R. Bhargava, L. K. John, B. L. Evans, and R. Radhakrishnan, "Evaluating Native Signal Processing on General Purpose Processors," *IEEE Trans. on Computers*.
- T. D. Kite, B. L. Evans, and A. C. Bovik, "Design and Quality Assessment of a Fast Inverse Halftoning Algorithm for Error Diffused Halftones," *IEEE Trans. on Image Processing*.

Other Deliverables

- Ph.D. students graduated
 - Thomas D. Kite: now DSP Engineer, Audio Precision, Portland, OR
 - Dong Wei: now Assistant Professor, Drexel University, Philadelphia, PA
- Software releases funded by NSF support
 - Filter Optimization Packages for Matlab and Mathematica: joint optimization of several characteristics of all-pole analog infinite impulse response filters
 - Web-Enabled Simulation: extensible framework for Web interfaces to simulators and debuggers for microcontrollers and digital signal processors
- Sponsored/supervised 15 Senior Design Projects, with more than half involving industrial partners:
 - Concur Systems: mini-Web servers for real-time data acquisition
 - Motorola: ADSL POTS splitter, phase locked loop design, Web-based tools
 - Texas Instruments: TMS320C30 DSP simulator, Web-based tools
- Initiated bi-weekly Signal and Image Processing Seminar
- Curriculum: successfully advocated moving signals and systems to sophomore year and introduced 3 new courses

Conclusion

- Third year of Career Award
- Founded Embedded Signal Processing Laboratory
 - *Ph. D. Students*: Gregory E. Allen, Guner Arslan, Srikanth Gummadi, Jong-il Kim, Biao Lu, Wade C. Schwartzkopf, K. Clint Slatton, and Murat Torlak
 - M.S. Students: David M. Brunke, Niranjan Damera-Venkata, and Magesh Valliappan
 - Web site: http://signal.ece.utexas.edu/
 - Part of independent research unit Center for Vision and Image Sciences which includes 3 EE, 1 CS, and 5 Psychology professors

Future Directions

- Computational vision: incorporating linear and nonlinear models of the human visual system in image quality assessment for system optimization, ranking compression techniques, coding gain, and blind quality assessment
- Next-generation fax machines: lossy bilevel image compression (JBIG-2)
- Printers and scanners: halftoning, interpolated halftoning, and rehalftoning
- Remote sensing: embedded systems for synthetic aperture radar imaging