
EE 381V: Large Scale Optimization Fall 2012

Lecture 10 — October 2

Lecturer: Caramanis & Sanghavi Scribe: Rajiv Khanna & Subhashini Krishnasamy

Reference: Nocedal & Wright - Numerical Optimization, Ch 6. in the new edition, Ch.
8 in the original.

10.1 Last time

In the last lecture, we talked about methods of scaling up Newton’s method, without com-
promising too much on its faster convergence guarantees. We studied Conjugate Gradient
method that solves linear systems efficiently. We then extended it to a Non-linear Conjugate
Gradient method which is more generic. We briefly touched upon another class of methods
called Quasi-newton methods that approximate the Hessian in an iterative manner to by-
pass its computation and inversion done by Newton’s method. In this lecture, we look at
Quasi-newton methods in more depth.

10.2 Quasi-newton methods

While the convergence guarantees of Newton’s method allow for quadratic rates in the num-
ber of iterations it requires, each individual iteration is computationally intensive - of the
order of O(n3) - as it requires computation of the Hessian and then its inverse. Finding a
way around computing the Hessian and its inverse motivates a new set of alternate methods
called Quasi-newton methods.

Recall that the Newton method optimizes over the quadratic approximation of the orig-
inal function f :

f̂k(xk + ∆x) = f(xk) +∇fT (xk)∆x+
1

2
∆xT (∇2f(xk))∆x. (10.1)

Quasi-Newton methods replace the Hessian in Equation [10.1] by another positive definite
matrix Bk that is intended to approximate the Hessian. These methods obtain speed up
over Newton’s method as follows - instead of computing Bk afresh at every iteration, it is
updated by application of a simpler modification (than inverting the Hessian) to factor in the
curvature information obtained at the latest step. Hence, the curvature information would
play an important role in designing Bk.

10.2.1 Designing Bk

Consider an iterative Newton-like optimization that uses Bk instead of the Hessian. At steps
k and k+ 1, we have the quadratic approximation f̂ of the function f as shown in Equations

10-1

EE 381V Lecture 10 — October 2 Fall 2012

[10.2],[10.3].

f̂k(xk + ∆x) = f(xk) +∇fT (xk)∆x+
1

2
∆xTBk∆x. (10.2)

f̂k+1(xk+1 + ∆x) = f(xk+1) +∇fT (xk+1)∆x+
1

2
∆xTBk+1∆x. (10.3)

To generate the next iterate xk+1, we have the quasi-newton step as:

xk+1 = xk − ηkB−1k ∇f(xk). (10.4)

There may be several methods of choosing feasible Bk+1. One reasonable way to pick
Bk+1 is by ensuring that the gradient of f̂k+1 at the iterates xk and xk+1 matches with the
gradient of f at those points as show in Equations [10.5],[10.6 respectively

∇f̂k+1(xk) = ∇f(xk). (10.5)

∇f̂k+1(xk+1) = ∇f(xk+1). (10.6)

If we take the derivative of Equation [10.3] with respect to ∆x, at ∆x = 0, we see that
Equation [10.6] holds automatically.

We should pick Bk+1 so that Equation [10.5] also holds. This is done by taking the
derivative of Equation [10.3] with respect to ∆x, at ∆x = xk − xk+1 and setting thus
obtained derivative to ∇f(xk), to get:

Bk+1sk = yk, (10.7)

where,
sk = xk+1 − xk,

and
yk = ∇f(xk+1)−∇f(xk).

Equation [10.7] is also called the Secant equation.
Exercise 1 Check that the Secant Equation has a positive definite solution for Bk+1 iff

yTk sk > 0.
Solution: If we restrict the choice of Bk+1 to positive definite matrices, from Secant

equation, we get sTkBk+1sk = sTk yk > 0. Conversely, if sTk yk > 0, we can always find a positive
semidefinite solution Bk+1 to the Secant equation. To see this, we note that there are enough
degrees of freedom to achieve the goal of a psd Bk+1. In addition to the (n2−n)/2 conditions
imposed by the symmetry of the matrix, Bk+1 has to satisfy the n inequalities imposed by
the positive definiteness and also the n conditions imposed by the Secant equation. This still
leaves us with n(n− 3)/2 degrees of freedom for the nXn matrix. Thus, there are infinitely
many solutions for problems of dimension greater than three.

Exercise 2 Check that if f(x) is convex, it is always true that yTk sk > 0.

10-2

EE 381V Lecture 10 — October 2 Fall 2012

Solution: When f is strictly convex, sTk yk > 0 for any points xk and xk+1. This can be
proved by using the first order condition for convexity.

f(xk+1) > f(xk) +∇f(xk)T (xk+1 − xk)

> f(xk+1) +∇f(xk+1)
T (xk − xk+1) +∇f(xk)T (xk+1 − xk)

=⇒ 0 > (∇f(xk+1)
T −∇f(xk)T)(xk − xk+1)

=⇒ sTk yk > 0

10.2.2 DFP

To constrain our choice of Bk+1, we choose one that is “closest” to Bk in some sense.

Bk+1 = argminB ||B −Bk||W
s.t. Bsk = yk,

B � 0.
(10.8)

In the Equation [10.8], ||.||W is the Weighted Frobenius Norm using a matrix W . Note
that we get the same solution Bk+1 for various choices of W .

Aside:
• Frobenius norm: The Frobenius norm of a matrix A is defined as

||A||F , (
∑
i,j

A2
i,j)

1
2 .

• Weighted Frobenius norm: The Weighted Frobenius norm of a matrix A w.r.t
another matrix W (W � 0) is defined as

||A||W , ||W
1
2AW

1
2 ||F .

• Spectral theorem: Recall that if W is symmetric, it can be written as W =∑
i

λixix
T
i , where λi is the eigenvalue associated with the eigenvector xi. All xi

are orthonormal to each other.

• For a psd W , W
1
2 exists, and can be written as W

1
2 =

∑
i

λ
1
2
i xix

T
i .

• Sherman-Morrison-Woodbury formula : If a matrix undergoes a rank k update as

A+ = A+ UV T ,

where U ,V are rank k matrices, then A−1 follows the update rule:

A−1+ = A−1 − A−1U(I + V TA−1U)−1V TA−1. (10.9)

10-3

EE 381V Lecture 10 — October 2 Fall 2012

Equation [10.9] is also called Matrix Inversion Lemma, and can be easily verified
by multiplying definitions of A+ and A−1+ to get the identity matrix.

Lemma: If we choose W to be the average Hessian, defined as:

W =

1∫
0

∇2f(xk + tηk∆xk)dt,

then Equation [10.8] has a unique solution given by

Bk+1 = (I − ρkyksTk)Bk(I − ρkskyTk) + ρkyky
T
k ,

where

ρk =
1

yTk sk
.

The above lemma gives us Bk+1 which is an approximation of the Hessian, not its inverse.
To use it in the quasi-newton step (Equation [10.4]), we need to compute its inverse. Finding
Bk at every iteration k and then inverting it is costly, but by using Sherman-Morrison-
Woodbury formula (Equation [10.9]), we can update Hk = (Bk)−1 directly as

Hk+1 = Hk −
Hkyky

T
kHk

yTkHkyk
+
sks

T
k

yTk sk
. (10.10)

The update method of Equation [10.10] represents a quasi-newton method called DFP,
after its inventors Davidon, Fletcher and Powell. Intuitively, the update step combines the
newly found curvature information in the current step into the approximate Hessian matrix
as a rank-two update, thus constraining the next iteration Hk+1 to not stray “too far” from
the current estimate Hk.

10.2.3 BFGS

Different methods of updating Bk, Hk yield different algorithms. Another update method,
which works well practically is the BFGS method (named after its inventors - Broyden,
Fletcher, Goldfarb, and Shanno). While DFP attempts to solve the secant equation given
by Equation [10.7], BFGS solves an alternative secant equation that approximates the inverse
of the Hessian directly:

sk = Hk+1yk, (10.11)

by

Hk+1 = argminH ||H −Hk||W
s.t. sk = Hyk,

H � 0.
(10.12)

10-4

EE 381V Lecture 10 — October 2 Fall 2012

Figure 10.1. Convergence over Rosenbrock function (Equation [10.14])

The solution to Equation [10.12] is similar to that of Equation [10.8], with the roles of
sk and yk interchanged.

Hk+1 = (I − ρkskyTk)Hk(I − ρkyksTk) + ρksks
T
k ,

ρk =
1

yTk sk
.

(10.13)

We have the update equations. But how do we select B0 or H0? Unfortunately, there
is no set formula for this. It depends on the problem at hand. Setting it to the identity
matrix, or a multiple of it, works well for many problems. Note that if we set H0 to the
identity matrix, the first update is the same as gradient descent, while subsequent steps get
more and more refined as Hk approximates the Hessian better in subsequent steps.

Theorem: Superlinear convergence of BFGS: If f is twice continuously differentiable,
has an L−Lipschitz Hessian and is strongly convex for the level sets of ∀x ≤ x0, then
xk −→ x∗ superlinearly.

BFGS is widely accepted as the “best” practical Quasi-Newton method available. Its
advantages over Newton method are clear - it does not solve a linear system that Newton’s
method does (by Conjugate Gradients or matrix inversion), and does not need to compute
the second derivatives. Furthermore, in practice, the number of iterations it takes to converge
are almost as few as Newton’s method. For a comparison, see Figure [10.1] that illustrates
convergence rates of Newton’s method, BFGS and Gradient Descent over Rosenbrock func-
tion given by

f(x) = 100(x0 − x21)2 + (1− x1)2. (10.14)

For quadratic functions, BFGS is guaranteed to terminate in n steps, where n is the
dimension of the problem space. Also, in quadratic problems, Hn, the final approximate

10-5

EE 381V Lecture 10 — October 2 Fall 2012

matrix, is actually the true Hessian. However, this is not true for non-quadratic problems -
Hk may not converge to the true Hessian in general.

Data: Dimension n, an oracle that can be queried to get ∇f(x) for any x, tolerance ε
Result: x∗ = argmin

x
f(x)

Initialization: H0 = In, k = 0, some starting point x0;
while ||∇f || > ε do

∆xk = −Hk∇f(xk)
Quasi-Newton step (use line search to get ηk: xk+1 = xk + ηk∆xk
sk = xk+1 − xk
yk = ∇f(xk+1)−∇f(xk)
Update Hk+1 as in Equation [10.13]
k = k + 1

end

Algorithm 1: BFGS

For large dimensional problems, computing and storing H may be hard. This motivates
a widely popular low-memory variant of BFGS called L-BFGS. Instead of storing and ma-
nipulating Hk at each iteration, L-BFGS stores and manipulates the yk and sk from the last
m iterations, where m << n.

10.3 Constrained Optimization

In the last few lectures, we focused on algorithms for unconstrained optimization. We now
discuss the analytical characterization of constrained optimization problems and then de-
scribe algorithms for solving these problems. Specifically, we are interested in convex opti-
mization problems since, for these problems, a locally optimal point is also globally optimal.
A generic convex problem can be written as minx∈X f(x), where X is a convex set and f(·)
is a convex function.

Recall that we defined tangent cone of a point x w.r.t a set C as the closure of the set
of all feasible directions from the point x in the set C. Also, we defined normal cone as the
polar cone of the tangent cone.

Proposition: Let X be convex and x ∈ X . If z ∈ NX (x), then ProjX (z) = x.

Proof: By the definition of the normal cone, if z ∈ NX (x), then 〈z − x, y − x〉 ≤ 0 ∀y ∈
X =⇒ x = ProjX (z) (see variational characterization of projection in Lecture 3). �

We also characterized the optimal point in terms of the normal cone: x∗ is optimal iff
0 ∈ ∇f(x∗) + NX (x∗). For non-smooth functions, ∇f(x∗) can be replaced by the set of all
straight lines passing through x∗ that lie below f(x).

10-6

EE 381V Lecture 10 — October 2 Fall 2012

10.4 Duality for Linear Programming Problems

Consider the standard linear programming problem,

min cTx (10.15)

s.t. aTi x ≥ bi

Figure 10.2 shows the vector c and the polyhedron formed by the halfspaces aTi x ≥ bi. If

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

a1

a2

a3

a4

a5

a6
c

x∗
Normal Cone

Figure 10.2. An example linear programming problem

x∗ is optimal, then −c = −∇f(x∗) ∈ NX (x∗). Observe that

NX (x∗) = {−(λ3a3 + λ4a4) | λ3, λ4 ≥ 0}
Therefore, x∗ is optimal iff ∃λ∗3, λ∗4 such that c = λ∗3a3 + λ∗4a4. Since aT3 x ≥ b3 and aT4 x ≥ b4,

(λ∗3a3 + λ∗4a4)
Tx ≥ λ∗3b3 + λ∗4b4

=⇒ cTx ≥ λ∗3b3 + λ∗4b4 (10.16)

λ∗3, λ
∗
4 are related to the solution of another programming problem given by

max λT b (10.17)

s.t.
∑

i λiai = c

λi ≥ 0

This is called the dual problem of the original (primal) optimization problem. The Weak
Duality Theorem states that for any primal feasible x and any dual feasible λ, λT b ≤ cTx.

10-7

