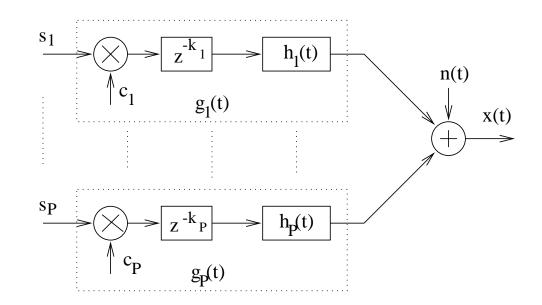


CDMA Systems

- Synchronous CDMA
 - $rac{}$ All signals are synchronized to within T_c (200 ns)
 - Orthogonal codewords
 - destroyed by multipath fading
- Narrowband Asyncronous CDMA
 - ☞ IS-95
 - RAKE receiver coherently resolves multipath fading
- Wideband Asynchronous CDMA (A-CDMA)
 - Emerging third-generation standards
 - Estimate (vector) FIR channel parameters for symbol estimation



- rightarrow Blindly estimate $h_1(t), \ldots, h_P(t)$
- rightarrow Assume knowledge of spreading codes c_1, \ldots, c_P
- rightarrow Assume knowledge of propagation delays k_1, \ldots, k_P .

A-CDMA Model and Data Formulation

• Baseband signal, single receiver, P users:

$$x(t) = \sum_{i=1}^{P} \sum_{n=-\infty}^{\infty} s_i(n)g_i(t - nT_s)$$

- $\Leftrightarrow i$ denotes the user index
- rightarrow P is the number of users
- $\Rightarrow \{s_i(n)\}$ are the information symbols
- $\Leftrightarrow T_s$ is the symbol duration
- $rightarrow g_i(t)$ is a signature waveform

$$g_i(t) = \sum_{k=1}^{2L_c} c_i(k-k_i)h_i(t-kT)$$

- ☞ $\{c_i(1), c_i(2), \cdots, c_i(L_c); c_i(k) = \pm 1\}$ is the preassigned spreading code of i^{th} user
- $\Leftrightarrow L_c$ is the code length
- $< \{h_i(t)\}$ are the channels

Multi-User Channel Estimation

- Estimate signature vectors $\{g_i\} \iff$ determine the channel vectors $\{h_i\}$
- Data model when including additive white noise

$$\mathbf{X} + \mathbf{N} = \mathbf{G}\mathbf{S} + \mathbf{N}.$$

Perform subspace decomposition on X by a singular value decomposition (SVD)

$$\mathbf{X} + \mathbf{N} = \begin{pmatrix} \mathbf{U}_s & \mathbf{U}_o \end{pmatrix} \begin{pmatrix} \boldsymbol{\Sigma}_s & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_o \end{pmatrix} \begin{pmatrix} \mathbf{V}_s^H \\ \mathbf{V}_o^H \end{pmatrix}$$

rightarrow Vectors in \mathbf{U}_s span the signal subspace, \mathbf{G} .

 \sim Vectors in \mathbf{U}_o span the *noise subspace*.

Multi-User Channel Estimation

- Estimate $\{G_i\}$ from X without knowledge of S
- Orthogonality between noise and signal subspace

$$\mathbf{U}_o \perp \mathbf{G} \Rightarrow \mathbf{U}_o^{H} \mathbf{G}_i = \mathbf{0}, \quad i = 1, \cdots, P$$

• Using $G_i = C_i h_i$ yields

$$\mathbf{U}_{o}^{H}\mathbf{C}_{i}\mathbf{h}_{i}=\mathbf{0}, i=1,\cdots, P$$

C_i is a Toeplitz matrix of spreading codes
h_i is in the null space of U^H_oC_i

Blind Channel Estimation Algorithm for a Single Receiver

- 1. Construct data matrix ${f X}$
- 2. Apply SVD to X, or eigenvalue decomposition (EVD) of XX^{H} , to obtain orthogonal subspace U_o.
- 3. For each user, estimate the channel vector \mathbf{h}_i
- 4. Reconstruct signature vectors $\{g_i\}$ and $\{G_i\}$
- This algorithm exploits the important fact that each signature vector is a *linear* function of a unique spreading code [Torlak & Xu, IEEE-TSP Jan. 1997]

Capacity Increase Using Smart Antennas

- A-CDMA system with code length L_c cannot accommodate more than L_c users [Viterbi].
- Fundamental limit for a single antenna $P < L_c$
- Goal: Manage an overloaded system ($P \ge L_c$)
- Proposed algorithm breaks in an overloaded system (dimension of the orthogonal subspace U_o reduces)
- Additional orthogonal vectors are required to guarantee more equations than unknowns
- This can be achieved by spatially oversampling by means of multiple receivers

Capacity Increase Using Smart Antennas

• Assume M receivers at the base-station

$$\mathbf{X} = \left[egin{array}{c} \mathbf{X}^1 \ dots \ \mathbf{X}^M \end{array}
ight] = \sum_{i=1}^P \left[egin{array}{c} \mathbf{G}_i^1 \ dots \ \mathbf{G}_i^M \end{array}
ight] \mathbf{S}_i(K+1) \ \mathbf{G}_i^M \ \mathbf{G}_i \end{array}$$

where K is the integer smoothing factor of ${f X}$

- $\mathbf{X} = \mathbf{GS}$ still holds, so does the subspace space relation between \mathbf{X} and \mathbf{G}
- Orthogonal vectors in \mathbf{U}_o increases from $KL_c (K+1)P$ to $MKL_c (K+1)P$
- Signal space fixed while noise space increases
- Extend our proposed algorithm to handle $P \ge L_c$

